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Most natural language processing applications exhibit a trade-off between precision and recall.
In some use cases for natural language processing, there are reasons to prefer to tilt that trade-off
toward high precision. Relying on the Zipfian distribution of false positive results, we describe a
strategy for increasing precision, using a variety of both pre-processing and post-processing meth-
ods. They draw on both knowledge-based and frequentist approaches to modeling language. Based
on an existing high-performance biomedical concept recognition pipeline and a previously pub-
lished manually annotated corpus, we apply this hybrid rationalist/empiricist strategy to concept
normalization for eight different ontologies. Which approaches did and did not improve precision
varied widely between the ontologies.
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1. Introduction

Ambiguity is a fundamental feature of all known human languages.1 That ambiguity is one of the
fundamental challenges for natural language processing systems.2 One form of ambiguity relevant
to text mining for precision medicine is polysemy—the phenomenon of words having more than
one meaning. For example, Johnson et al.3 point out that the word cone, concept BTO:0000280 in
the BRENDA Tissue Ontology, refers to an ovule- or pollen-bearing structure that participates in
reproductive functions of pine trees. The word cone also appears in terms from the Gene Ontology,
where it refers to a kind of cell found in the retina. Since it has more than one potential meaning, it
is ambiguous—specifically, it is polysemous.

Concept normalization is the language processing task of mapping mentions of concepts in
text to an independently defined terminology or ontology.4,5 Polysemy-based ambiguity of terms
in the terminology can cause errors in that mapping. These include both false negatives—a failure to
recognize a mention of a concept—and false positives—incorrectly identifying a concept as being
mentioned, when in fact it has not. In some applications in precision medicine, false positives are
more harmful than false negatives.6–11 For example, false positives in tumor profiling in cancer
precision medicine can lead to somatic and germline mutation confusion.12 Despite this general
challenge, dictionary-based methods are effective for mapping text to ontologies. For example, in
normalizing genes, chemicals, cell types, and tissue types.13 This motivates the error-analysis-based
strategy for reducing the false positive rate for concept normalization systems.

©c  2017 The Authors. Open Access chapter published by World Scientific Publishing Company and dis-
tributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.

Pacific Symposium on Biocomputing 2018

566



Most systems14 (and most evaluations of them4) attempt to optimize a measure called F1, which
weights false positives (i.e. precision) and false negatives (i.e. recall) equally. However, there are
applications of concept normalization in which equal weighting is not ideal. For example, empha-
sizing precision is useful in protein protein interaction tasks involving large corpora because false
positives will degrade the accuracy and reliability of the knowledge inferred.15 High precision is also
important for user acceptance, as the presence of obvious errors in system output reduces user confi-
dence, for example, as shown in a study of information retrieval from medical textbooks.16 Further,
large corpora are often redundant, the same information is present multiple times.17 If the goal is to
identify types of concepts in large corpora, then high precision, at the cost of some loss of recall,
improves overall performance. There are situations in which recall can be more important.18,19 For
example, recall is important “for practical applications like semantic search, since such applications
need to recognise as many events as possible [in biomedical event extraction].”18 If the results of
text mining will be further used in computation, it is advantageous to have high recall for further
training steps,18 and it may be possible to filter out false positives in later processing, making recall
more important.19

Here though, we focus on precision because of the application: precision medicine. Concept
recognition has found many applications in precision medicine, for example information extraction
from cancer clinical trials6,7 or cancer pathology reports,10 prediction of cancer8 or cancer stage9

in electronic medical records (EMRs), and in patient-centered decision support.11 In each of these
applications, improved precision (even at the cost of some recall) has significant advantages. One
concern with many false positives is user acceptance: a system with many errors is less likely to be
implemented. Thus, reducing false positives increases the likelihood that these systems will be used
for precision medicine.

As with many other phenomena in NLP, the distribution of false positives is often Zipfian: a
relatively small number of errors occur frequently, while most occur rarely. Johnson, et al.3 observed
that precision can often be improved significantly by addressing the common errors: “The Zipf-like
distribution of error counts across terms suggest that filtering a small number of terms would have
a beneficial effect on the error rates due to... ambiguity-related errors.”3 Thus, fixing the top errors
can have a beneficial effect on overall performance. This is the motivation here.

To assess the accuracy of a concept normalization system, a manually annotated gold stan-
dard corpus is generally required. Here, we use the Colorado Richly Annotated Full Text Corpus
(CRAFT) of full text biomedical journal articles, annotated with concepts from eight different on-
tologies.20 As a baseline concept normalization system, we used the best performing systems from
Funk, et al.,21 with the precision maximizing parameters for each ontology. For each ontology, we
tested for a Zipfian distribution, identified the most common concept errors in PubMed Central Open
Access, and tested a set of five different potential pre- and post-processing steps that could improve
precision.

2. Materials and Methods

To assess whether biomedical concepts have a Zipf-like distribution, and to identify the most com-
mon false positives, we use the PubMed Central Open Access (PMCOA) corpus. PMCOA is under
the Creative Commons or similar license that generally allows more liberal redistribution and reuse
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than a traditional copyrighted work.22 As of this writing there are 1,494,227 articles in this set.
To calculate precision and recall, we used The Colorado Richly Annotated Full Text Cor-

pus (CRAFT): 67 public full-text biomedical articles from PMCOA that are manually annotated,
with approximately 100,000 concept annotations to eight different biomedical ontologies, including
Chemical Entities of Biological Interest (ChEBI), Cell Ontology (CL), Gene Ontology (GO) which
includes biological processes (GO-BP), cellular components (GO-CC), and molecular function (GO-
MF), NCBI Taxonomy (NCBI Taxon), Protein Ontology (PRO), and Sequence Ontology (SO).20

Our concept normalization system is ConceptMapper, a high-performance customizable dictionary
look-up tool implemented as a UIMA component.23 Funk et al. determined that ConceptMapper
is the best performing (highest F1 measure) concept recognition software as compared to others.21

They also determined the best parameter settings for it to obtain the highest F1 measure, precision,
or recall.21 We use the high-precision parameter settings as baseline concept normalization. Also,
the dictionaries for ConceptMapper are taken from ontology concept names and synonyms. See
https://github.com/UCDenver-ccp/ccp-nlp-pipelines for the ConceptMapper pipeline.

To test the distributional characteristics of the PMCOA corpus, we ran the ConceptMapper sys-
tem over it and calculated concept frequencies for each ontology. To identify the most frequent false
positives, we manually reviewed the 20 most frequently occurring concepts for each of the eight
ontologies. Based on this manual review, we applied five different pre- and post-processing strate-
gies (and their combinations) in no particular order, in order to improve precision for each ontology.
Each strategy’s effectiveness was evaluated using CRAFT. The strategies included:

• Pre-processing ConceptMapper dictionaries to remove problematic concepts/synonyms
Some false positives are due to errors in ConceptMapper dictionary entries, so delete

concepts or synonyms if they grossly misidentify the definition of the concept. For example,
CHEBI:90880, the tipiracil cation, had as a synonym “(1+),” which matched all instances of
the numeral “1” in PMCOA. Although 91% of the papers in PMCOA had at least one match,
none of those were references to the ChEBI term.

• Pre-processing to remove single word concepts that are in the general English dictionary
One type of ambiguity stems from the fact that some concepts have acronyms that

are general English words (single words), even though they are scientifically specialized
words. For example, the PRO concept, PR:00003444, “carbonic anhydrase 2,” with acronym
“CAN,” triggers annotation of PR:00003444 to all instances of the general English word
“can”. This repair filters out concepts and synonyms that are in a general English dictionary
in hopes to only capture the scientifically specialized words in the ontologies.

• Post-processing to check for the presence of acronym apositives
To ensure that acronyms are found correctly, keep concepts using capitalization: all up-

per case or first letter capitalized. For example, the NCBI Taxon concept NCBITaxon:3702,
“Arabidopsis thaliana,” with acronym “AT,” not the general English word “at,” is commonly
recognized as a false positive. Further, some acronym apositives have the first letter upper-
case such as the GO-MF concept GO:0043336, “site-specific telomere resolvase activity,”
with acronym “ResT.” This filter keeps concepts with either full capitalization or the first
letter capitalized.

• Post-processing to keep only the canonical form of the concept
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Keep concepts that are in the canonical form in the ConceptMapper dictionaries. For
example, the ChEBI concept CHEBI:27889, “lead(0),” in its canonical form, is kept, but its
synonym “lead” is not.

• Post-processing based on the frequency of occurrence of the concept in the document
Calculate how frequent a concept appears in each document and test whether keeping an

annotation if the concept was more or less frequent than a threshold improved precision. For
example, if found that deleting concept annotations that appeared under 40 times in a text
improved precision, and the PRO concept PR:000009431, “kinetochore-associated protein
1,” with acronym “ROD,” appeared 28 times in a document, then the PRO concept annotation
would be removed. To determine the threshold for each ontology, optimize precision over a
range of thresholds from 0 to 50 on CRAFT. 50 was the upper threshold because manually,
the max threshold found was 40. Note that each ontology may have its own threshold.

3. Results
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Fig. 1: The concept frequencies for all 8 ontologies for the top 20 concepts. The rates decline rapidly
in a Zipfian distribution using the Kolmogorov-Smirnov test24 based on no significant difference
between each ontology distribution and the Zipf distribution (p-value > 0.2).

The distribution of the 20 most frequent concepts in the PMCOA literature obeys a Zipfian
distribution (see figure 1) using the Kolmogorov-Smirnov test24 (igraph package in R25) based
on seeing no significant difference between each ontology distribution and a Zipfian distribution
(see github.com/mboguslav/Concept-Normalization). Thus, fixing the most-frequent errors
could be expected to increase precision. The 20 most frequently recognized concepts from each
ontology in the PMCOA corpus were evaluated manually. Many of the most frequently occur-
ring concepts were errors. The top two terms for each ontology are listed below with false posi-
tives in red and the ontology concept ID and frequency in parentheses. The top 20 are available at
https://github.com/mboguslav/Concept-Normalization. This manual evaluation was used
to determine the pre- and post-processing strategies that aim to get rid of false positives and improve
precision.

• CL: cell (CL 0000000, 44%); T cell (CL 0000084, 5.6%)
• ChEBI: (1+) (CHEBI 90880, 91%); group (CHEBI 24433, 54%)
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• NCBI Taxon: Homo Sapiens (NCBITaxon 9606, 44%); order (NCBITaxon order, 43%)
• PRO: carbonic anhydrase 2 (PR 000034449, 78%); Golgi-associated PDZ and coiled-coil

motif-containing protein (PR 000008147, 52%)
• SO: single (SO 0000984, 48%); region (SO 0000001, 43%)
• GO-BP: developmental process (GO 0032502, 47%); cell aging (GO 0007569, 44%)
• GO-CC: cell and encapsulating structures (GO 0005623, 56%); cell part (GO 0044464,

45%)
• GO-MF: 3-methyl-2-oxobutanoate dehydrogenase (ferredoxin) activity (GO 0043807,

95%); enoyl-CoA hydratase activity (GO 0004300, 70%)

The manually determined problematic concepts in the top two are in red above, such as the
“(1+)” issue already mentioned. With this list of problematic terms, an error analysis (looking to the
original text) was performed to determine the cause of the false positives. This demonstrated that
many of the false positives were also terms in general English (e.g. can, lead, fig). We then assessed
all the terms in each ontology that were in a general English dictionary using the Enchant spell-
checker library26 (see figure 3). With this information, we tried to post-process the general English
words (as mentioned in methods), but the precision did not increase and this was better captured by
the other post-processing methods.

The highest precision criteria were chosen, and statistical significance of the difference was
calculated according to Yeh.27 This criteria was implemented on PMCOA to get the new top 20 most
frequent concepts, in hope that the new concept frequencies make more sense then the previous (see
https://github.com/mboguslav/Concept-Normalization for the new top 20 concepts).

In general, only two ontologies needed pre-processing due to problematic concepts or synonyms:
ChEBI and PRO. This increased precision significantly for ChEBI and had little impact on PRO (see
section 3.1 with figure 2).

Within post-processing, focusing on precision only, the best criteria to improve precision was
checking for the presence of appositives: keeping concept annotations if the annotation was all upper
case (an acronym) or the first letter of the annotation was uppercase (acronym or proper noun), and
discarding them otherwise (see section 3.3 with figure 4a). With these criteria, precision improved
significantly for 6 out of the 8 ontologies. However, recall plummets at the same time, except for
PRO: the change in recall is minimal. Thus different criteria is needed that improves precision and
maintains recall (remains the same or slightly decreases).

Combining the post-processing that keeps only the canonical forms and the post-processing
based on the frequency of occurrence, improves precision and only slightly lowers recall. Thus keep
concept annotations if they are in the canonical form of the ontology concept or the number of times
the annotation concept appears per document is over a specific threshold as explained above. With
the optimal thresholds for the highest precision for each ontology, ConceptMapper ran over CRAFT
(see thresholds in table 1). This significantly improved precision for 5 of the 8 ontologies and did
nothing for the others (see section 3.4). Overall precision improves, while recall decreases slightly
leading to a decrease in F1 measure.
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3.1. Results from deleting concepts and synonyms

Since deleting concepts or synonyms is likely to cause an increase in false negatives, this approach
is likely to lead to performance improvements only in the case of obvious ontological errors, such
as the case of “(1+)” as a synonym for the tipiracil cation. These errors were found in ChEBI and
PRO. Changes led to a modest improvement for ChEBI, but not for PRO. This is likely because the
erroneous terms do not appear in CRAFT (although they did in PMCOA). For example, the PRO
concept PR:000015574, “small proline-rich protein 2A,” has the synonym “2-1,” which was deleted,
but the synonym is not in CRAFT. In no case did this reduce performance (see figure 2).
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Precision Recall

Fig. 2: Precision and recall after the pre-processing step as compared to the baseline. *Statistically
significant difference in precision between pre-processed and baseline using χ2 test.27

3.2. Results from general English dictionary

Some of the ambiguity issues involve concept acronyms that are words in the general English dic-
tionary. Thus, we quantified the number of single word concepts that are in the general English
dictionary for each ontology. As figure 3 shows, GO-BP has the most single word concepts that are
general English words, followed by GO-CC. The caveat to this is that some concepts are general
English words and correctly identify the ontology concept, such as sulfation in GO-BP. Due to this
caveat, more concept annotations were deleted that were identifying the correct concept, rather than
identifying the wrong concept, leading to a decrease in precision. Further, the issue with single word
concepts as general English words is somewhat solved in the other post-processing criteria.

3.3. Results from Case post-processing

Requiring annotations to be acronyms based on case, improved precision significantly for six on-
tologies, but hurt two (NCBI Taxon and GO-CC). The first letter capitalized also finds proper nouns,
which are also more likely to be concepts of interest. For all but NCBI Taxon, precision was above
0.74 with most between 0.8 and 0.98 (see figure 4a). Looking at F1 measure, overall it drastically
declined, except for PRO which increased from 0.55 to 0.58, suggesting that this may be a good fix
for PRO at least (see figure 5).
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Fig. 3: The percentage of single word concepts for each ontology in the general English dictionary.
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(a) Case post-processing
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Fig. 4: Precision and recall for both case post-processing and frequency post-processing as com-
pared to the baseline. *Statistically significant difference in precision between post-processing and
baseline using χ2 test.27

Pacific Symposium on Biocomputing 2018

572



0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

CL ChEBI NCBI	
Taxon

PRO SO GO-BP GO-CC GO-MF

Baseline	F1	score Case	Post-processing	F1	score

Frequency	Post-processing	F1	score

Fig. 5: F1 scores for both post-processing steps as compared to baseline.

3.4. Results from canonical form and frequency-based post-processing

Requiring the canonical form of the concept is helpful: using the canonical forms improved pre-
cision because of its specificity to the concept. For example, in the “lead(0)” example above, the
synonym “lead” causes false positive issues, finding annotations of the verb (“lead to”) instead of
the noun. Thus, if we only keep the annotations that have the ”lead(0)” form, then we are more
likely to annotate the concept correctly. At the same time, keeping only the canonical form dras-
tically decreased recall because concept synonyms are widely used, including “lead”. Therefore,
the canonical form post-processing must be used in combination with another post-processing tech-
nique: frequency-based post-processing. Using the concept annotation frequency per document (see
table 1 for thresholds for each ontology) and the specificity of the canonical forms, enabled us to
improve precision significantly for five ontologies (ChEBI, NCBI Taxon, PRO, SO, and GO-CC),
not hurt the other three, and while only slightly lowering recall (see figure 4b). Precision also im-
proved for the two ontologies, NCBI Taxon and GO-CC, where precision decreased using case
post-processing (see figure 4a). Overall, F1 measure remained the same or decreased slightly for
each ontology (see figure 5), an improvement on the case post-processing.

Table 1: The concept frequency threshold for each ontology based on maximizing precision with
thresholds between 0 and 50.

Ontology Frequency threshold Ontology Frequency threshold
CL 2 SO 42

ChEBI 22 GO-BP 43
NCBI Taxon 40 GO-CC 22

PRO 43 GO-MF 3
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4. Repeatability and reproducibility

The ConceptMapper pipeline is available at:
github.com/UCDenver-ccp/ccp-nlp-pipelines. The intermediate data files for the analysis are
available at github.com/mboguslav/Concept-Normalization.

Since ontologies are often updated, the results here are unlikely to be reproduced exactly the
same in the future. In a more general sense, however, the effects of applying the pre- and post-
processing rules to the concept annotations can change any time the contents of the ontologies
change. For example, we reported the tipiracil cation error to the ChEBI maintainers. They have
since replaced (1+) with tipiracil(1+), obviating the need for our handling of the false positives that
resulted from the (1+) synonym. Although this could potentially change the measured performance
of the current implementation, on balance it is difficult to see this state of affairs as anything other
than good.

These are weaknesses of the current version of the implementation (and probably any future
ones). Nonetheless, the elaboration of the hybrid rationalist/empiricist methodology of using distri-
butional aspects of the errors to prioritize which ones to address, with knowledge-based approaches
being applied to recover from them, remains a contribution. There is an oft-heard trope that purely
statistical approaches to language processing “work” better than knowledge-driven ones. That claim
is rarely, if ever, substantiated. The work presented here is consistent with what one actually ob-
serves in practice: hybrid systems are a reasonable approach to the challenges of the ambiguity of
natural language.

5. Discussion and conclusions

Table 2: Summary of findings for each pre- or post-processing step. Y means the method increased
precision, No means the method did not change precision, and Decrease means that the method
decreased precision.

Ontology Pre-processing Case post-processing Frequency post-processing
CL Y No

ChEBI Y Y Y
NCBI Taxon Decrease Y

PRO No Y Y
SO Y No

GO-BP Y No
GO-CC Decrease Y
GO-MF Y No

At least one method improved precision for each ontology tested (see table 2), since there is a
“Y” for at least one method for each ontology. Further, the ontology with the worst baseline precision
was PRO and precision significantly improved using both post-processing methods, and F1 measure
even improved using the case method (see figure 4). The ontology with the second lowest precision
was ChEBI, and precision improved significantly for all methods (see “Y” for all methods for ChEBI
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in table 2). Note that there is no single method that only increases or only decreases precision for
all ontologies. Each method presented here though, helps at least one ontology, specifically pre-
processing, the case post-processing, and frequency post-processing methods. So, we suggest trying
these methods to improve precision either on a manual annotated corpus like CRAFT, or an unknown
set of documents that one can review manually after, before singling out each ontology and finding
its specific errors and fixes. Another option is to analyze the most frequent concepts as we did here
to see if they are false positives and follow a Zipfian distribution.

Although these results are from the biomedical literature, there are reasons to believe this will
apply to concept normalization in electronic patient records as well. For example, a general text
mining NLP tool and ontologies have been used to extract information from electronic medical
records.28

5.1. Limitations

Here we only evaluated our metrics (precision, recall, and F1 measure) using CRAFT and do not
know how a different corpus may affect these metrics.29 Further, the limited size (and domain) of
the CRAFT corpus means that the estimates of precision and recall will not perfectly reflect the
changes in performance over the entire PMCOA corpus.30 However, we believe that some of the
changes that showed little effect in CRAFT are actually useful over the entire PMCOA corpus,
suggested by the fact that the new top 20 concepts for each ontology have more realistic concept
frequencies. Further, there are other possible post-processing rules to evaluate that were not included
in this study. For example, for the PRO concept PR:000008147, “Golgi-associated PDZ and coiled-
coil motif-containing protein,” with acronym “FIG,” which currently recognizes the same shorthand
for figures in text, context could inform post-processing. For figures in the text, a number usually
appears after it, whereas it would probably not for the protein. Future directions include trying other
pre- and post-processing techniques that have the potential to improve precision.

5.2. Conclusion

The work here shows that it is possible to improve precision without losing much recall for ex-
isting systems, ConceptMapper, by exploring both pre- and post-processing methods of concepts
and concept annotations, respectively. Further, this work provides some evidence that there is no
single fix that will improve precision for concept recognition for all ontologies, based on exploring
five different methods to do so. At the same time, these methods improve precision for at least one
ontology, suggesting that trying these methods before examining each ontology closely could be
worthwhile. For example, the case post-processing method improves both precision and F1 measure
for the protein ontology suggesting that this is a necessary step in concept normalization for it. Thus
trying these different combinations of pre- and post-processing steps on other ontologies may prove
fruitful for concept recognition as a whole.
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