
_________________________________________________________________________________________
* This work was supported by the Stanford Clinical and Translational Science Award (CTSA) to Spectrum 
(UL1 TR001085). The CTSA program is led by the National Center for Advancing Translational Sciences 
(NCATS) at the National Institutes of Health (NIH). The content is solely the responsibility of the authors and 
does not necessarily represent the official views of the NIH.   

© 2017 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed 
under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License. 

 

Addressing vital sign alarm fatigue using personalized alarm thresholds* 
 

Sarah Poole1, and Nigam Shah MBBS PhD1 
1Center for Biomedical Informatics Research, Stanford University 

Stanford, CA, United States 
 

Alarm fatigue, a condition in which clinical staff become desensitized to alarms due to the high 
frequency of unnecessary alarms, is a major patient safety concern. Alarm fatigue is particularly 
prevalent in the pediatric setting, due to the high level of variation in vital signs with patient age. 
Existing studies have shown that the current default pediatric vital sign alarm thresholds are 
inappropriate, and lead to a larger than necessary alarm load. This study leverages a large database 
containing over 190 patient-years of heart rate data to accurately identify the 1st and 99th percentiles of 
an individual’s heart rate on their first day of vital sign monitoring. These percentiles are then used as 
personalized vital sign thresholds, which are evaluated by comparing to non-default alarm thresholds 
used in practice, and by using the presence of major clinical events to infer alarm labels. Using the 
proposed personalized thresholds would decrease low and high heart rate alarms by up to 50% and 
44% respectively, while maintaining sensitivity of 62% and increasing specificity to 49%. The 
proposed personalized vital sign alarm thresholds will reduce alarm fatigue, thus contributing to 
improved patient outcomes, shorter hospital stays, and reduced hospital costs. 
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1. Introduction 

Vital sign monitors are an important component of inpatient care, as they provide timely alerts to 
clinical staff in response to extreme vital sign values1,2. These vital sign alarms are intended to be a 
safety net in the provision of patient care, but their management in the inpatient setting is a significant 
patient safety issue3,4. Efforts to characterize vital sign alarms have shown that 64-99% of the alarms 
that sound are not clinically actionable5. The high proportion of unnecessary alarms has led to 
provider desensitization, also known as alarm fatigue6,7. This has been shown to increase nurse 
response time to subsequent alarms in both the short and the long term8,9, increasing the risk to 
patients and contributing to adverse patient events and, in some cases, patient mortality7,10. In 2013, 
the Joint Commissions issued Sentinel Event Alert #50 to draw attention to widespread alarm fatigue 
in hospital settings10, and the subsequent 2014, 2015 and 2016 National Patient Safety Goals urged 
hospitals to prioritize alarm system safety and ensure that alarms on medical equipment are heard and 
responded to on time11-13.  
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Multiple approaches have been taken to the problem of alarm fatigue, including implementing 
standards for checking and changing electrocardiography lead wires and electrodes14-17, escalating 
alarms to pages sent directly to clinical staff18, adding delays to alerts to avoid alarming for very short 
periods of extreme values14,18,19, implementing standard time series filters20, and combining alarms to 
obtain a more general measure of patient deterioration21. However, more work needs to be done to 
address the risk to patient safety from alarm fatigue6. 

Alarm fatigue is particularly prevalent in the pediatric setting, due to the high level of variation in 
vital signs with patient age5,6. Two recent studies have compared default age-based pediatric vital sign 
alarm thresholds from hospitals with the observed vital signs in each age group. Both studies found 
that default heart rate alarm thresholds fall near the 50th percentile of patient data, leading to an 
unnecessarily large alarm load22,23. These studies conclude that patient data can successfully be used 
to choose more appropriate thresholds for vital sign alarms, and initial efforts in this direction have 
been promising23. While the thresholds produced by these studies partially account for the expected 
change in vital signs with age, the performance of such default thresholds is limited, since vital signs 
are known to change smoothly and continuously with age24, rather than displaying the ‘step’ changes 
that result from using discrete age groups.  

Existing work addressing alarm fatigue includes only limited evaluation of the safety and efficacy 
of the proposed measures. This is due to the lack of large sets of gold-standard labels that indicate 
when alarms are crucial for patient safety and optimal outcomes, and when alarms are unnecessary 
and should be suppressed5,22,25. As a result, evaluation has typically focused on maximizing the 
number of alarms suppressed, with no consideration given to the appropriateness of this suppression. 

This study aims to produce improved default vital sign alarm thresholds by extending the previous 
work in two important ways. Firstly, models are trained to find optimal default vital sign alarm 
thresholds, given data available at admission, on a patient-by-patient basis, rather than using patient 
groups defined by discrete age categories as is currently standard. Secondly, evaluation of the 
resulting patient-specific alarm thresholds found is conducted, by using non-default alarm thresholds 
as silver-standard personalized thresholds, and by using the presence of clinical events to indicate 
clinical concern. Heart rate alarms are used as a proof of concept in this manuscript, as heart rate 
threshold alarms are very common and have been shown to have a low specificity19,26,27.  

An important distinction of this study is the use of heart rate data for training the model, rather 
than using a set of labeled alarms. Although a large set of alarms are available, they are lacking gold-
standard labels to indicate which were unnecessary and which were crucial for patient safety and 
optimal outcomes. As a result, using historical alarm data to learn optimal thresholds for each patient 
is not possible. Instead, we take a step back and aim to develop an alarm system from first principles. 
Since the goal of these vital sign alarms is to indicate when concerning vital sign measurements are 
seen, we aim to learn the 1st and 99th percentiles of HR seen during the first day of each patient’s stay. 
The use of the 1st and 99th percentiles for these thresholds was chosen carefully. Other studies have  
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used 5th and 95th percentiles for alarm thresholds28 where default thresholds are chosen for large 
groups of patients. Due to inter-patient variability in vital signs, the conservative 5th and 95th 
percentiles are chosen to ensure that very extreme values in patients who have abnormally high or low 
vital signs are not missed. Since this study produces thresholds at a patient-specific level, this inter-
patient variability does not need to be considered, and wider percentiles can be used to improve alarm 
specificity. Non-default alarm thresholds are used to evaluate the choice of 1st and 99th percentiles for 
use as personalized alarm thresholds. 

2. Methods 

2.1 Data 

Two main sources of data were used for this study. The Philips Research Data Export (RDE) system 
at Stanford’s Lucille Packard Children’s Hospital (LPCH) has been recording vital sign waveforms 
for every patient that has had their vital signs monitored, both in intensive care units and on floor 
units, for the past several years. An extract from this system, containing 3.5 years worth of data (5 
December 2012 - 20 April 2016) has been made available for research purposes. This extract contains 
once per minute average heart rate and respiratory rate, as well as records of any vital sign alarms that 

Figure1: Merging of RDE and STRIDE data using patient Medical Record Numbers (MRNs) where 
available, and using bed number and time where a unique patient was recorded as occupying the bed at 
the time of interest. Instances where the two mapping schemes gave different patients were removed. 
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were triggered. These data have been combined with data from the electronic health record, obtained 
through the Stanford Translational Research Integrated Database Environment (STRIDE)29. STRIDE 
contains patient demographics and clinical data including ICD9 codes and medication records. These 
datasets were linked using patient medical record numbers, or using data showing which patient was 
in a specific bed location at the time data is available. Figure 1 shows this initial mapping process, 
and Table 1 shows the characteristics of the final cohort.  

For each patient represented in the RDE dataset, the first 24 hours of their stay was isolated and 
processed for use in this model. All data within this 24-hour period was considered, regardless of 
whether it was continuously recorded or included periods of missing vital sign data. Patients with less 
than one hour of data in the first 24-hours of monitoring were excluded from the analysis. Of the 
remaining patients, 83% of patients had data spanning at least one day, and the remaining patients had 
data over a mean of 15.3 hours. Four values were extracted for each patient: the mean, standard 
deviation, 1st percentile, and 99th percentile of the heart rate data available in this 24-hour period.   
  

Table/1:/Characteristics/of/patient/cohort/
 

 

 

 

 

 

 

 

 

 

 

 

 

              Count/       Percentage/
Total number of patients:  8,507  
Total HR alarms triggered:  1,930,493  
 Low 693,516 35.69% 
 High/ 1,236,977/ 64.1%/
Mean%HR%observations%per%
patient:/
Standard%deviation%of%HR%
observations%per%patient:%/

 14385 minutes 
(9.98 days) 

29942 minutes 
(20.8 days)/

 
 
 

Demographic breakdown:    
          Gender:    
 Male% 3,921% 46.1%%
 Female% 4,586% 53.9%%
          Ethnicity:    
 Hispanic% 2,121% 24.9%%
 Not Hispanic% 3,339% 39.3%%
 Unknown% 3,047% 35.8%%
          Race:    
 Asian% 767% 9.0%%
 Black% 150% 1.8%%
 Native American% 6% 0.1%%
 Other% 1,937% 22.8%%
 Pacific Islander% 193% 2.3%%
 Unknown% 3,087% 36.3%%
 White% 2,367% 27.8%%
          Age (years):    
           Min 0.00  
 Median% 1.85%  
 Mean% 4.96%  
 Max/ 17.98/  
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2.2 Outcome 

There are two outcomes of interest for each patient, corresponding to the high and low alarm 
thresholds. The proposed ideal values for these are the 1st and 99th percentiles of the patient’s 
observed heart rate over the first day of hospitalization. To allow for future extensions of this work, 
each patient’s heart rate over the first day of hospitalization is modeled as a lognormal distribution 
parameterized by the mean and standard deviation of the heart rate, and the 1st and 99th percentiles are 
obtained from this lognormal model. Figure 3 shows that the 1st and 99th percentiles of the patient’s 
heart rate are able to be accurately recovered using the mean and standard deviation of heart rate in a 
lognormal distribution. Two models are built, with outcomes of mean heart rate and standard 
deviation of heart rate. The outputs of these models are then used as the parameters of patient-specific 
lognormal distributions, from which the expected 1st and 99th percentiles of the patient’s heart rate are 
found.  Evaluations are performed on these resulting 1st and 99th percentiles, as these are the proposed 
alarm thresholds./

2.3 Imputing weight 

Including patient weight in the model was a prime consideration, as weight is known to impact heart 
rate. Weight data was not available for all patients, and for some patients weight at the time of the 
vital sign recording was not available. An imputation process was developed for weight data, using 
standard pediatric growth charts. Growth charts were used to find which percentile the patient fell into 
for their age at the time that weight was recorded. The growth charts were then used to determine the 
weight that the patient would be at the time of vital sign recording, assuming that they remained in the 
same percentile. If patients had multiple weights recorded, the mean percentile was used. 603 patients 
had no weight data recorded, so were assumed to be at the 50th percentile of weight for their age. The 
percentile found for each patient was also used as an input to the model.  

2.4 Diagnosis Information 

The STRIDE dataset includes diagnosis related groups (DRGs)30, which are designed to group 
patients according to the medical services they receive, but can also be used to provide a rough 
grouping by clinical complaint. 45 DRGs were present as admit diagnoses in the cohort of interest. 
DRGs that contained less than 10 observations were combined into an ‘OTHER’ group, leaving a 
total of 22 distinct DRGs. This categorical variable was converted to 22 variables with Boolean 
values, with the constraint that for a given sample only one of the values can be set to 1.  

The floor departments at LPCH are arranged such that patients with particular care needs are 
grouped together. For example, one floor unit typically houses patients with cardiac issues, while 
patients with pulmonary-related problems are cared for in another unit. The department in which the 
patient is located was used as a feature in our model, as it provides a rough grouping according to 
diagnosis.  
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Figure 2: Schematic of the model training process. First the training set is used to fit loess models to the outcomes of mean heart rate and 
heart rate variance, using age as the only feature. The outputs of these models are used as the parameters of a lognormal model to estimate 
the 1st and 99th percentiles of heart rate. These resulting estimates are proposed as personalized thresholds: age only. The output of the loess 
model fitting to mean heart rate is also used as a feature in a pair of random forest models, one fit to the outcome of mean heart rate, and the 
other fit to variance of heart rate. These random forest models models also have gender, weight, race, ethnicity, hospital department, and 
admit diagnosis group (DRG) as additional features. The mean and variance of heart rate for each patient, as predicted by the random forest 
models, are used as the parameters of a lognormal model, allowing the 1st and 99th percentiles of heart rate to be estimated. The trained 
models are used to estimate the 1st and 99th percentiles of heart rate for patients in the test set, which can then be compared to the actual 
values observed over the first day of monitoring. The previously used original LPCH thresholds and age-grouped thresholds can also be 
compared to the observed 1st and 99th percentiles of heart rate.  
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2.5 Training  

The combined RDE and STRIDE data set was randomly split into training and testing cohorts using a 
75%/25% split at the patient level, resulting in cohorts of 6,383 and 2,124 patients.  

As previously described, two models were trained: one to identify the mean heart rate, and the 
second to identify the standard deviation of the heart rate. The output of these models is used in a 
lognormal distribution to calculate the 1st and 99th percentiles of heart rate, which are proposed for use 
as the alarm thresholds. Two sets of these two models were trained. Figure 2 describes the training 
process. First, loess models31 were used to capture nonlinear variation in the mean and variance of 
heart rate with age. The thresholds calculated from the output of these models are referred to as 
‘personalized thresholds: age only’ thresholds. The output from these models was used as inputs to 
two random forest models (one each for mean heart rate and standard deviation), along with 
additional demographic (age, weight, gender, ethnicity and race) and diagnostic features (DRG and 
hospital department). A random forest model was chosen to avoid bias that would be introduced by a 
linear model.   

2.6 Evaluations 

The results can be evaluated directly by comparing the modeled 1st and 99th percentiles of the vital 
signs to the actual values. We include comparisons with the original LPCH vital sign thresholds, and 
age-based thresholds previously described in 32,33. A record of the alarms that sounded is available, so 
the number of alarms that would have been suppressed if the predicted 1st and 99th percentiles were 

R2 = 0.93 R2 = 0.85 

Figure 3: Error using mean and standard deviation of heart rate with lognormal assumption to find 1st (left) and 99th 
(right) percentile of heart rate. 

Pacific Symposium on Biocomputing 2018

478



used as thresholds can be found. However, evaluation of the clinical meaningfulness of these results is 
difficult, as gold-standard labels indicating whether alarms were meaningful are not available. 

To estimate the appropriateness of the proposed alarm thresholds, we use the dataset of alarms 
that sounded in LPCH to find alarm thresholds that are not the default values, indicating that clinical 
staff manually chose this threshold for the patient. The non-default alarms from patients in both the 
training and the test set were able to be compared to the proposed thresholds without biasing the result 
of the evaluation, since the actually used thresholds that were used in practice were not input to the 
models. A total of 727 and 2,242 alarms with non-default settings were found for patients in the test 
set and the training set respectively.  

As a second estimate of the appropriateness of the proposed alarm thresholds, we looked for 
significant clinical events in the 4 hours following an alarm. The label of ‘clinically meaningful 
alarms’ implies that to meet this criterion, some clinical action should have been taken in response to 
the alarm. Two lists of clinical events were formulated through consultation with clinicians and 
clinical experts, and are shown in Table 2. The presence of a clinical event from list A is considered 
to imply that the alarm was clinically meaningful, while an event from list B implies that the alarm 
was unnecessary. If events from both list A and list B occur in the 4-hour period following the alarm, 
this is considered ambiguous and no label is assigned to the alarm. A discharge event where the 
patient dies within 30 days is treated as a discharge to end of life care. 6.9% of all alarms recorded 
were assigned a label using this process (8.3% of low alarms and 6.1% of high alarms). 

 
 
 

List A  
(indicates clinically meaningful alarm) 

List B 
(indicates unnecessary alarm) 

Patient death Patient discharged 
Patient transferred to higher acuity unit Patient transferred to lower acuity unit 
Manual change of alarm thresholds to become 
more conservative 

Manual change of alarm thresholds to become 
less conservative 

Patient discharged to end of life care  
 
 
A record of the alarms that sounded is available, so the number of alarms that would have been 
suppressed if the predicted 1st and 99th percentiles were used as thresholds can be found. The status of 
the alarms if the new thresholds were used is compared to the labels created using the clinical events 
in Table 2 to obtain estimates of the sensitivity and specificity of the alarms. These values are not 
available to evaluate any other vital sign alarming method, so comparisons with previous methods are 
not possible. We are also unable to evaluate the performance of the original or age-based LPCH 
thresholds, as these were used to trigger the alarms.  

 

 

Table 2: Clinical events used to indicate whether an alarm was clinically meaningful (list A) or 
unnecessary (list B). 
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3. Results 

As shown in Figure 3, using the mean and standard deviation of a patient’s heart rate over a 24-hour 
period as parameters in a lognormal distribution gives an accurate estimate of the 1st and 99th 
percentiles of the heart rate over this period. This shows that a lognormal model is well suited to the 
distribution of an individual patient’s heart rate over a 24-hour period.  

Figure 4 shows that a model with a single variable of continuous age is able to recover the 1st and 
99th percentiles of heart rate more closely than the age-based thresholds previously developed at 
LPCH. Adding additional demographic and diagnostic features slightly decreases the variance in the 
error. Figure 4 also compares the vital sign thresholds to the thresholds of non-default alarms in the 
data set. The low error suggests that the use of 1st and 99th percentiles as threshold values is an 
appropriate one. The continuous age only model has a similar error to the age-based thresholds, while 
adding demographic and diagnostic features decreases this error. 

Table 3 shows that over 50% of low heart rate alarms would be suppressed using the proposed 
thresholds, as well as upwards of 35% of high heart rate alarms, depending on the threshold scheme.  

Using clinical events to infer labels for the alarms allowed us to estimate sensitivity and 
specificity of the proposed thresholds, shown in Table 4. Previous studies have shown that the 
specificity of heart rate alarms ranges from 1% to 36%5, suggesting that our proposed alarm 
thresholds would improve the specificity of heart rate alarms. Since it is not possible to measure false 
negative alarms, no studies have been conducted to determine the sensitivity of existing vital sign 
alarms, however this is generally considered to be extremely high, close to 100%.  

 
 Table 3: Percentage of alarms suppressed using proposed thresholds 

 % low alarms suppressed % high alarms suppressed 
Personalized thresholds: age-only 53.1% 35.2% 

Personalized thresholds: full 50.5% 44.1% 
 
 

 Sensitivity Specificity Positive Predictive 
Value 

Personalized thresholds: age-only 0.67 0.44 0.072 
Personalized thresholds: full 0.62 0.49 0.079 

4. Discussion!
This study has shown that the 1st and 99th percentiles of observed heart rate over the first day of an 
inpatient stay are able to be predicted using a random forest with demographic and diagnostic 
features.  

The comparison of the predicted 1st and 99th percentiles to the non-default alarm settings that were 
used in practice gives insight into the appropriateness of using the output from these models as alarm 
thresholds. Despite not being trained with the non-default alarm settings as inputs, the models recover 
these values well.  

 

Table 4: Performance metrics of proposed thresholds calculated using presence of clinical events to label alarms. 
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As shown in Table 4, the specificity of the proposed thresholds is higher than that of current heart 
rate alarms, but the sensitivity of the proposed thresholds is likely to be lower than the sensitivity of 
current alarms. In theory, this increases the chance that truly concerning heart rates will fail to sound 
an alarm, which could lead to negative outcomes for the patient. However, an alarm sounding is of no 
help to the patient in distress if it is not responded to, as may happen in a situation where clinical staff 
are suffering from alarm fatigue34. While studies have shown that various forms of alarm fatigue can 
increase nurse response time8,9, no studies have quantified the effective sensitivity of alarms given the 
presences of alarm fatigue. We propose that the reduced number of alarms that will sound if these 
personalized thresholds are adopted (see Table 3) will reduce the problem of alarm fatigue, and that 
this reduction in the desensitization of health care providers will reduce the instance of negative 
patient outcomes related to missed vital sign events, despite the lower expected alarm sensitivity. 

Limitations of this study include the lack of gold standard alarm labels to evaluate our proposed 
alarm thresholds. The evaluation methods used in lieu of gold standard labels (comparing to patient 
1st and 99th percentiles, comparing to non-default alarm limits, and using clinical events to infer alarm 
labels) improve upon previous studies that have lacked any evaluation, but are still limited. For 
example only 7% of alarms could be labeled using clinical events. This also limits the accuracy of the 
performance metrics reported for the proposed alarm thresholds.  

In conclusion, this study presents a model to accurately identify the 1st and 99th percentiles of an 
individual’s heart rate during their first day of vital sign monitoring, using demographic and diagnosis 
features as input to a random forest. This is a proof of concept that personalized alarm thresholds can 
be learned, and demonstrates promising results for use of such personalized thresholds to reduce false 
alarms and address alarm fatigue. Patient-specific alarm thresholds represent a first step towards 
personalized medicine, and the resulting reduction in alarm fatigue will improve patient outcomes 
while also contributing to lower healthcare costs. 

Figure 4: Comparison of alarm thresholds with the 1st (for low thresholds) and 99th (for high thresholds) 
percentiles of heart rate observed over the first 24 hours of monitoring (circles), and comparison of alarm 
thresholds with the recorded non-default thresholds (triangles).  
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