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Alzheimer’s disease (AD) is a neurodegenerative disorder with few biomarkers even though it 
impacts a relatively large portion of the population and is predicted to affect significantly more 
individuals in the future. Neuroimaging has been used in concert with genetic information to improve 
our understanding in relation to how AD arises and how it can be potentially diagnosed. Additionally, 
evidence suggests synonymous variants can have a functional impact on gene regulatory 
mechanisms, including those related to AD. Some synonymous codons are preferred over others 
leading to a codon bias. The bias can arise with respect to codons that are more or less frequently 
used in the genome. A bias can also result from optimal and non-optimal codons, which have stronger 
and weaker codon anti-codon interactions, respectively.  Although association tests have been 
utilized before to identify genes associated with AD, it remains unclear how codon bias plays a role 
and if it can improve rare variant analysis. In this work, rare variants from whole-genome sequencing 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort were binned into genes using 
BioBin. An association analysis of the genes with AD-related neuroimaging biomarker was 
performed using SKAT-O. While using all synonymous variants we did not identify any genome-
wide significant associations, using only synonymous variants that affected codon frequency we 
identified several genes as significantly associated with the imaging phenotype. Additionally, 
significant associations were found using only rare variants that contains an optimal codon in among 
minor alleles and a non-optimal codon in the major allele. These results suggest that codon bias may 
play a role in AD and that it can be used to improve detection power in rare variant association 
analysis. 
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1.  Introduction 

Rare and low-frequency variants have a significant influence on the heritability of disease. Rare 
variants are often spurious; thus, it can be difficult to run an association test on an individual locus 
because it will be underpowered [1]. In order to overcome this issue, rare variants can be grouped 
or “binned” together based on prior biological knowledge related to the genetic etiology of the 
disease [2-4]. For instance, rare variants can be binned into genes, pathways, intergenic, conserved 
regions, or any other defined region of the genome [3, 5]. This strategy has several strengths: first it 
increases the detection power by aggregating association signals in the variants in the bin; secondly, 
it reduces the multiple testing burden by not testing every variant, thus increasing the power to detect 
a significant association. In addition to binning by a specific region, filtering for a specific type of 
variant, such as non-synonymous changes, have important benefits in addition to reducing the 
testing burden by focusing the association on variants that are more likely to influence the phenotype 
and provide easier interpretation of the results [6]. 

Synonymous mutations represent a change in the coding sequencing at the nucleotide level 
without changing the amino acid sequence. Since multiple codons code for the same amino acid, 
the genetic code is called “degenerate”. It is likely that these characteristics of the genome is partially 
responsible for leading investigators to the assumption that synonymous mutations and variants have 
little to no impact on the protein, and are thus often dubbed “silent” without further investigation. 
However, it has been shown that different organisms prefer some codons over others and codon 
usage can also vary between genes in the same organism, suggesting there has been evolutionary 
pressure to optimize synonymous codons [7, 8]. Further investigation has demonstrated the many 
gene regulatory mechanisms by which codon bias can impart its affects such as splicing, RNA 
secondary structure, and translation [9, 10]. Moreover, synonymous variants have been implicated 
in a number of diseases including neurological, immune, cancer, blood-related, heart, and others [9]. 
The synonymous variants associated with these diseases are attributed to multiple mechanisms, 
therefore it will be important to study multiple forms of codon bias.  

There are a number of ways in which codon usage can be biased and thus measured (Figure 1). 
For instance, the relative synonymous codon usage (RSCU) score represents the frequency for 
which the codon is used relative to other synonymous codons, thus providing a metric for 
determining whether a mutation replaces a more common codon with a rarer codon or vice versa [9, 
11]. Substituting rare and common synonymous codons can affect translation and protein activity 
in vitro [12]. Both single cellular and multicellular eukaryotic organisms utilize codons that use rare 
and common tRNAs at the beginning and end of the gene, respectively, to impart control over 
translation rates [13]. Another means by which codon bias has been observed is through codon 
optimality. Some codons are more optimal than others by having stronger interactions with their 
cognate tRNA, or having more tRNAs available resulting in translation proceeding with less pausing 
and with higher fidelity, and in some cases affecting the stability of the mRNA [14]. 

In this study, we identified synonymous rare variants that have a functional impact on gene 
regulatory mechanisms in whole genome sequencing data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort and then performed an association analysis of the functional 
synonymous variants with AD-related neuroimaging biomarker. AD is a progressive 
neurodegenerative disorder. Currently AD has no cure or preventive therapy. Genetic risk clearly 
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plays an important role in AD and neuroimaging has been used in concert with genetic information 
to improve our understanding in relation to how AD arises and how it can be potentially diagnosed. 

 
 
 
Fig. 1.  Codon bias effects translation of mRNA. When the ribosome translates the mRNA, it will come 
into contact with both common, rare, optimal (O), and/or non-optimal codons (NO). After the ribosome 
starts translating (top), it may come into contact with a common or optimal codon. These codons are likely 
to lead to the ribosome continuing on the mRNA. Rare codons or non-optimal codons (bottom figure) may 
lead to the ribosome pausing or slowing down, possibly to allow for the protein to fold correctly.  

 
2.  Methods 

2.1.  Study sample 

Data (whole genome sequencing and MRI imaging) used in this study were obtained from the ADNI 
database (http://adni.loni.usc.edu/). Samples were collected as described previously [6].  There was 
a total of 750 non-Hispanic Caucasian participants (425 were male and 325 female).  The average 
age and years of education was 73.1 +/- 7.0 and 16.1 +/- 2.8 years, respectively.  

2.2.  Neuroimaging analysis 

Pre-processed baseline 1.5T and 3T MRI scans were downloaded from the ADNI and T1-
weighted brain MRI scans were processed using previously described automated MRI analysis 
technique, FreeSurfer software, which was used to extract mean bilateral entorhinal cortical 
thickness and total intracranial volume (ICV) [15]. Mean entorhinal cortical thickness, AD-related 
neuroimaging biomarker, was used as endophenotype for the association analysis. 

2.3.  Variant annotation 

750 ADNI non-Hispanic Caucasian participants with baseline MRI scans and whole-genome 
sequencing (WGS) were used in this study.  The VCFs containing the genomic information for 
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these 750 individuals were annotated using the variant effect predictor (VEP) software package. 
Using VEP, “synonymous” variants were selected using the filter function. Codons were then 
annotated as either optimal or non-optimal based on previous studies that characterized the codon 
anti-codon affinities [16-18]. The transition from optimal (O) to non-optimal (NO) was defined as 
the most common allele was O and the alternate allele was NO, and the reciprocal is true for the 
NO to O variants. Additionally, the relative synonymous codon usage (RSCU) score was 
calculated as:  
 

                                  RSCU = SNc/Na 
 
Nc refers to the frequency of a specific codon  
Na is the frequency of the amino acid Nc codes for  
S represents the number of synonymous codons for Na 

 
The codon frequencies for Homo sapiens were acquired from the Codon Usage Database 
(http://www.kazusa.or.jp/codon/).  RSCU increasing was defined as the most common allele was 
in a codon with a lower RSCU score than the synonymous codon that the alternate allele 
produced. Whereas, for a decreasing RSCU score the most common allele was in a codon with a 
higher RSCU score than the synonymous codon that the alternate allele produced. Since only 
synonymous codons for the same amino acid were compared, the RSCU comparisons were 
effectively just comparing codon frequency in this work.  

2.4.  BioBin analysis and association test 

Fig. 2.  Variants were from ADNI were annotated using VEP. Synonymous variants were then annotated using 
optimality and RSCU score. BioBin utilized the annotation from LOKI to bin rare variants into genes. SKAT-O was 
used to test genes for an association with the ADNI imaging phenotype. 
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BioBin was employed to group variants together by genic region [2-5]. BioBin uses gene 
annotations from LOKI (the library of knowledge integration), which contains information from 
several databases including but not limited to NCBI Entrez, UCSC Genome Browser, and Kyoto 
Encyclopedia of Genes and Genomes (KEGG).  Only rare variants with minor allele frequency 
(MAF) less than 0.01 were binned and Madsen & Browning weighting was applied as previously 
described [5].  Association tests were performed using SKAT-O [19], adjusting for age, gender, 
years of education, intracranial volume (ICV) and MRI field strength as covariates. Although 
neuroimaging MRI scans from all ADNI participants included in the analysis were obtained from 
multiple sites, all sites followed the same ADNI MRI protocol and each raw scan was processed 
using a FreeSurfer pipeline at the Indiana University. Thus, the site was not included as a covariate 
since there is likely to be little site effects if any. The advantage of using SKAT-O is that it can 
utilize both dispersion or burden tests in order to detect a significant association [19]. P-values 
were adjusted for multiple tests using the p.adjust function in R, using the “FDR” method [20].  

3.  Results 

Variants that represent a synonymous alteration were identified using VEP. The rare (MAF < 
0.01) synonymous variants were then binned based on the genes they were located in, using 
BioBin (Figure 2). Each gene was required to have at least five variants across the cohort to be 
included in the analysis. Setting a minimum bin size establishes a more stringent threshold for 
finding an association. Additionally, by having fewer bins, there will be fewer tests performed, 
thus increasing the power to detect a significant association. previous studies have utilized a 
threshold when attempting to identify significant associations between genes and phenotypes of 
interest [21]. An association test was then performed between the genes and the imaging 
phenotype (entorhinal cortical thickness) using SKAT-O and corrected for multiple testing. When 
using all synonymous variants, there were no genes that reached genome-wide significance (FDR 
< 5%) nor were there any suggestive of being significant (FDR < 10%) (Table. 1). 

 
Table 1: Top 5 associations for all synonymous variants (11,236 genes total) 

Gene # of Loci p-value 
Corrected 
 p-value 

RHOB 4 1.14E-05 0.121 

TMEM201 9 2.15E-05 0.121 

MLST8 8 6.02E-05 0.212 

MOB3B 4 7.56E-05 0.212 

DTL 13 1.24E-04 0.278 
 
 
 
 However, using only synonymous variants with decreasing RSCU scores or increasing RSCU 

scores, we identified two (MLST8 and RHOB) and six genes (FLG2, CHD6, CD244, FLG-AS1, 
SERPINB5, and GTF3C1) as significantly associated with entorhinal cortical thickness after 
multiple testing adjustment, respectively (Table 2 and Table 3). There are also two genes that were 
suggestive of being significant (Table 3). In addition, we performed a detailed unbiased whole-
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brain surface-based analysis using multivariate regression models to assess the effects of 
synonymous rare variants in MLST8 and RHOB on whole-brain cortical thickness. First, we 
calculated a single polygenic risk score by collapsing all rare variants and counting minor alleles 
with a dominant genetic model. Figure 3 displays the results of the main effect of synonymous 
rare variants with decreasing RSCU scores in a surface-based whole-brain analysis. We identified 
highly significant clusters as associated with the risk scores in the entorhinal cortex after multiple 
comparison adjustment.  

 

 

 
 
 
Figure 3. Surface-based whole-brain analysis results. A whole-brain analysis of cortical thickness was 
performed to visualize the topography of genetic association (a) MLST8 and (b) RHOB in an unbiased 
manner. A threshold for statistical maps was set using a random field theory adjustment to a corrected 
significance level of p=0.05. 

 
 
 
 

Pacific Symposium on Biocomputing 2018

370



	
	

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, synonymous variants were separated into variants that introduce a non-optimal 

codon (O to NO) and those which introduce an optimal codon (NO to O). The results from each 
association analysis are represented in tables 4 and 5. Although no genes met genome-wide 
significance using the O to NO variants, the NO to O rare variants in five genes (DTL, FLG2, 
SERPINB5, FLG-AS1, and ZNF599) were significantly associated with entorhinal cortical 
thickness after multiple comparison adjustment (FDR < 5%).  

 
 
 
 
 
 
 
 
 

Table 2: Top 5 associations for synonymous variants with decreasing 
RSCU scores (8,066 genes total) 

Gene # of Loci p-value 
Corrected  
p-value 

MLST8 6 4.10E-06 0.033 

RHOB 4 1.14E-05 0.046 

TRMT44 3 5.12E-05 0.122 

RCC2 4 6.79E-05 0.122 

MOB3B 4 7.56E-05 0.122 

Table 3: Top associations for synonymous variants with increasing RSCU 
scores (4774 genes total) 

Gene # of Loci p-value 
Corrected 
 p-value 

FLG2 9 2.52E-05 0.039 

CHD6 6 2.63E-05 0.039 

CD244 2 3.48E-05 0.039 

FLG-AS1 10 3.95E-05 0.039 

SERPINB5 3 4.10E-05 0.039 

GTF3C1 3 5.60E-05 0.045 

GABRG1 2 1.07E-04 0.073 

SRP72 4 1.39E-04 0.083 
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Table 4: Top 5 associations for synonymous variants in non-
optimal codons (O to NO; 8,401 genes total) 

Gene # of Loci p-value 
Corrected 
p-value 

RHOB 4 1.14E-05 0.096 

MLST8 6 6.78E-05 0.246 

MSH2 13 1.54E-04 0.246 

AKAP3 3 2.08E-04 0.246 

RASGRF2 4 2.10E-04 0.246 
 

Table 5: Top associations for synonymous variants in optimal 
codons (NO to O; 2,625 genes total)  

Gene # of Loci p-value 
Corrected 
p-value 

DTL 4 4.45E-06 0.012 

FLG2 9 2.68E-05 0.028 

SERPINB5 3 4.10E-05 0.028 

FLG-AS1 10 4.30E-05 0.028 

ZNF599 2 9.42E-05 0.049 

SRP72 4 1.39E-04 0.056 

DLL4 3 1.50E-04 0.056 
 

4.  Discussion 

Here we have performed an association analysis of synonymous rare variants from WGS with a 
functional impact on gene regulatory mechanisms with AD-related neuroimaging biomarker. 
Variants that represented synonymous changes between the codon of the major and minor alleles 
were first selected. BioBin was then used to count the number of variants per gene. No significant 
associations were identified using all synonymous variants. However, by focusing on specific 
groups, like those which affect frequency or optimality, significant associations were identified. In 
other words, by focusing on variants that are more likely to impact gene expression and possibly 
protein function, associations with genes that were previously undetected using all synonymous 
variants with AD neuroimaging biomarker were identified. Using all synonymous variants may be 
less likely to identify significant associations because it increases the likelihood of including 
synonymous variants that are in fact benign, thus drowning out the signal from synonymous variants 
that are more likely to be functional. Furthermore, by selecting only variants of a certain type, the 
number of tests performed was also reduced when compared to using all synonymous variants 
(compare table 1 to tables 2 through 5). With fewer association tests to run, the power to detect an 
association will also increase. The significant associations may provide useful insights into the 
biology of AD.  
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Several genes were associated with the imaging phenotype through variants that had a 
synonymous change which caused a change in relative codon usage. MLST8 is a subunit of the TOR 
complex which is a key regulator of the cellular growth and survival in response to environmental 
cues [22-24]. Furthermore, it was found that a SNP near MLST8 has a cis-regulatory effect on its 
expression in the brain in an age dependent manner [25]. Interestingly, gene expression also 
overlapped with genes that had epigenetic signatures that implicated it in Alzheimer’s [25].  RHOB 
is a member of the Rho GTPase family of proteins responsible for modulating the actin cytoskeleton 
and gene expression [26]. RHOB is induced during neuro-trauma which is a known risk factor for 
AD [27-29]. CHD6 is a chromatin remodeler that is a member of the SNF2/RAD54 helicase protein 
family with no recognized link to AD [30].  Although expressed in most tissues, not much is known 
about the anti-sense FLG-ASH1 transcript (genecards.org). Thus, multiple genes that have been 
previously connected to AD were identified here along with genes that have not previously been 
found to be associated with AD, or have little known about them at all. However, even though some 
genes had been previously associated with AD, this work presents a novel mechanism by which 
those associations may have arose. 

Finding associations through the unique types of codon bias sheds light on possible mechanisms 
that may be at play. Generally, more simple eukaryotes like yeast often have a positive correlation 
between codon frequency and tRNA abundance, making codon bias easier to dissect, however 
human codon bias is more complicated [31]. Thus, it was surprising that significant associations 
were identified simply by using variants that either increased or decreased in frequency. It has been 
shown that changing codons from rare to common can impact translation and protein activity [12]. 
So while there may not be as easily an explainable relationship between rare and common codons 
in humans, they may still impact the expression of some genes. RHOB was significantly associated 
with the phenotype using frequency and almost significant using optimality, thus another possibility 
is that frequency could be a surrogate for other types of codon bias. Codon optimality offers a more 
refined characterization in terms of why the association may exist between these genes and the 
phenotype. In this study, significant associations were found among the variants that went from non-
optimal to optimal. More optimal codons are expected to reduce pausing of the ribosome on the 
transcript [12]. It has been suggested that ribosome pausing may be important for allowing the 
protein to properly fold before the translation continues [12, 32]. Codon optimality can also affect 
mRNA stability [14]. Thus, the variants in the genes with an increase in optimal codons may have 
altered protein activity and/or expression levels which may eventually reach its way to impacting 
the AD related phenotype. 

Although it was possible to detect significant associations between the imaging phenotype and 
binned rare variants, there are a number of ways the methodology can be improved for future work, 
and are thus limitations of the methodology as it currently stands. For instance, it has been illustrated 
that codon bias can be observed when comparing the codon usages among highly expressed lowly 
expressed genes [8, 33, 34]. Currently, the method employed here is not be able to address such 
complex mechanisms. Thus, future analysis could divide codon bias among highly or lowly 
expressed genes in cell types such as brain tissue. Another limitation of our study is the way in 
which we calculated codon bias, as there are other ways of measuring bias in terms of frequency 
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and optimality [31, 35], so these calculations should also be tested for their ability to improve signal 
strength in a rare variant association test for future work. It will be important for follow-up 
association tests to replicate these findings to illustrate that the results and conclusions are robust. 
Of course, another limitation is that without experimental follow up studies it cannot be suggested 
that these variants are causal. Thus, functional validation would be incredibly valuable to measure 
empirically how codon bias mediates the relationship between these genes and the imaging 
phenotype, AD, and/or neurological diseases in general. Codon bias has also been investigated with 
respect to cancer, where non-optimal codons mutations were enriched among multiple types of 
cancers [16]. Furthermore, synonymous variants have been associated with a variety of disease 
including, but not limited to, blood-related, bone, immune and other neurological disorders [9], 
suggesting the methods utilized in this work could contribute to our understand of a wide range of 
diseases. In summary, this work has illustrated variants that contribute to codon bias can be used to 
increase detection power. Moreover, codon bias is associated with an AD-related neuroimaging 
biomarker, suggesting synonymous variants can be used to explain the etiology of AD. 
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