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Precision medicine, an approach for disease treatment and prevention that considers “individual 

variability in genes, environment, and lifestyle” 1 was endorsed by the National Institutes of Health, 

aided by the presidential Precision Medicine Initiative (PMI), in 2016. PMI provided funding for 

cancer research and for building a national cohort of one million or more U.S. participants, now 

known as the “All of Us” Research Program, which aims to expand its impact to all diseases. PMI 

was the catalyst to a widespread effort around precision medicine, as evidenced by the more than 

1000 grants funded by different NIH institutes in just the last two years. The data being generated by 

these efforts is growing exponentially, and becomes both the greatest treasure and the greatest 

challenge for researchers. This workshop is a continuation of a similar session in PSB 2018, 

providing a forum for researchers with strong background in text mining or natural language 

processing (NLP) and/or machine learning (ML) who are actively collaborating with bench scientists 

and clinicians to tackle the challenges brought about by this explosion of data. 

† Work partially supported by the National Library of Medicine of the National Institutes of Health (NIH) 

under grant number R01LM011176 (GGH) and its Intramural Research Program (ZL and RL). The content is 

solely the responsibility of the authors and does not necessarily represent the official views of the NIH. 
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1.  Introduction 

According to the National Research Council, "personalized medicine" is an older term with a 

meaning similar to "precision medicine." However, "personalized" could be thought to imply that 

treatments and preventions are being developed for each individual; in contrast to what is really 

intended, which is identifying which approaches will be effective for which group of patients based 

on shared or similar genetic, environmental, and lifestyle factors. Thus, the preferred term for the 

presidential initiative launched in 2015 was "precision medicine" rather than "personalized 

medicine”, heralding the switch to the later.  The Precision Medicine Initiative (PMI) working group 

report2 outlines the goals of precision medicine, “to redefine our understanding of disease onset and 

progression, treatment response, and health outcome”, suggests the means to accomplish this, “more 

precise measurement of molecular, environmental, and behavioral factors that contribute to health 

and disease”, and the expected outcomes “more accurate diagnoses, more rational disease 

prevention strategies, better treatment selection, and the development of novel therapies”. However, 

in order to go from the means to the outcomes, one must deal with the onslaught of data that those 

“more precise” measurements entail. 

Big data in health is both a blessing and a curse. It is enabling, promising, but has been the 

largest roadblock to true progress in precision medicine, as much of key information remains hidden 

in descriptive text or in  patterns that are only obvious after cleverly feeding massive amounts of the 

right data to machine learning algorithms. Selecting, integrating, and analyzing the right data from 

medical records (EMRs), standardized clinical data (such as what is required by Medicare), 

administrative data –from hospitals, insurance companies, and pharmacies-, patient surveys and 

self-reports in social media or health forums, or via wearable sensors, the published literature, 

clinical trials, and research data deposited in public collections such GenBank or the Gene 

Expression Omnibus (GEO) database, and many curated databases of interactions and pathways, to 

name just a few, is one of the major challenges to precision medicine. 

Big data and the advance of machine learning, especially deep learning, has led to an explosion 

of the application of machine learning techniques in precision medicine. For example, deep learning 

algorithms have been able to diagnose of pneumonia on chest x-ray images3, apply for personalized 

risk stratification based on clinical data4, and detect spread of breast cancer into lymph node tissue 

on microscopic specimen images5. However, there is no silver bullet. The majority of such studies 

have not been conducted with scientific rigor regarding data reproducibility and model 

validity/portability in real-world scenario, and are thus limited to the framework and data used for 

the study itself.  

We have also seen significant advances in NLP methods that have enabled unstructured data to 

be used for decision support systems and predictive algorithms, given that such data was found 

exclusively in unstructured form, as recent studies comparing text-mining results with curated 

databases showed6-8.  Barriers to progress include ambiguity in the data itself, as variant names in 

the papers are written irregularly and hard to be grounded and even recognized9,10, as well as lack 

of trust and standard validation approaches. For example, whereas there is almost universal 

acceptance of ICD based cohort selection, NLP does not enjoy the same level of trust, and inclusion 
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of a patient record in a study based solely on NLP based selection will be frowned upon unless it is 

followed by manual annotation. 

This workshop highlights original research and invited presentations on novel text mining, 

natural language processing (NLP), and visual analytics approaches at the intersection of lifestyle, 

environment, and genetics that enable further understanding of disease processes and effective 

treatment for individuals and cohorts that share specific characteristics.  

2.  Workshop Summary 

The workshop includes a keynote talks by Christopher Chute, plus 6 oral presentations by authors 

of abstracts submitted for competitive review and selected for presentation based on their innovation 

and significance. In addition, the workshop closes with presentations by a panel of experts, focusing 

on ‘Current Challenges in Incorporating Genomic, Clinical, Published, and User-generated Data for 

Precision Medicine’, which gives attendees a view of state of the art approaches and roadblocks to 

the advancement of text mining and machine learning methods that will enable the next big 

breakthrough in this area.  

2.1 Keynote: Comparability and Consistency of NLP for Biomedical Discovery and Translation 

The keynote talk is given by Dr. Christopher Chute, the Bloomberg Distinguished Professor of 

Health Informatics, Professor of Medicine, Public Health, and Nursing at Johns Hopkins University, 

and Chief Research Information Officer for Johns Hopkins Medicine.  He received his 

undergraduate and medical training at Brown University, internal medicine residency at Dartmouth, 

and doctoral training in Epidemiology and Biostatistics at Harvard.  He is Board Certified in Internal 

Medicine and Clinical Informatics, and an elected Fellow of the American College of Physicians, 

the American College of Epidemiology, HL7, and the American College of Medical Informatics 

(ACMI), as well as a Founding Fellow of International Academy of Health Sciences Informatics; 

he is currently president of ACMI through 2018.   

Dr Chute’s career has focused on how we can represent clinical information to support analyses 

and inferencing, including comparative effectiveness analyses, decision support, best evidence 

discovery, and translational research.  He has had a deep interest in semantic consistency, 

harmonized information models, and ontology.  His current research focuses on translating basic 

science information to clinical practice, and how we classify dysfunctional phenotypes (disease).  

He became founding Chair of Biomedical Informatics at Mayo Clinic in 1988, retiring from Mayo 

in 2014, where he remains an emeritus Professor of Biomedical Informatics. He is presently PI on 

a spectrum of high-profile informatics grants from NIH spanning translational science. He has been 

active on many HIT standards efforts and chaired ISO Technical Committee 215 on Health 

Informatics and the World Health Organization (WHO) International Classification of Disease 

Revision (ICD-11).   

2.2 Oral Presentations 

In Development and Validation of the PEPPER Framework (Prenatal Exposure PubMed ParsER) 

with Applications to Food Additives, Mary Regina Boland, Aditya Kashyap, Jiadi Xiong, John 
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Holmes, and Scott Lorch, note that although environmental factors contribute to 36% of child 

deaths worldwide, no comprehensive list of all prenatal environmental exposures exists. They 

present a method called PEPPER: Prenatal Exposure Pubmed ParsER that utilizes all full-text 

research articles from Pubmed Central to learn the ‘state-of-the-field’. They found that of 31,764 

prenatal exposure studies, only 53.0% were methodology studies. When PEPPER is coupled with 

the FDA’s food additive database (called EAFUS), PEPPER is able to capture 56.4% of the studied 

exposures. Prenatal exposure effects of food additives were studied for 176 compounds out of 3,968 

(4.4%) compounds contained in EAFUS. Of 16,832 prenatal exposure methodology studies, only 

1,886 (11.2%) investigate food additive effects. In total, 3,117 studies investigated prenatal 

exposure to food additives. The majority of these were methodology studies (60.5%), followed by 

non-methodology studies (27.2%), PDF only (8.9%) and systematic reviews (3.4%). Prenatal 

exposure to commonly used food additives (EAFUS category ASP) are rarely studied with a rate of 

only 0.24% of methodology studies. Surprisingly, there is also a paucity of research on the effects 

of banned food additives on prenatal development. Of 2,105 research articles investigating banned 

food additives, only four (0.19%) investigate effects during the prenatal period and only three 

(0.14%) were methodology studies. 

Jingcheng Du, Yang Xiang, Jing Huang, Xinyuan Zhang, Rui Duan, Jiayi Tong, Jiang 

Bian, Sahiti Myneni, Yong Chen, and Cui Tao, in Mining HPV Vaccination Health Beliefs from 

Twitter Using Deep Learning: A Longitudinal Analysis of Four-Year Data (2014 - 2017), focus on 

understanding the public perceptions of vaccines as it is the first step towards developing effective 

vaccine promotion strategies to fight against the increase of vaccine refusal and delay observed in 

the last two decades. Traditional surveying methods suffer significant limitations on accessing large-

scale public perceptions. The popularity of social media opens a new dimension. However, most of 

the studies were focusing on analyzing the frequency rather than contents of social media postings. 

The accurate understanding of the contents in the perspective of grounded behavior change theories 

is fundamental for the design of precise and targeted vaccination promotion strategies. According 

to the authors, their study is the first effort to map Twitter vaccination discussion to the grounded 

behavior change theory - Health Belief Model. They propose and evaluate a deep learning model 

and apply the model to automatically and accurately extract vaccination health belief from large-

scale Twitter data. The deep learning model shows superiority over machine learning baseline 

model. They identify manifestation of health belief constructs in Twitter corpus of vaccine 

discussions in a four-year Twitter dataset. 

In Data integration for prediction of time to insulin in type 2 diabetes patients, the subject of 

Rikke Linnemann Nielsen, Louise Donnelly, Agnes Martine Nielsen, Kaixin Zhou, Bjarne 

Ersboll, Ewan Pearson, and Ramneek Gupta  present Type an approach to predicting risk of a 

fast or slow disease progression, which varies between individuals. This variation is captured in 

electronic medical records of T2D patients and identification of biomarkers that are predictive of 

diabetes progression can possibly reveal relevant patient subgroups characteristics that may assist 

clinical decisions in T2D treatment management. In their study they analyze electronic medical 

records from a cohort-based population in Tayside, UK registered from 1994 to 2010 using machine 

learning approaches. They investigate if integration of life-style data, anthropometry, biochemical 

data, drug-prescription data and genetic variants could predict slow and fast progression based on 
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classification of time to insulin (TTI) in T2D patients using random forest and artificial neural 

network models. TTI is defined as the first day of insulin treatment or as the clinical need for insulin 

(HbA1c >8.5% treated with two or more non-insulin diabetes therapies) since the day diagnosis was 

confirmed by HbA1c. Prediction targets is TTI within year 1, 3 or 5 since time of diagnosis. The 

best performing ANN models with all data except genetics most accurately predicts T2D patients 

with fast progression. The authors also discuss inclusion of genetic variants in the machine learning 

models as well as further longitudinal work with the phenotype. 

In neurodegeneration, knowledge on etiologies and underlying mechanisms is still sparse, 

resulting in late diagnosis and a lack of effective therapies. Until longitudinal studies deliver 

sufficient data, mining and integrating complementary clinical routine data appears promising. In 

Longitudinal visualization of heterogeneous data from neurodegenerative patients for clinical 

hypothesis generation, Sebastian Schaaf, Mischa Uebachs, Vyara Tonkova, Kilian Krockauer, 

Lisa Langnickel, Philipp Koppen and Juliane Fluck identify a variety of data sources and create 

an extraction strategy involving text mining, collecting diagnoses, cognitive test scores, biomarker 

lab measurements as well as medications. The integration into their longitudinal clinical data model 

allows a semantic access to normalized data from both routine and study contexts, using standards 

like FHIR, OMOP and adequate public terminologies. Besides programmatic access, they set up an 

interactive visualization interface, providing views on aggregated data for exploratory settings, but 

also a custom longitudinal patient viewer, depicting events and measurements for individuals on a 

timeline. Beyond supporting principal data exchange and review, they regard the recent 

developments to be crucial for efficient hypotheses generation, stratification and recruitment. 

In MultiPLIER: a transfer learning framework reveals systemic features of rare autoimmune 

disease, Jaclyn Taroni, Peter Grayson, Qiwen Hu, Sean Eddy, Matthias Kretzler, Peter 

Merkel, and Casey Greene present a feature-representation-transfer approach, MultiPLIER, which 

consists of training Pathway Level Information ExtractoR (PLIER) models on large compendia 

comprised of multiple experiments, tissues, and biological conditions and transferring this 

information to small rare disease datasets. They demonstrate that MultiPLIER better describes 

biological processes related to more active or severe disease in a rare autoimmune disorder than 

models trained on individual datasets. 

Yuping Zhang, Zhengqing Ouyang, and Hongyu Zhao in A statistical framework for data 

integration through graphical models with application to cancer genomics, building on a previous 

study11, present the problem of discovering regulatory relationships among heterogeneous genomic 

variables from biological conditions with potentially shared regulatory mechanisms. The genomic 

variables can be genetic variants, epigenetic states, and gene expression profiles, etc. The 

heterogeneous genomic variable types may be binary, categorical, or continuous. The biological 

conditions can be different tissue types or disease types, etc. They may have both shared and tissue- 

or disease-specific regulations. The authors develop a new general network estimation framework, 

named DIG, to jointly learn conditional independence among a set of heterogeneous types of 

variables across a set of distinct but related conditions. They illustrate the method by integrating 

mutations and copy number variations, and apply it to COAD and BRCA using TCGA data. Their 

study identify both common and distinct network modules in COAD and BRCA, which shows that 

the modules are biologically meaningful.  
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