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Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder affecting 1 in
59 children. While noncoding genetic variation has been shown to play a major role in many
complex disorders, the contribution of these regions to ASD susceptibility remains unclear.
Genetic analyses of ASD typically use unaffected family members as controls; however, we
hypothesize that this method does not effectively elevate variant signal in the noncoding
region due to family members having subclinical phenotypes arising from common genetic
mechanisms. In this study, we use a separate, unrelated outgroup of individuals with pro-
gressive supranuclear palsy (PSP), a neurodegenerative condition with no known etiological
overlap with ASD, as a control population. We use whole genome sequencing data from a
large cohort of 2182 children with ASD and 379 controls with PSP, sequenced at the same
facility with the same machines and variant calling pipeline, in order to investigate the role
of noncoding variation in the ASD phenotype. We analyze seven major types of noncoding
variants: microRNAs, human accelerated regions, hypersensitive sites, transcription fac-
tor binding sites, DNA repeat sequences, simple repeat sequences, and CpG islands. After
identifying and removing batch effects between the two groups, we trained an `1-regularized
logistic regression classifier to predict ASD status from each set of variants. The classifier
trained on simple repeat sequences performed well on a held-out test set (AUC-ROC =
0.960); this classifier was also able to differentiate ASD cases from controls when applied to
a completely independent dataset (AUC-ROC = 0.960). This suggests that variation in sim-
ple repeat regions is predictive of the ASD phenotype and may contribute to ASD risk. Our
results show the importance of the noncoding region and the utility of independent control
groups in effectively linking genetic variation to disease phenotype for complex disorders.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social
impairments, communication difficulties, and restricted and repetitive patterns of behavior.
ASD usually manifests in infants and children and presents a wide range of symptoms that
vary from person to person. Currently, 1 in 59 children in the United States are affected, and
prevalence rates are expected to increase drastically over the next decade.1 ASD is known
to be highly genetic with a concordance rate between monozygotic twins of 77-99%.2,3 The
genetic architecture of the disorder is known to be complex, with an estimated 1000 genes
involved in disease susceptibility, spanning common, rare, and de novo variants.4,5

Models exploring the genetic basis of ASD typically focus on protein-coding genes; how-
ever, coding sequences account for only 1.5% of human DNA. The remaining segments of
DNA are comprised of noncoding regions, which have been shown to play an important role
in many genetic disorders. For example, recessive mutations in the PTF1A gene enhancer can
cause pancreatic agenesis,6 a common mutation in the RET enhancer increases risk for Hirsch-
prung disease,7 and mutations in topologically associating chromatin domains can cause limb
malformation.8 Furthermore, a meta-analysis of over a thousand genetic association studies
showed that most of the disease-associated single nucleotide variants identified by genome
wide association studies (GWAS) lie in the noncoding region.9

However, the contribution of noncoding variants to ASD still remains unclear. A recent
analysis of whole genome sequences of 516 children with ASD and their unaffected family
members concluded that individuals with ASD tend to have significantly more de novo muta-
tions in noncoding regions. The study evaluated two noncoding regions: untranslated regions
(UTRs) of genes and conserved transcription factor binding sites that map to sites of DNase
I hypersensitivity.10 However, a separate evaluation of the same dataset concluded that al-
though individuals with ASD possessed a small excess of de novo mutations in noncoding
regions, there were no significant results across over 50,000 regulatory classes after multiple
testing correction.11

As shown by these studies, population genetic analyses typically classify unaffected family
members as controls. However, we hypothesize that this assumption does not effectively elevate
variant signal from the genome for ASD cohorts. For example, close relatives of individuals
with ASD often exhibit autistic behaviors, such as social deficits and delayed speech.12,13

Thus, it is possible that family members possess a subclinical phenotype of ASD that may
arise from genomic features shared with their affected children. Also, the diagnostic criteria
for ASD were modified in 2013 with the release of the fifth edition of the Diagnostic and
Statistical Manual of Mental Disorders. Most parents would have been evaluated using an
earlier version of diagnostic criteria, making it possible that some would qualify for an ASD
diagnosis by modern clinical standards.

In order to address this issue and to exacerbate signal in the noncoding region, we introduce
a separate outgroup of patients with progressive supranuclear palsy (PSP), a neurodegener-
ative condition that causes difficulty with movement and thought.14 We chose this group of
control patients because there is no known etiological overlap or comorbidity between PSP and
ASD, and PSP is generally not heritable. There are some familial cases caused by a mutation
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in at least one copy of the gene MAPT on chromosome 17, but this is the only gene currently
known to be linked with PSP.15 No patients in the control group exhibit symptoms of ASD.
In this work, we use whole genome sequencing data from 2182 children with ASD and 379
PSP controls to investigate the role of noncoding variants in ASD susceptibility.

This study focuses on seven major noncoding regions: tissue specific microRNAs, hu-
man accelerated regions, hypersensitive sites, transcription factor binding sites, DNA repeat
sequences, simple repeat sequences, and CpG islands. Tissue-specific microRNAs play impor-
tant roles in the regulation of mRNA expression and the development of neurons, and recent
studies have implicated a total of 219 microRNAs in the development of ASD.16 Human accel-
erated regions, which consist of only 49 highly-conserved segments in DNA, have been shown
to regulate neural activity, with de novo copy number variations in these regions enriched in
individuals with ASD.17 Hypersensitive sites are regulatory regions that are sensitive to cleav-
age by nucleases, and de novo mutations in these regions are significantly enriched in ASD
probands.18 Transcription-factor binding sites are located in the noncoding regions of genes
and assist in the regulation of transcription; variants in binding sites in MEGF10 and TCF4
have been associated with ASD and other intellectual disabilities.19,20 DNA Repeat sequences
and simple repeat sequences are sequences of repeating base pairs, distinguished by the length
of the repeating pattern, that have been linked to neuronal differentiation and brain develop-
ment.21 Finally, CpG islands, which consist of regions with high frequencies of the cytosine
and guanine base pairs, can have higher rates of methylation in individuals with ASD.22

2. Methods

2.1. Data and Preprocessing

We analyzed 30x-coverage whole genome sequencing data from the Hartwell Foundation’s
Autism Research and Technology Initiative (iHART); iHART has amassed data from 1006
multiplex families, each with at least two ASD-affected children. We also analyzed 30x-
coverage whole genome sequencing data from 379 patients diagnosed with PSP. In order
to limit batch effects due to inconsistencies in sequencing methodologies, we sequenced both
populations at the New York Genome Center with Illumina HiSeq X instruments and utilized
the same GATK variant calling pipeline; in addition, there is no sample overlap between the
cohorts.

Chromosome coordinate lists for the seven noncoding regions were downloaded from the
UCSC Genome Browser and the Regulatory Elements Database.23,24 Quality control was per-
formed on the variant call format (VCF) files by removing all variants with high excess het-
erozygosity scores, which typically indicate sequencing artifacts or consanguinity within the
population. We then filtered the variant-call format files to extract all variants within these
regions that were present in both the PSP and ASD populations. We also removed all variants
with a large proportion (greater than 20%) of missing sites.

2.2. Accounting for Batch Effects

Batch effects present a major challenge when combining whole genome sequencing data across
cohorts, resulting in many false positive associations.25 Batch effects can result from almost
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any step in the whole genome sequencing procedure, including library preparation, sequenc-
ing machine or center, sequencing depth, and variant calling pipelines.26 Several methods
have been developed to mitigate these effects, but these procedures focus on reducing batch
effects for datasets collected and analyzed independently.27,28 In our case, care was taken to
sequence our ASD case and PSP control samples at the same center with the same platform
and to analyze them using identical variant calling pipelines. In order to detect the more
subtle batch effects that may remain, we expand on the method used by the UK10K project,
detecting batch effects using a genome-wide association test with batch (ASD and PSP) as
the phenotype.29 To do this, we performed a chi-squared test for each variant, comparing the
number of individuals with homozygous reference, heterozygous, homozygous alternate, and
missing genotypes between the two datasets. Any variants with a batch association p-value
below 0.05 after applying a Bonferroni multiple testing correction were discarded, resulting in
the removal of approximately 5% of variants. Figure 1 shows the number of variants within
each region that passed our preprocessing and batch effect filters.

Fig. 1. Number of noncoding variants of each type after applying preprocessing filters and removing
variants affected by batch effects.

2.3. Feature Representation and Logistic Regression Classifier

We designed a machine learning approach to determine if variation within noncoding regions
could be utilized to predict ASD. In order to capture variant information from both the ASD
and PSP populations, we constructed binary feature matrices for each of the seven noncoding
regions. Each matrix includes 2561 rows corresponding to the 379 PSP control patients and
2182 ASD case patients; the columns represent the variants (shown in Fig. 1) associated with
the region. We set each cell of the matrix as 1 if the individual expressed an alteration at the
variant site (either heterozygous or homozygous alternate) and as 0 if the variant matched the
reference sequence. Since several of these feature matrices included over one billion elements, all
matrices were encoded in a customized sparse representation to ensure that machine learning
would remain computationally tractable.

We created a logistic regression classifier with `1 regularization in order to encourage the
use of the smallest possible number of relevant features. 80% of the individuals in the dataset
were randomly selected for inclusion in the training set, and the remaining 20% were added to
the held-out test set; train and test sets were divided by family, so there is no familial overlap
between sets. In order to address class imbalance between the case and control populations,
we adjusted classifier weights such that they are inversely proportional to class sizes. We ran
5-fold cross validation in order to tune the level of regularization (represented by λ). Then,
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we evaluated performance on the held-out test set by measuring F1 scores, precision, recall,
and AUC-ROC.

We extracted the top-ranked variants from each of the seven noncoding regions for further
analysis by selecting the five variants from each classifier with the highest positive regression
coefficient values as well as the five variants with the lowest negative coefficient values. We also
confirmed that these variants were highly-ranked across multiple folds in our cross-validation
tests.

Fig. 2. Machine learning pipeline. Variants were called separately for cases and controls. The variant
calls were then merged and a batch-effect filter was applied. Feature matrices were created for each
of the seven noncoding regions and served as input to `1-regularized logistic regression classifiers.
Finally, the top-ranked features were extracted from each classifier.

2.4. Validation

We validated the performance of our classifier using a held-out test set composed of 20% of
the individuals from both cohorts. To demonstrate that our classifier can generalize, we also
measured performance of our trained models on a completely independent cohort consisting
of 517 ASD patients from the Simons Simplex Collection30 and 2054 control individuals from
the 1000 Genomes Project.31 These cohorts were sequenced at different depths on different
machines; however, the same GATK variant calling pipeline was utilized. We use this cohort
to show that our classifier can effectively generalize to new populations and that we have
adequately addressed batch effects in our training data.

Next, we devised a bootstrap test in order to determine if the seven groups of features used
in this analysis were relevant predictors of ASD status when compared to random variants. To
do so, we randomly sampled from the set of variants called in both the PSP and ASD cohorts.
Feature matrices were designed according to the same procedures outlined in sections 2.1 and
2.2, and classifiers were trained on the random variants using the procedure outlined in section
2.3. This process was repeated between 20 and 100 times to obtain 95% confidence intervals.
We ran separate bootstrap tests using different numbers of variants in order to account for
the wide range in sizes of our variant sets; bootstrap test sizes range from 102 to 106 variants.

We also ran several tests to ensure that our logistic regression classifier was not biased by
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population stratification. Ethnicity is responsible for much of the variation in human genomes,
so to ensure that population substructure was not confounding our results, we examined
performance separately for Europeans and non-Europeans in our test set. Autism is also sex-
biased, with males about 4 times more likely to be affected than females; in order to verify
that our results are robust to differences in the sex chromosomes, we also examined test
performance on males and females separately.

Finally, we evaluated the biological functions of top-ranked variants in order to determine
potential correlation with the ASD phenotype.

3. Results

3.1. Classifier Performance

Results from the logistic regression classifier as well as top-ranked variants are summarized
in Figure 3. The classifier was evaluated on a held-out test set and was able to differentiate
between ASD and PSP with high accuracy, with AUC-ROC values ranging from 0.600 to
0.960. The logistic regression classifier trained on variants located in simple repeat sequences
showed the best performance out of all seven variant sets.

Fig. 3. Machine learning results. We performed `1-regularized logistic regression for each noncoding
region. AUC-ROC, precision, recall, and F1 score show performance evaluated on the held-out test
set. λ values for each noncoding region, as well as the number of remaining variants with nonzero
coefficients remaining after feature selection, are listed. The 10 top-ranked variants for each classifier
are listed in GRCh37 coordinates; the presence of variants with positive coefficient scores and the
absence of variants with negative coefficient scores are likely to suggest the ASD phenotype.

3.2. Bootstrap Test

To determine whether the seven types of noncoding regions we tested are more predictive of
ASD status than random sets of variants, we performed a bootstrap test. Figure 4 shows the
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95% confidence interval for AUC-ROC performance of random variant sets of various sizes
on the held-out test set. As the number of variants used for prediction increases, the AUC
values achieved by the classifier also increase. This is expected because as we incorporate more
variants into our classifier, we become increasingly likely to by chance include ASD-associated
variants or variants in linkage-disequilibrium with autism-associated variants. Furthermore,
as the number of variants included in the classifier increases, any subtle batch effects missed
by our filtering procedure will begin to influence results.

We see that after accounting for variant set size, the microRNA, human accelerated re-
gion, and CpG island variant sets perform within the bootstrapped 95% confidence interval.
Hypersensitive sites, transcription factor binding sites, and DNA repeat sequences all perform
worse than random variant sets. These noncoding regions may not be associated with ASD,
or our batch effect correction procedure may have been too stringent and removed important
autism-associated signal. The classifier trained on simple repeat sequences is the only variant
set that significantly outperforms the random bootstrap with a Bonferonni corrected p-value
(accounting for the 7 tests performed) of 0.0287. This suggests that genetic variation within
simple repeats may be associated with ASD risk.

Fig. 4. Evaluating prediction performance of noncoding regions. The blue shaded region shows the
95% confidence interval for AUC-ROC performance of randomly selected sets of variants. As the
number of variants provided to the model increases, performance increases as well. Six of the non-
coding regions we studied performed at or below the bootstrapped models. However, the simple
repeat sequences variants significantly outperformed the bootstrap, suggesting that these noncoding
variants may be associated with ASD.

3.3. Performance on an Independent Test Set

In order to measure generalization ability, all seven classifiers were evaluated on an independent
test set consisting of ASD patients from the Simons Simplex Collection and control individuals
from the 1000 Genomes Project. AUC-ROC values ranged from 0.361 to 0.960, with most of
the models suffering from a degradation in performance. However, the model trained on simple
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repeat sequences maintained a large AUC-ROC, consistent with the hypothesis that this region
contains relevant signal for differentiating ASD and neurotypical individuals. These results are
in agreement with our bootstrap analysis.

Fig. 5. Performance on an independent test set This figure includes AUC-ROC values from valida-
tion on an independent cohort consisting of individuals from the Simon’s Simplex Collection and the
1000 Genomes Project. Only the classifier trained on simple repeat sequences is able to generalize.

3.4. Accounting for Population Substructure and Sex Differences

To show that our classifier trained on simple repeat sequences is robust to population substruc-
ture, we analyzed the population composition of our case and control groups. Figure 6 shows
our case and control populations superimposed on ethnicity profiles from the 1000 Genomes
Project. Our PSP population is predominantly of European descent, while the iHART popu-
lation is more diverse.

Fig. 6. Population compositions of PSP and ASD cohorts These plots map the PSP and ASD
populations to a principal components plot of the 1000 Genomes population in order to identify the
ethnicity of individuals in our datasets.

In order to ensure that this classifier is not biased by ethnicity, we evaluated its test perfor-
mance on individuals of European and non-European descent separately. Figure 7 shows that
it performs equally well on individuals of European or non-European ancestry, increasing our
confidence that our results are not confounded by population substructure. We also evaluated
differences in classification performance between males and females, also shown in Figure 7.
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Fig. 7. ROC curves for the classifier trained on simple repeat sequences across four splits of the
held-out test set The plots show that the classifier yields similar results on the European and non-
European population. However, classifier performance is higher across males than females.

Our classifier is better able to predict ASD affected status in males than in females. This is
interesting because ASD has a strong male bias with male children being four times more
likely to develop autism than female children.32

3.5. Biological Functions

We evaluated the biological functions of all 70 top-ranked variants in order to identify potential
correlations with the ASD phenotype. Since each variant either occurs in the intronic region
of a gene or in an intergenic region between two genes, we generated a comprehensive list of
genes associated with top-ranked variants. This resulted in a set of 98 genes, which we utilized
to evaluate biological evidence. In the tissue-specific microRNA regions, a variant at position
200,938,662 in chromosome 1 is located in the intronic region of KIF21B, a gene that regulates
synapse function and morphology of neurons; this gene is also known to play a role in learning
and memory.33 A variant at position 124,950,150 in chromosome 3 is located in ZNF148,
which has been linked with developmental delays.34 A top-ranked variant in chromosome 12
is located in the intronic region of CD4, a gene expressed in regions of the brain that is
known to be a mediator of neuronal damage.35 In noncoding regions containing DNA repeat
sequences, gene GFOD1 contains a variant at location 13,509,234 on chromosome 6 and has
been linked with Attention Deficit-Hyperactivity Disorder, a common comorbid condition of
ASD.36 Similarly, a top-ranked variant in a simple repeat sequence in chromosome 7 is located
within the intronic region of gene DGKI; this gene has been linked with dyslexia, which is also
a comorbid condition of ASD.37 In addition, a variant at chromosome 17 in a simple repeat
region is located within gene SHISA6, a regulator of synaptic transmission.38

In order to analyze the relationship between the 98 identified genes and a set of 109 genes
known to confer elevated ASD risk, we constructed a protein-protein interaction network in
STRING, as shown in Figure 8.39 Edges are derived from text-mining, experiments, databases,
co-expression, neighborhood, gene fusion, and co-occurrence. The network showed that twenty
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Fig. 8. Gene interaction network Interactions between genes previously linked with autism (in blue)
and genes associated with the noncoding variants identified in this analysis (in pink) are shown in
the figure. 20 identified genes interact closely with known ASD-risk genes. Notably, the gene CCNA1
is known to interact with 5 known ASD-linked genes.

newly-identified genes are closely connected to known ASD-linked genes.

4. Discussion

By utilizing outgroup machine learning to investigate the noncoding space, we were able
to identify single nucleotide variants potentially associated with ASD. Biological validation
of genes associated with top-ranked variants revealed a highly interconnected gene network,
suggesting that identified genes interact closely with ASD-linked genes and may contribute to
the ASD phenotype. Out of the seven regions analyzed in this work, the classifier trained on
simple repeat regions demonstrated the strongest performance. Simple repeat sequences, also
known as microsatellites, consist of repetitive sequences of one to ten base pairs; these regions
are known to be extremely susceptible to mutations.40 More than twenty neurodevelopmental
and neurodegenerative conditions, many of which are comorbid with ASD, have been linked to
unstable expansion of repeat sequences and consequent loss of protein function.41 In addition,
variation in promoter microsatellites of the gene AVPR1A has been implicated in increased
susceptibility to ASD in an Irish population.42 In this work, the classifier trained on simple
repeat sequences significantly outperformed the random bootstrap test, indicating a potential
correlation between variants in this region and the ASD phenotype; this was further supported
by a biological analysis of top-ranked variants in simple repeat regions that revealed two genes
associated with neural function.

Thus, our outgroup machine learning approach to elevate hidden signal in ASD genomes
can effectively evaluate feature representations of the noncoding space; however, this method
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has potential limitations, including batch effect correction and population stratification.
Current methods for addressing batch effects in whole genome sequencing data are meant

to capture major differences in sequencing pipelines and are therefore quite stringent; the Type
2 Diabetes Consortium uses a series of quality control filters to identify batch effects resulting
in a loss of 9.9% of called SNPs.43 Our method for batch effect correction, adapted from the
algorithm used by the UK10K Project,29 is less conservative, discarding just under 5% of
called SNPs. We believe this is appropriate since the batch effects in our dataset are much
more subtle than those encountered by large consortia. Since our samples were sequenced at
the same sequencing center with the same protocols and variant calling pipeline, we were able
to control for many of the variables that could introduce batch effects. However, differences
between populations in both cell type and the joint variant calling process could still create
batch effect biases. The ASD samples were sequenced from lymphoblastoid cell lines while the
PSP samples were sequenced from whole blood. Furthermore, while the same variant calling
pipeline was used on both samples, GATK performs joint genotyping, a procedure that uses
other samples in the cohort to resolve sequencing errors; since the two cohorts were run through
the variant calling pipeline separately, subtle batch effects could have been introduced.

Regardless of batch effects, there remains the fundamental issue of population stratification
in the merged dataset, especially since the initial cohorts were not drawn from the same
ancestral or ethnic group. In order to establish a control for stratification, we created a null
distribution by performing a bootstrap on successively larger variant sets, as reflected in Figure
4. High-performing null models likely do not reflect any neurological phenotype; rather, they
represent the effect of divergent ancestry between the ASD and PSP cohorts. Interestingly,
only the classifier trained on simple repeat sequences exceeded the null distribution for models
of its size, suggesting a potential link with ASD.

Further analysis is needed to understand the biological consequences of these results. 40%
of the top-ranked variants discovered in this analysis lie in intergenic regions; these may
be enhancers to nearby genes, and we intend to explore associations between these variants
and specific genes in a followup study. In addition, variants within simple repeat regions are
challenging to call at low depth; in our current analysis, the top ten variants in simple repeat
regions have an average read depth of 30.23 across the SSC dataset and an average read depth
of 6.21 across the 1000 Genomes control dataset. In the future, we will validate our classifier
using an independent test set sequenced at a higher depth of coverage.
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