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The microbiome research is going through an evolutionary transition from focusing on the
characterization of reference microbiomes associated with different environments/hosts to
the translational applications, including using microbiome for disease diagnosis, improving
the efficacy of cancer treatments, and prevention of diseases (e.g., using probiotics). Micro-
bial markers have been identified from microbiome data derived from cohorts of patients
with different diseases, treatment responsiveness, etc, and often predictors based on these
markers were built for predicting host phenotype given a microbiome dataset (e.g., to pre-
dict if a person has type 2 diabetes given his or her microbiome data). Unfortunately, these
microbial markers and predictors are often not published so are not reusable by others. In
this paper, we report the curation of a repository of microbial marker genes and predictors
built from these markers for microbiome-based prediction of host phenotype, and a compu-
tational pipeline called Mi2P (from Microbiome to Phenotype) for using the repository. As
an initial effort, we focus on microbial marker genes related to two diseases, type 2 diabetes
and liver cirrhosis, and immunotherapy efficacy for two types of cancer, non-small-cell lung
cancer (NSCLC) and renal cell carcinoma (RCC). We characterized the marker genes from
metagenomic data using our recently developed subtractive assembly approach. We showed
that predictors built from these microbial marker genes can provide fast and reasonably ac-
curate prediction of host phenotype given microbiome data. As understanding and making
use of microbiome data (our second genome) is becoming vital as we move forward in this
age of precision health and precision medicine, we believe that such a repository will be
useful for enabling translational applications of microbiome data.

Keywords: microbiome; microbial marker gene; type 2 diabetes; liver cirrhosis; immunother-
apy efficacy.

1. Introduction

Recent studies of microbiomes (i.e., communities of microorganisms) have shaped a new view
of the biological world in which various microbial organisms play important roles in the health
of humans, animals, plants, and the environment.!* Metagenome-wide association studies®
have enabled the high-resolution discovery of associations between the microbiome and human
diseases, including type 2 diabetes,® liver cirrhosis,” atherosclerotic cardiovascular disease,®
colorectal cancer? and rheumatoid arthritis.!® The announcement of the National Microbiome
Initiative (NMI) on May 13, 2016, marks a milestone in microbiome research. The NMI aims

(© 2018 Wontack Han and Yuzhen Ye. Open Access chapter published by World Scientific Publishing
Company and distributed under the terms of the Creative Commons Attribution Non-Commercial
(CC BY-NC) 4.0 License.
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to advance the understanding of microbiome behavior and enable protection and restoration
of healthy microbiome function. Development of computational tools for interpretation and
integration of meta-omics data will be key to advancing the field and ultimately achieving the
goal of the NMI.

Unlike traditional microbial genomic sequencing projects, metagenomics attempts to di-
rectly characterize the entire collection of genes within an environmental sample (i.e., the
metagenome) and analyze their biochemical activities and complex interactions.!»!? Land-
mark progress in metagenomics occurred in 2004'3'% when two research groups published
results from large-scale environmental sequencing projects. Many more metagenomic projects
have been conducted or are ongoing, representing broadened applications from ecology and
environmental sciences'® to the chemical industry!'® and human health.!” Metagenomics, in
principle, enables the study of any microbial organism, including the large number of mi-
croorganisms that cannot be isolated or are difficult to grow in a lab. More importantly,
microbes, by nature, live in communities where they interact with each other by exchanging
nutrients, metabolites, and signaling molecules. Metagenomics enables the characterization of
microbes in natural environments, addressing important biological questions related to mi-
crobial environments such as the diversity of microbes in different environments,'® microbial
(and microbe-host) interactions,! and the environmental and evolutionary processes.?"

Earlier metagenomics studies focused on the characterization of reference microbiomes
associated with different environments/hosts. Recent studies shift the emphasis to the trans-
lational applications, including using microbiome for disease diagnosis, improving the efficacy
of cancer treatments (including cancer chemotherapy and immunotherapy), and prevention
of diseases (e.g., using probiotics).?! Gut bacterium Eggerthella lenta was found to be able
to manipulate cardiac drug inactivation.?? Harnessing the host immune system constitutes a
promising cancer therapeutic because of its potential to specifically target tumor cells while
limiting harm to normal tissues. Recent clinical success has fueled the enthusiasm about
immunotherapy using antibodies that block immune inhibitory pathways, specifically, the
CTLA-4 and the PD-1/PD-L1 axis.???3 The gut microbiota plays an important role in shap-
ing hosts immune responses,?* so there is no surprise that a few recent studies have shown that
intestinal microbiota (and some particular microbial species/strains) can mediate immune ac-
tivation in response to chemotherapeutic agents and immunotherapy. Sivan and colleagues?
found that commensal Bifidobacterium promotes antitumor immunity and facilitates anti
PD-L1 efficacy. They also found that oral administration of Bifidobacterium alone improved
tumor control to the same degree as anti PD-L1 therapy (checkpoint blockade), and combi-
nation treatment nearly abolished tumor outgrowth. Gut microbiota can also modulate the
actions of chemotherapeutic drugs used in cancer and other disease, reducing the toxicity of
chemotherapeutic compounds and improve their efficacy.? A working knowledge of the micro-
biome (our second genome??) is vital as we move forward in this age of precision health and
precision medicine,?® especially in the area of cancer research, which aims at effective treat-
ments for various kinds of cancer based on the knowledge of genetics, biology of the disease
and host-microbiome interactions.??

The success of the translational applications of microbiome data relies on the character-
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ization of differential markers (species, genes, biological pathways, among others) that can
differentiate different groups of microbiome data (e.g., healthy individuals versus patients,
treatment responders versus non-responders). It is also important to understand factors in-
fluencing the gut microbiome and strategies to manipulate the microbiome to augment ther-
apeutic responses and disease prevention.3°

To derive microbial markers that are associated with a specific host phenotype (e.g.,
healthy versus diseased), a key task is to compare two groups of microbiome (e.g., one group
of microbiome data derived from healthy individuals versus a group derived from patients)
to detect consistent differences (e.g., species or genes) between the groups, considering the
large inter- and intra-individual variations of the microbiome.3! The typical analysis workflow
is to assemble and annotate metagenomic datasets individually or as a whole, followed by
statistical tests to identify differentially abundant species/genes. The subtractive assembly
approaches we previously developed, subtractive assembly (SA)32 and concurrent subtractive
assembly (CoSA) approach,®3 are de novo assembly approaches for comparative metagenomics
that first detect differential reads between two groups of metagenomes and then only assemble
these reads. When evaluated using simulated and real type 2 diabetes microbiome datasets,3?
our subtractive assembly approaches reduce the datasets up front, which also result in better
characterization of the differential genes.

Recent studies have revealed microbial markers for disease diagnosis and other purposes,
and predictors built based on these markers have achieved promising accuracy for predictions.
The pitfall of most of these studies is that the microbial markers and predictors built from these
markers are not made available for others to use. For example, Qin et al.” constructed a support
vector machine discriminator based on microbiome data for liver cirrhosis prediction using 15
gene markers, achieving impressive accuracy, with AUC (area under the receiver operating
characteristic curve) of 0.918 and 0.838, respectively, for training and leave-one-out cross-
validation. Although the authors listed the identities of these 15 genes in a supplementary table
(Supp Table 12 in7), they did not release the gene sequences, nor the discriminator they built.
It makes it impossible for others to use their marker genes and predictors. Using our recently
developed computational approach CoSA 33 we re-analyzed several large collections of publicly
available microbiome datasets, in an attempt to create a repository of microbial marker genes
and the predictors built from these marker genes for translational applications of microbiome
data (e.g., to predict if a cancer patient is likely to be responsive to PD-1 blockage treatment
given his/her microbiome data). We note there is no shortage of microbiome repositories;
instances include the Human Microbiome Project repository (‘http://hmpdacc.org) and the
MG-RAST server (https://www.mg-rast.org). However, there is no repository of bacterial
marker genes and predictors for microbiome-based predictions to the best of our knowledge.
As a proof of concept, we focused on two diseases, type 2 diabetes and liver cirrhosis, and two
types of cancers. We first extracted microbial marker genes from these microbiome datasets,
then built predictors using these genes, and finally created a repository of the marker genes
and predictors, as well as a companion computational pipeline for using this repository.
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2. Methods

2.1. Microbiome datasets

We focus on microbial genes related with two diseases and the treatment efficacy of two types
of cancer:

(a)

(b)

(d)

T2D (type 2 diabetes). We used the T2D cohort from a study,’ which contains microbiome
data from two groups of 70-year-old European women, one group of 50 with T2D and the
other a matched group of healthy controls (NGT group; 43 participants). We previously
used this cohort for testing our subtractive assembly approaches.?2:33

Cirrhosis (liver cirrhosis). Qin et al.” derived metagenomic datasets from 98 Chinese pa-
tients with liver cirrhosis and 83 healthy individuals as training datasets to infer marker
genes and build a predictor, and microbiome data from additional 25 patients and 31
healthy controls as validation datasets. Similarly, we used their training datasets for char-
acterization of marker genes and training of predictors, and their validation datasets for
independent tests of the predictors for liver cirrhosis.

NSCLC (non-small-cell lung cancer). It has been shown that gut bacteria can affect pa-
tient responses to cancer immunotherapy (e.g., immune checkpoint inhibitors ICIs that
target the PD-1/PD-L1 axis). Routy et al.3* found that primary resistance to ICIs can
be attributed to abnormal gut microbiome composition, and fecal microbiota transplan-
tation (FMT) from cancer patients who responded to ICIs into germ-free or antibiotic-
treated mice ameliorated the antitumor effects of PD-1 blockade, whereas FMT from
non-responding patients failed to do so. They sequenced the microbiome of the stool sam-
ples at diagnosis, and showed correlations between clinical responses to ICIs and relative
abundance of Akkermansia muciniphila. We used microbiome datasets from this study,
which includes 32 non-responders and 33 responders, aiming to infer marker genes that
can be used to distinguish responders from non-responders.

RCC (renal cell carcinoma). We used datasets from the same study®! that involve 20
non-responders versus 42 responders to a different cancer type, renal cell carcinoma.

Table 1 summarizes the microbiome datasets that were re-analyzed in this paper.

Table 1: Summary of the microbiome datasets for training the predictors.

Abr. Disease Reference # of  Total base pairs

samples (bps)
T2D Type 2 diabetes [6] 93 225 GB
Cirrhosis Liver cirrhosis [7] 181 817 GB
NSCLC  Non-small-cell lung cancer [34] 65 153 GB
RCC Renal cell carcinoma [34] 62 147 GB
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2.2. Microbial gene characterization and quantification

For each collection of above mentioned microbiome datasets, we first applied CoSA to assem-
ble genes that are potentially differential between the groups (i.e., for the T2D collection and
the liver collection, the patient group versus group of healthy individuals, and for the NSCLC
and RCC collections, responders versus non-responders). These genes were then subject to
feature selection. Using selected marker genes, different machine learning (ML) approaches
were employed to build predictors for microbiome-based host phenotype prediction. We re-
fer the readers to our previous publications3?33 for details about our subtractive assembly
approach CoSA. Briefly, the CoSA approach uses a Wilcoxon rank-sum (WRS) test to de-
tect k-mers that are differentially abundant between two groups of microbiomes (CoSA uses
KMC2% for k-mer counting, and employs the “mannwhitneyutest” function from ALGLIB
(http://www.alglib.net) for the test). It then uses identified differential k-mers to extract
reads (by a voting strategy) that are likely from the sub-metagenome with consistent abun-
dance differences between the groups of microbiomes. Further, CoSA attempts to reduce the
redundancy of reads (from abundant common species) by excluding reads containing abun-
dant k-mers. Extracted reads are then assembled using MegaHit,?¢ and genes are predicted
from the assembled contigs using FragGeneScan.?” The quantification of the genes in each
microbiome is done by reads mapping of shotgun reads onto the genes using Bowtie 2.38 We
counted a gene’s abundance based on the counts of both uniquely and multiplely mapped
reads (the contribution of multiplely mapped reads to a gene was computed according to the
proportion of the read counts divided by the gene’s unique abundance”). The read counts were
then normalized per kilobase of gene per million of reads in each sample.

2.3. Inference of microbial marker genes using machine learning
approaches

Microbial genes assembled and quantified mentioned above for the different microbiome
datasets were used as candidate features for selecting microbial marker genes and for training
predictors for microbiome-based host phenotype prediction (see Figure 1(a)). For feature se-
lection, we first applied a g-value cutoff and then used two different feature selection methods
(tree-based feature selection and L1-based feature selection) to select a smaller number of mi-
crobial genes, and used them as microbial marker genes. We tried different ML algorithms for
phenotype prediction, including Support Vector Machines (SVM), Random Forests (RF), De-
cision Trees (DT), Neural Networks (NN), and K-nearest Neighbor (KN) approach, along with
different cross-validation strategies. We used the scikit-learn (http://scikit-learn.org) im-
plementation of these ML approaches in this study. We tested RF with 10, 100 and 1000 trees
and KN with 20 neighbors. For NN, we used Bernoulli Restricted Boltzmann Machine (RBM)
with 3200 binary hidden units. We used the default settings for SVM and DT.

2.4. Mi2P: from microbiome to phenotype

We created a repository of above mentioned microbial marker genes and predictors built from
the marker genes. We also developed a computational pipeline called Mi2P (which stands
for “from Microbiome to Phenotype”) for users to use this repository. As shown in Figure
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1(b), Mi2P is composed of three main steps: 1) mapping of metagenomic sequencing reads
onto the marker genes using Bowtie 2;% 2) quantification of the marker genes based on read
counts, using both uniquely and multiplely mapped reads (see 2.2); and 3) the estimated
gene abundances are used as input features to the microbiome-based phenotype predictors. A
wrapper script is included in the pipeline for the one-stop use of our pipeline, which takes a
metagenomic dataset as the input, and reports prediction as the main output. It also outputs
some intermediate results including the estimated gene abundances. Mi2P is available as open
source software for download at sourceforge (https://sourceforge.net/projects/mi2p/).

Group A Group B Input: microbiome
Case Control (shotgun sequences)
N\, cosa N
eads Collections of
Extracted reads i
mapping marker genes

Assembly L (for T2D etc)
Gene prediction]

Bacterial genes Marker gene abundances

Feature selection|

Prediction Phenotype
Marker genes predictors
Training 1 |
Predictors Host phenotype prediction
(a) Model curation (b) Mi2P

Fig. 1: Schematic representations of the model curation based on CoSA (a) and Mi2P (Mi-
crobiome to Phenotype) pipeline (b).

3. Results
3.1. Accuracy of microbiome-based predictors

We built predictors for predicting host phenotype based on the microbiome data. We evaluated
the accuracy of the predictors using different cross-validation strategies and ML approaches.
Furthermore, we tested two different feature selection approaches (tree-based and L1-based)
with liver cirrhosis data sets. Since we have already reported the performance of T2D predic-
tion in our previous publications,??3% we focused on reporting the results for liver cirrhosis
and cancer treatment responsiveness prediction based on microbiome data in this paper.
Figure 2 shows the ROC plots for liver cirrhosis prediction using different ML approaches
and feature selection methods. The figure shows that RF achieved better predictions than
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SVM approach. It also shows that predictors built from genes selected using the tree-based
feature selection method performed better as compared to L1-based feature selection method.
We therefore chose the tree-based feature selection as the default approach in our pipeline.

Table 2 summarizes the accuracy of the predictors we built for liver cirrhosis. Our SVM
based predictor achieved comparable performance as the predictor reported in Qin et al..”
However, our RF based predictor achieved significantly better predictions with higher AUCs.
We speculate that the accuracy improvement is a result of the combination of more marker
genes and a different machine learning approach (RF). We note that we tested RF using
different numbers of trees, including 10, 100 and 1000. We found that RF with 100 trees and
1000 trees achieved slightly better predictions than RF with 10 trees. Balancing running time
and accuracy, we chose RF with 100 trees.

Table 2: Accuracy of microbiome-based predictors for liver cirrhosis.

methods # ol marker gun i RE (100 trees) NN KN

genes
crossd Qin et al. 15¢ 0.84 ¢ N/A N/A N/A
Our approach 46 0.92 0.92 0.88 0.71
1. Qinet al. 15¢ 0.84 ¢ N/A N/A N/A
validation® =y - proach 46 0.83 0.93 0.81  0.72

@: the “cross” columns show the leave-one-out validation result (see Figure 2 (a)
for 5 fold cross-validation results). °: validation using microbiome data unseen in
the training of the predictor. ¢: numbers taken from the paper.”

Table 3 summarizes the accuracy for predicting immunotherapy responders versus non-
responders based on microbiome data. Correlations between clinical responses to immunother-
apy (ICI) and the relative abundance of Akkermansia muciniphila were reported in,3* how-
ever, no predictors were built by the authors. Here, we built predictors for immunotherapy
responsiveness using the RF approach with a small collection of marker genes, which achieved
reasonably accurate predictions for NSCLC. Predictions of RCC based on microbiome data
were less accurate. We tested RF predictors with different trees, and results show that RF with
100 trees performed relatively well for both cancers, similar to prediction of liver cirrhosis.
Therefore, we chose RF predictors with 100 trees for immunotherapy resposiveness prediction
to include in our Mi2P package. We note that we also applied SVM approach to this dataset,
which however achieved much worse predictions (AUC = 0.61) than the RF predictors.

3.2. Microbial marker genes

We include the sequences of microbial marker genes (both proteins and gene sequences), along
with their annotations (by hmmscan®’) in the Mi2P package. Table 4 shows a few examples
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Mean ROC of liver cirrhosis predictors
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(a) Tree-based feature selection

Mean ROC of liver cirrhosis predictors
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—— Mean ROC of SVM (AUC = 0.91)
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—— Mean ROC of NN (AUC = 0.79)
0.0 - Mean ROC of KN (AUC = 0.88)
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(b) L1-based feature selection

Fig. 2: Receiver operating characteristic (ROC) plots of the liver cirrhosis predictors using
different ML approaches. We also tested two feature selection methods: tree-based feature
selection and L1-based feature selection, and the results are shown in (a) and (b), respectively.
The ROC curves were averaged over five cross validation results.
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Table 3: Accuracy of microbiome-based prediction of responders versus non-responders to
cancer treatment using RF (with 10, 100, and 1000 trees), DT and NN approaches.

Cancer # of RF DT NN
type marker genes 10 100 1000 mean AUC mean AUC
NSCLC 116 0.86 0.91 0.89 0.72 0.81
RCC 85 0.84 0.83 0.81 0.79 0.78

identified from the liver cirrhosis cohort. These marker genes can be either more abundant in
healthy individuals (i.e., depleted in liver cirrhosis microbiomes), or more abundant in liver
cirrhosis microbiomes. We also note that a significant fraction of genes have no functional
annotations according to hmmscan search (or annotated to a domain without functional an-
notations, such as DUF3829): 0 out of 5 (0%) depleted genes, and 4 out of 41 (10%) enriched
genes in liver cirrohosis microbiomes have no functional annotations.

Table 4: Examples of microbial marker genes for liver cirrhosis prediction.

Gene id Putative function Pfam domain

Depleted in liver cirrhosis microbiome

H_ k9923554 _31.534_ Tripartite ATP-independent periplasmic transporters DctQ
H_k99_23763.1365.1613_ Helix-turn-helix domain HTH_31
H_k99_38620_1_453+ Acyltransferase family Acyl_transf_3
H_k99_59586_373_654 _- Amidohydrolase Amidohydro_2
H_k99_64410_1_617_- REC lobe of CRISPR-associated endonuclease Cas9 Cas9_REC

Enriched in liver cirrhosis microbiome

L_k99.1592_1_390_- Polysaccharide biosynthesis C-terminal domain Polysacc_synt_C
L k99_7366_1_565_- Carbon starvation protein CstA CstA
L_k99.13622_1_326_+ Septation ring formation regulator, EzrA EzrA

L k99_52773_82_623_+ Sodium:sulfate symporter transmembrane region Na_sulph_symp
L_k99_52825_1_408_+ D-isomer specific 2-hydroxyacid dehydrogenase 2-Hacid_dh_C

3.3. Running time of Mi2P pipeline

We provide a wrapper script in Mi2P pipeline for users to employ our repository of microbial
marker genes and predictors. We show that this pipeline gives fast prediction of host phenotype
from a query microbiome dataset (of shotgun sequences), thanks to the relatively small number
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of microbial marker genes that need to be considered. For example, on a linux computer (with
Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz), running the pipeline for two test datasets,
one from the liver cirrhosis collection (ERR528314 with 3 Gbps), and the other one from the
NSCLC collection (ERR2213736 with 2 Gbps) each took less than 6 min to complete.

4. Discussion

Our current repository of microbial marker genes and predictors is rather limited, covering only
four host phenotypes. We plan to apply the same analysis to more collections of microbiome
datasets associated with human diseases and treatment efficacy. We believe there will be no
shortage of such datasets due to the soaring interests in microbiome research associated with
human health and diseases. In addition, we will seek to collect microbial marker genes using
other approaches (e.g., based on the literature search) to enrich our repository.

A challenging problem in making our repository of microbial maker genes and predictors
useful will be the generalization issue, due to both the biological complexity (e.g., stratification
of the samples that were used to build the classifiers) and technical complexity (e.g., over-
fitting of the predictors). The generalization issue is a general problem in machine learning,
and methods have been proposed to alleviate the problem. We will explore some of the exist-
ing approaches to address this challenge. In addition, we will explore approaches to provide
confidence of predictions, rather than to simply provide yes or no prediction.

Further studies of the microbial marker genes will be needed to understand why they
are important for microbiome-host interaction, contributing to the host phenotype. We also
note that a significant fraction of the identified marker genes are of unknown functions. We
will exploit different homology- and context-based approaches to predict the functions of
these genes. Boosted by the accumulation of microbial genomes and metagenomes, a few new
methods, including our own guilt-by-association approach (the community profiling approach),
have been developed for functional annotation of microbial genes.*4! We plan to utilize these
approaches in our future research.
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