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As the bioinformatics field grows, it must keep pace not only with new data but with
new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly
used machine learning algorithms on a set of 165 publicly available classification problems in
order to provide data-driven algorithm recommendations to current researchers. We present
a number of statistical and visual comparisons of algorithm performance and quantify the
effect of model selection and algorithm tuning for each algorithm and dataset. The analysis
culminates in the recommendation of five algorithms with hyperparameters that maximize
classifier performance across the tested problems, as well as general guidelines for applying
machine learning to supervised classification problems.
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1. Introduction

The bioinformatics field is increasingly relying on machine learning (ML) algorithms to con-
duct predictive analytics and gain greater insights into the complex biological processes of the
human body.1 For example, ML algorithms have been applied to great success in GWAS, and
have proven effective at detecting patterns of epistasis within the human genome.2 Recently,
deep learning algorithms were used to detect cancer metastases on high-resolution pathology
images3 at levels comparable to human pathologists. These results, among others, indicate
heavy interest in ML development and analysis for bioinformatics applications.

Owing to the development of open source ML packages and active research in the ML
field, researchers can easily choose from dozens of ML algorithm implementations to build
predictive models of complex data. Although having several readily-available ML algorithm
implementations is advantageous to bioinformatics researchers seeking to move beyond simple
statistics, many researchers experience “choice overload” and find difficulty in selecting the
right ML algorithm for their problem at hand. As a result, some ML-oriented bioinformatics
projects could be improved simply through the use of a better ML algorithm.

ML researchers are aware of the challenges that algorithm selection presents to ML prac-
titioners. As a result, there have been some efforts to empirically assesses different algorithms
across sets of problems, beginning in the mid 1990s with the StatLog project.4 Early work
in this field also emphasized bioinformatics applications.5 More recently, Caruana et al.6 and
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Fernández-Delgado et al.7 analyzed several supervised learning algorithms, coupled with some
parameter tuning. The aforementioned literature often compared many algorithms but on rel-
atively few example problems (between 4 and 12), with only 7 using upwards of 112 example
problems. In the time since these assessments, researchers have moved towards standardized,
open source implementations of ML algorithms (e.g. scikit-learn8 and Weka9), and the number
of publicly available datasets that can be used for comparison have skyrocketed, leading to the
creation of decentralized, collaboration-based analyses such as the OpenML project.10 How-
ever, the value of focused, reproducible ML experiments is still paramount. These observations
motivated our work, in which we conduct a contemporary, open source, and thorough com-
parison of ML algorithms across a large set of publicly available problems, including several
bioinformatics problems.

In this paper, we take a detailed look at 13 popular open source ML algorithms and analyze
their performance across a set of 165 supervised classification problems in order to provide
data-driven advice to practitioners who wish to apply ML to their datasets. A key part of
this comparison is a full hyperparameter optimization of each algorithm. The results highlight
the importance of selecting the right ML algorithm for each problem, which can improve
prediction accuracy significantly on some problems. Further, we empirically quantify the effect
of hyperparameter (i.e. algorithm parameter) tuning for each ML algorithm, demonstrating
marked improvements in the predictive accuracy of nearly all ML algorithms. We show that
the underlying behaviors of various ML algorithms cluster in terms of performance, as might
be expected. Finally, based on the results of the experiments, we provide a refined set of
recommendations for ML algorithms and parameters as a starting point for future researchers.

2. Methods

In this study, we compared 13 popular ML algorithms from scikit-learn,8 a widely used ML
library implemented in Python. Each algorithm and its hyperparameters are described in Ta-
ble 1. The algorithms include Näıve Bayes algorithms, common linear classifiers, tree-based al-
gorithms, distance-based classifiers, ensemble algorithms, and non-linear, kernel-based strate-
gies. The goal was to represent the most common classes of algorithms used in literature, as
well as recent state-of-the-art algorithms such as Gradient Tree Boosting.11

For each algorithm, the hyperparameters were tuned using a fixed grid search with 10-
fold cross-validation. In our results, we compare the average balanced accuracy12 over the 10
folds in order to account for class imbalance. We used expert knowledge about the reasonable
hyperparameters to specify the ranges of values to tune for each algorithm. It is worth noting
that we did not attempt to control for the number of total hyperparameter combinations
budgeted to each algorithm. As a result, algorithms with more parameters have an advantage
in the sense that they have more training attempts on each dataset. However, it is our goal
to report as close to the best performance as possible for each algorithm on each dataset, and
for this reason we chose to optimize each algorithm as thoroughly as possible.

The algorithms were compared on 165 supervised classification datasets from the Penn Ma-
chine Learning Benchmark (PMLB).13 PMLB is a collection of publicly available classification
problems that have been standardized to the same format and collected in a central location
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with easy access via Pythona. Although not limited to problems in biology and medicine,
PMLB includes many biomedical classification problems, including tasks such as disease di-
agnosis, post-operative decision making, and exon boundary identification in DNA, among
others. A sample of the biomedical classification tasks contained in PMLB is listed in Table 2.

Prior to evaluating each ML algorithm, we scaled the features of every dataset by sub-
tracting the mean and scaling the features to unit variance. This scaling step was necessitated
by some ML algorithms, such as the distance-based classifiers, which assume that the features
of the datasets will be scaled appropriately beforehand.

The entire experimental design consisted of over 5.5 million ML algorithm and parameter
evaluations in total, resulting in a rich set of data that is analyzed from several viewpoints
in Section 3. As an additional contribution of this work, we have provided the complete code
required both to conduct the algorithm and hyperparameter optimization study, as well as
access to the analysis and resultsb. Doing so allows researchers to easily compare algorithm
performance on the datasets that are most similar to their own, and to conduct further analysis
pertaining to their research.

3. Results

In this section, we analyze the algorithm performance results through several lenses. First
we compare the performance of each algorithm across all datasets in terms of best balanced
accuracy in Section 3.1. We then look at the effect of hyperparameter tuning and model
selection in Section 3.2. Finally, we analyze how algorithms cluster across the tested problems,
and present a set of algorithms that maximize performance across the datasets in Section 3.3.

3.1. Algorithm Performance

As a simple bulk measure to compare the performance of the 13 ML algorithms, we plot the
mean rankings of the algorithms across all datasets in Figure 1. Ranking is determined by
the 10-fold CV balanced accuracy of each algorithm on a given dataset, with a lower ranking
indicating higher accuracy. The rankings show the strength of ensemble-based tree algorithms
in generating accurate models: The first, second, and fourth-ranked algorithms belong to this
class of algorithms. The three worst-ranked algorithms also belong to the same class of Näıve
Bayes algorithms.

In order to assess the statistical significance of the observed differences in algorithm per-
formance across all problems, we use the non-parametric Friedman test.14 The complete set
of experiments indicate statistically significant differences according to this test (p < 2.2e−16),
and so we present a pairwise post-hoc analysis in Table 3. The post-hoc test underlines the
impressive performance of Gradient Tree Boosting, which significantly outperforms every al-
gorithm except Random Forest at the p < 0.01 level. At the other end of the spectrum,
Multinomial NB is significantly outperformed by every algorithm except for Gaussian NB.
These strong statistical results are interesting given the large set of problems and algorithms

aURL: https://github.com/EpistasisLab/penn-ml-benchmarks
bURL: https://github.com/rhiever/sklearn-benchmarks
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Table 1. ML algorithms and hyperparameters tuned in the experiments.

Algorithm Hyperparameters

Gaussian Näıve Bayes (GNB) No parameters.

Bernoulli Näıve Bayes (BNB)
alpha: Additive smoothing parameter.
binarize: Threshold for binarizing the features.
fit prior: Whether or not to learn class prior probabilities.

Multinomial Näıve Bayes (MNB)
alpha: Additive smoothing parameter.
fit prior: Whether or not to learn class prior probabilities.

Logistic Regression (LR)

C: Regularization strength.
penalty: Whether to use Lasso or Ridge regularization.
fit intercept: Whether or not the intercept of the linear
classifier should be computed.

Stochastic Gradient Descent (SGD)

loss: Loss function to be optimized.
penalty: Whether to use Lasso, Ridge, or ElasticNet
regularization.
alpha: Regularization strength.
learning rate: Shrinks the contribution of each successive
training update.
fit intercept: Whether or not the intercept of the linear
classifier should be computed.
l1 ratio: Ratio of Lasso vs. Ridge reguarlization to use.
Only used when the ‘penalty’ is ElasticNet.
eta0: Initial learning rate.
power t: Exponent for inverse scaling of the learning rate.

Passive Aggressive Classifier (PAC)

loss: Loss function to be optimized.
C: Maximum step size for regularization.
fit intercept: Whether or not the intercept of the linear
classifier should be computed.

Support Vector Classifier (SVC)

kernel: ‘linear’, ‘poly’, ‘sigmoid’, or ‘rbf’.
C: Penalty parameter for regularization.
gamma: Kernel coef. for ‘rbf’, ‘poly’ & ‘sigmoid’ kernels.
degree: Degree for the ‘poly’ kernel.
coef0: Independent term in the ‘poly’ and ‘sigmoid’ kernels.

K-Nearest Neighbor (KNN)
n neighbors: Number of neighbors to use.
weights: Function to weight the neighbors’ votes.

Decision Tree (DT)

min weight fraction leaf: The minimum number of
(weighted) samples for a node to be considered a leaf.
Controls the depth and complexity of the decision tree.
max features: Number of features to consider when
computing the best node split.
criterion: Function used to measure the quality of a split.

n estimators: Number of decision trees in the ensemble.
Random Forest (RF) min weight fraction leaf: The minimum number of

(weighted) samples for a node to be considered a leaf.
& Controls the depth and complexity of the decision trees.

max features: Number of features to consider when
Extra Trees Classifier (ERF) computing the best node split.

criterion: Function used to measure the quality of a split.

AdaBoost (AB)
n estimators: Number of decision trees in the ensemble.
learning rate: Shrinks the contribution of each successive
decision tree in the ensemble.

Gradient Tree Boosting (GTB)

n estimators: Number of decision trees in the ensemble.
learning rate: Shrinks the contribution of each successive
decision tree in the ensemble.
loss: Loss function to be optimized via gradient boosting.
max depth: Maximum depth of the decision trees.
Controls the complexity of the decision trees.
max features: Number of features to consider when
computing the best node split.

compared here. Because the No Free Lunch theorem15 guarantees that all algorithms perform
the same on average over all possible classes of problems, the differentiated results imply that
the problems in the PMLB belong to a related subset of classes. The initial PMLB study13

also noted the similarity in properties of several publicly available datasets, which could lead
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Table 2. A non-exhaustive sample of datasets included in the PMLB archive that pertain to biomed-
ical classification.

Data Set Classes Samples Dimensions Description

allbp 3 3772 29 Diagnosis
allhyper 4 3771 29 Diagnosis
allhypo 3 3770 29 Diagnosis
ann-thyroid 3 7200 21 Diagnosis
biomed 2 209 8 Diagnosis
breast-cancer-wisconsin 2 569 30 Diagnosis
breast-cancer 2 286 9 Diagnosis
diabetes 2 768 8 Diagnosis
dna 3 3186 180 Locating exon boundaries
GMT 2w-20a-0.1n 2 1600 20 Simulated GWAS
GMT 2w-1000a-0.4n 2 1600 1000 Simulated GWAS
liver-disorder 2 345 6 Diagnosis
molecular-biology promoters 2 106 58 Identify promoter sequences
postoperative-patient-data 2 88 8 Choose post-operative treatment

to inflated statistical significance. Nevertheless, it cannot be denied that the results are rel-
evant to classification tasks encountered in real-world and biological contexts, since the vast
majority of datasets used here are taken from those contexts.

Given these bulk results, it is tempting to recommend the top-ranked algorithm for all
problems. However, this neglects the fact that the top-ranked algorithms may not outperform
others for some problems. Furthermore, when simpler algorithms perform on par with a more
complex one, it is often preferable to choose the simpler of the two. With this in mind, we
investigate pair-wise “outperformance” by calculating the percentage of datasets for which
one algorithm outperforms another, shown in Figure 2. One algorithm outperforms another
on a dataset if it has at least a 1% higher 10-fold CV balanced accuracy, which represents a
minimal threshold for improvement in predictive accuracy.

In terms of “outperformance,” it is worth noting that no one ML algorithm performs
best across all 165 datasets. For example, there are 9 datasets for which Multinomial NB
performs as well as or better than Gradient Tree Boosting, despite being the overall worst-
and best-ranked algorithms, respectively. Therefore, it is still important to consider different
ML algorithms when applying ML to new datasets.

3.2. Effect of Tuning and Model Selection

Most ML algorithms contain several hyperparameters that can affect performance significantly
(for example, the max tree depth of a decision tree classifier). Our experimental results allow
us to measure the extent to which hyperparameter tuning via grid search improves each
algorithm’s performance compared to its baseline settings. We also measure the effect that
model selection has on improving classifier performance.

Figure 3 compares the performance of the tuned classifier to its default settings for each
algorithm across all datasets. The results demonstrate why it is unwise to use default ML al-
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Fig. 1. Average ranking of the ML algorithms over all datasets. Error bars indicate the 95% confi-
dence interval.

Table 3. Post-hoc Friedman test of algorithm rankings across all problems. Bold values indicate
p < 0.01.

GTB RF SVC ERF SGD DT LR KNN AB PAC BNB GNB

RF 0.01 - - - - - - - - - - -
SVC 0.001 1 - - - - - - - - - -
ERF 0.0004 1 1 - - - - - - - - -
SGD 3e-10 0.1 0.4 0.6 - - - - - - - -
DT 0 3e-09 1e-07 3e-07 0.03 - - - - - - -
LR 0 1e-11 1e-09 1e-07 0.003 1 - - - - - -
KNN 0 1e-13 5e-12 7e-11 0.0002 1 1 - - - - -
AB 0 6e-15 4e-14 4e-13 3e-06 0.8 1 1 - - - -
PAC 0 2e-16 3e-15 8e-15 2e-07 0.5 0.9 1 1 - - -
BNB 0 0 0 0 4e-10 0.02 0.1 0.4 0.9 1 - -
GNB 0 0 0 0 0 0 2e-15 9e-13 1e-10 5e-09 2e-05 -
MNB 0 0 0 0 0 0 2e-15 7e-14 1e-11 4e-09 4e-06 1

gorithm hyperparameters: tuning often improves an algorithm’s accuracy by 3-5%, depending
on the algorithm. In some cases, parameter tuning led to CV accuracy improvements of 50%.

Figure 4 shows the improvement in 10-fold CV accuracy attained both by model selection
and hyperparameter optimization compared to the average performance on each dataset. The
results demonstrate that selecting the best model and tuning it leads to approximately a
20% increase in accuracy, up to more than a 60% improvement for certain datasets. Thus,
both selecting the right ML algorithm and tuning its parameters is vitally important for most
problems.

3.3. Algorithm Coverage

Given that several of the 13 algorithms studied here have similar underlying methodologies,
we would expect their performance across problems to align with the underlying assumptions
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GTB RF SVM ERF SGD KNN DT AB LR PA BNB GNB MNB
Losses

Gradient Tree Boosting

Random Forest

Support Vector Machine

Extra Random Forest

Linear Model trained via
Stochastic Gradient Descent

K-Nearest Neighbors

Decision Tree

AdaBoost

Logistic Regression

Passive Aggressive

Bernoulli Naive Bayes

Gaussian Naive Bayes

Multinomial Naive Bayes

W
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s

32% 45% 38% 67% 72% 78% 76% 78% 82% 90% 95% 95%

9% 33% 23% 62% 65% 71% 69% 71% 76% 85% 95% 90%

12% 21% 25% 55% 65% 56% 62% 67% 74% 79% 95% 93%

8% 14% 30% 58% 63% 61% 64% 67% 70% 81% 93% 91%

8% 16% 9% 15% 38% 41% 44% 41% 61% 66% 89% 87%

4% 8% 7% 8% 35% 42% 45% 52% 53% 70% 88% 85%

2% 2% 20% 8% 42% 38% 43% 48% 57% 69% 80% 82%

1% 7% 10% 15% 30% 35% 32% 39% 47% 59% 76% 77%

5% 10% 3% 8% 11% 31% 33% 35% 37% 54% 79% 81%

2% 6% 1% 5% 0% 18% 28% 28% 13% 50% 81% 79%

0% 2% 2% 4% 10% 13% 18% 15% 22% 25% 62% 68%

0% 1% 3% 2% 6% 6% 11% 12% 9% 10% 22% 45%

1% 1% 2% 2% 2% 5% 10% 14% 4% 5% 13% 39%

% out of 165 datasets where model A outperformed model B

Fig. 2. Heat map showing the percentage out of 165 datasets a given algorithm outperforms another
algorithm in terms of best accuracy on a problem. The algorithms are ordered from top to bottom
based on their overall performance on all problems. Two algorithms are considered to have the same
performance on a problem if they achieved an accuracy within 1% of each other.

that the modeling techniques have in common. One way to assess whether this holds is to
cluster the performance of different algorithms across all datasets. We perform hierarchical
agglomerative clustering on the 10-fold CV balanced accuracy results, which leads to the clus-
ters shown in Figure 5. Indeed, we find that algorithms with similar underlying assumptions
or methodologies cluster in terms of their performance across the datasets. For example, the
Näıve Bayes algorithms (i.e., Multinomial, Gaussian, and Bernoulli) perform most similarly to
each other, and the linear algorithms (i.e., passive aggressive and logistic regression) also clus-
ter. The ensemble algorithms of Extra Trees and Random Forests, which both use ensembles
of decision trees, also cluster. Support Vector Machines and Gradient Tree Boosting appear
to be quite different algorithms, but given that both are able to capture nonlinear interactions
between variables, it is less surprising that they cluster as well.

We present a list of five recommended algorithms and parameter settings in Table 4.
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Fig. 3. Improvement in 10-fold CV accuracy by tuning each ML algorithm’s parameters instead of
using the default parameters from scikit-learn.

The five algorithms and parameters here are those that maximize the coverage of the 165
benchmark datasets, meaning that they perform within 1% of the best 10-fold CV balanced
accuracy obtained on the maximum number of datasets in the experiment. For the datasets
in PMLB, these five algorithms and associated parameters cover 106 out of 165 datasets to
within 1% balanced accuracy. Notably, 163 out of 165 datasets can be covered by tuning the
parameters of the five listed algorithms. Based on the available evidence, these recommended
algorithms should be a good starting point for achieving reasonable predictive accuracy on a
new dataset.

4. Discussion and Conclusions

We have empirically assessed 13 supervised classification algorithms on a set of 165 supervised
classification datasets in order to provide a contemporary set of recommendations to bioin-
formaticians who wish to apply ML algorithms to their data. The analysis demonstrates the
strength of state-of-the-art, tree-based ensemble algorithms, while also showing the problem-
dependent nature of ML algorithm performance. In addition, the analysis shows that selecting
the right ML algorithm and thoroughly tuning its parameters can lead to a significant im-
provement in predictive accuracy on most problems, and is there a critical step in every ML
application. We have made the full set of experiments and results available online to encourage
bioinformaticians to easily gather information most pertinent to their area of study.

Even with a large set of results, it is difficult to recommend specific algorithms or parameter
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Fig. 4. Improvement in 10-fold CV accuracy by model selection and tuning, relative to the average
performance on each dataset.
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Fig. 5. Hierarchical clustering of ML algorithms by accuracy rankings across datasets.
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Table 4. Five ML algorithms and parameters that maximize cov-
erage of the 165 benchmark datasets. These algorithm and pa-
rameter names correspond to their scikit-learn implementations.

Algorithm Parameters Datasets Covered

GradientBoostingClassifier loss=“deviance”
learning rate=0.1
n estimators=500 51
max depth=3
max features=“log2”

RandomForestClassifier n estimators=500
max features=0.25 19
criterion=“entropy”

SVC C=0.01
gamma=0.1
kernel=“poly” 16
degree=3
coef0=10.0

ExtraTreesClassifier n estimators=1000
max features=“log2” 12
criterion=“entropy”

LogisticRegression C=1.5
penalty=“l1” 8
fit intercept=True

settings with a strong amount of generality. As a starting point, we provided recommendations
for 5 different ML algorithms and parameters based on their collective coverage of the 165
datasets from PMLB. However, it is important to note that these algorithms and parameters
will not work best on all supervised classification problems, and they should only be used as
starting points. For a more nuanced approach, the similarity of the dataset on which ML is to
be applied to datasets in PMLB could be quantified, and the set of algorithms that performed
best on those similar datasets could be used. In lieu of detailed problem information, one could
also use automated ML tools16,17 and AI-driven ML platforms18 to perform model selection
and parameter tuning automatically.

Of course, some bioinformaticians may value properties of ML algorithms aside from pre-
dictive accuracy. For example, ML algorithms are often used as a “microscope” to model and
better understand the complex biological systems from which the data was sampled. In this
use case, bioinformaticians may value the interpretability of the ML model, in which case
black box predictive models that cannot be interpreted are of little use.19 Although the lo-
gistic regression and decision tree algorithms are often outperformed by tree-based ensemble
algorithms in terms of predictive accuracy (Figure 2), linear models and shallow decision trees
often provide a useful trade-off between predictive accuracy and interpretability. Furthermore,
methods such as LIME19 show promise for explaining why complex, black box models make
individual predictions, which can also be useful for model interpretation.

There are several opportunities to extend the analysis in this paper in future work. A natu-
ral extension should be made to regression, which is used several biomedical applications such
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as quantitative trait genetics. In addition, these experiments do not take into account feature
preprocessing, feature construction, and and feature selection, although it has been shown
that learning better data representations can significantly improve ML performance.20 We
plan to extend this work to analyze the ability of various feature preprocessing, construction,
and selection strategies to improve model performance. In addition, the experimental results
contain rich information about the performance of different learning algorithms as a function
of the datasets. In future work, we will take a deeper look into the properties of datasets
that influence the performance of specific algorithms. By relating these dataset properties to
specific areas of bioinformatics, we may be able to generate tailored recommendations for ML
algorithms that work best for specific applications.
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