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Precision medicine models often perform better for populations of European ancestry due
to the over-representation of this group in the genomic datasets and large-scale biobanks
from which the models are constructed. As a result, prediction models may misrepresent or
provide less accurate treatment recommendations for underrepresented populations, con-
tributing to health disparities. This study introduces an adaptable machine learning toolkit
that integrates multiple existing methodologies and novel techniques to enhance the predic-
tion accuracy for underrepresented populations in genomic datasets. By leveraging machine
learning techniques, including gradient boosting and automated methods, coupled with
novel population-conditional re-sampling techniques, our method significantly improves the
phenotypic prediction from single nucleotide polymorphism (SNP) data for diverse popu-
lations. We evaluate our approach using the UK Biobank, which is composed primarily of
British individuals with European ancestry, and a minority representation of groups with
Asian and African ancestry. Performance metrics demonstrate substantial improvements in
phenotype prediction for underrepresented groups, achieving prediction accuracy compa-
rable to that of the majority group. This approach represents a significant step towards
improving prediction accuracy amidst current dataset diversity challenges. By integrating
a tailored pipeline, our approach fosters more equitable validity and utility of statistical
genetics methods, paving the way for more inclusive models and outcomes.

Keywords: Genetics; Precision Medicine; Machine Learning; Phenotype Prediction; Bioin-
formatics.

1. Introduction

In recent years, genome-wide association studies (GWAS) have provided many insights into
the genetic basis of complex traits and diseases. However, these findings predominantly ben-
efit populations of European descent due to their over-representation in genomic datasets.
Individuals with Asian, African, and other ancestries only represent a small fraction of the
available datasets.1 Although individuals of European descent constitute ∼79% of GWAS par-
ticipants,2 they account for less than a quarter of the global population. This disproportionate
representation creates a limitation in precision medicine, because statistical models built to
infer disease risks or health-related traits can perform poorly for individuals from populations
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that were underrepresented when creating the model, exacerbating health disparities. Despite
initiatives to include a broader range of populations in genetic studies and biobanks,3–7 the
proportion of non-European individuals in GWAS studies has stagnated in the last decade.2,8

This imbalance has a direct impact on Polygenic Risk Score (PRS) prediction for underrep-
resented populations,9 making clinical applications based on PRS significantly more accurate
for individuals of European descent, but less effective for other populations.10–12 This dis-
parity has raised ethical concerns within the scientific and clinical community.1,3,8,13 While
most studies only use European individuals and European-derived statistics to build predic-
tive models,8,11,14 recent studies have explored including non-European training data in PRS
construction, but this has only proven effective when a large number of training samples of
non-European target populations are available.15

Phenotype prediction utilizes genetic information to forecast an organism’s observable
characteristics, known as phenotypes. These traits can range from disease susceptibility to
other attributes, enabling personalized treatments based on individual genetic profiles. Ma-
chine learning (ML) and deep learning (DL) models used to predict phenotype and population
structure from genomic data14,16–20 are similarly negatively impacted by imbalanced datasets.
Vokinger et al.21 highlighted the presence of bias in ML-based medicine prediction pipelines.
Specifically, they revealed how a naive application of simple ML methods can showcase an
overall good performance, yet still produce biased predictions favoring the majority population
at the cost of lower accuracy for underrepresented groups. Efforts to mitigate this bias exist,
such as Afrose et al.22 who created a double prioritized bias correction technique that involves
training customized prediction models for specific subpopulations. However, this approach is
limited to binary classification tasks and is not generalizable to other prediction problems.

Conventionally, the statistical methods that are applied for genomic prediction problems
linearly combine the effects of different genetic variants on an individual’s risk of disease. Some
of the most widely used regression models include Lasso,23 a linear method with ℓ1 penalty,
Elastic net24 with ℓ1 and ℓ2 penalty, and efficient implementations of both.14 Although being
the routine choice in most studies, linear models are not able to capture non-linear genetic
interactions that can contribute to a phenotype.25 The ability of non-linear predictive models
to capture genetic interactions could help improve performance generalization across popu-
lations.26,27 Neural networks, a complex non-linear method, have recently gained traction in
computational biology,28,29 but require vast amounts of data for training. Large-scale biobanks,
such as the UK Biobank,30 provide such expansive datasets. However, the small proportion
of samples from minority populations hinders robust generalization across different genetic
backgrounds. In contrast, gradient boosting (GB) algorithms,31 such as eXtreme Gradient
Boosting (XGBoost)32 and LightGBM,33 have frequently demonstrated superior performance
for tabular data and small-sized datasets,34,35 and have already been explored in biological
studies for tasks such as local ancestry inference,36 protein-protein interactions,37 and drug-
gene interactions.38 In the realm of genotype-to-phenotype prediction, recent research has also
highlighted the potential benefits of using such nonlinear predictive models.39,40

In this paper, we aim to improve phenotype prediction for diverse and underrepresented
populations. We propose a more inclusive genomic research approach that uses multi-ancestry
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data together with advanced machine learning techniques to boost the predictability of com-
plex traits across a broader range of populations. Our method leverages several machine
learning techniques such as boosting, and ensembling, and we propose population-conditional
weighting and re-sampling techniques to generate more accurate models for underrepresented
populations without requiring large sample sizes of non-European training data. Fig. 1 illus-
trates the workflow of our approach, starting with the formation of the data set through the
application of various machine learning techniques and data de-biasing methods. We compare
our approach with state-of-the-art statistical genetics models on the UK Biobank, conduct-
ing a systematic evaluation across 12 phenotypes in European (British), African, East Asian,
and South Asian individuals. Given that the majority population is of European descent, we
observe a large gap in phenotype prediction accuracy for minority populations when using
classical linear methods. This disparity only grows when European-only data is used to train
any of the prediction models. We demonstrate how the application of our method helps nar-
row this accuracy gap, balance the performance across populations, and obtain state-of-the-art
phenotype prediction results for multi-ancestry datasets.
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Fig. 1. A schematic representation of our predictive modeling pipeline, starting from the initial
data ingestion to the application of various ML methods and de-biasing techniques.

2. Methods

2.1. Dataset preparation

We utilize a dataset extracted from the UK Biobank30 that includes European (British), South
Asian, African, and East Asian individuals (see Fig. 2). We use the pre-computed population
labels from the Global Biobank Engine (GBE),41 inferred based on genetic clustering with
ADMIXTURE software42 results, which provides a maximum likelihood estimation of an in-
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Fig. 2. EUR - European British, SAS - South Asian, AFR - African, EAS - East Asian
(Left) Sample counts per group in the training and testing set. (Right) Percentage of SNP overlap
between the selected sets of SNPs per group using the MAF filter.

dividual’s genetic ancestry clustering from multilocus genotype datasets.
Single nucleotide polymorphism (SNP) sequences are encoded using a ternary system,

where at each genomic position, an individual i has nij ∈ {0, 1, 2} copies of the minority SNP
j. To address high dimensionality and retain the most informative SNPs, we apply a SNP
selection process. Minor allele frequency (MAF) filtering is applied with a 1.25% threshold,
keeping a set Sp of 10000 SNPs for each population p ∈ P , such that |Sp| = 10000. After SNP
selection for each population, we computed the union of these sets. It is important to note
that not all sets necessarily overlap with every other set. The union is represented by:

Sunion =
⋃
p∈P

Sp (1)

This resulted in a unified set of SNPs where |Sunion| = 31153, which is then used for all
individuals, creating a dataset of 66032 individuals and 31153 features. Fig. 2 shows the
intersection size of the sets of selected SNPs Sp for all intersections of populations p ∈ P .
We observe that the highest overlap is between South Asian, East Asian, and European
populations, while the selected set of SNPs for the African population has practically no
overlap with the others. Any subsequent missing SNPs within the samples underwent mode
imputation to ensure data completeness.

To conduct our experiments, we study a set of phenotypes included in the GBE,41 listed
in Table 1. Details regarding the correspondence of the GBE to the UK Biobank can be
found in the GBE paper. We selected the available phenotypes with minimal missing data for
the minority populations, and that also showed good predictive performance from genotype
features.43 We analyze both binary phenotypes (absence or presence of the phenotype) and
continuous phenotypes to evaluate model performance across both classification and regression
tasks.
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Additionally, we ensured there is no missing data and filter samples that have missing
phenotypic information. The dataset is partitioned into a training set and a testing set, com-
prising 80% and 20% of the data, respectively. We applied stratified sampling, ensuring the
proportion of samples from each population closely mirrors their proportion in the overall
dataset.

Table 1. We present results on 12 phenotypes, 10 continuous and 2 binary ones.

Variable Type Variable Type

Standing height Continuous Weight Continuous
Ankle spacing width Continuous Impedance of whole body Continuous
HDL cholesterol Continuous Apolipoprotein A Continuous

Urate Continuous Total bilirubin Continuous
Plateletcrit Continuous Red blood cell (erythrocyte) count Continuous
Diabetes Binary Atrial fibrillation Binary

2.2. Algorithmic models

We explore a wide range of machine learning methods to improve phenotype prediction on un-
derrepresented populations. Some algorithms serve as standalone models, capable of making
predictions without supplementary techniques. Other algorithms we describe in this section,
such as boosting, are techniques that can be used to further improve the performance of a base
machine learning model. Finally, we explore complex machine learning systems that combine
multiple models and automate the process of machine learning.

Linear models We include the Least Absolute Shrinkage and Selection Operator (Lasso),23

a linear regression method that performs variable selection (i.e., identifies the most important
predictors) and regularization, which prevents overfitting by constraining the model param-
eters. It does this by imposing an ℓ1 penalty, effectively reducing some coefficients to zero.
We also use Elastic Net,24 a regularized method that combines ℓ1 and ℓ2 penalties, allowing
coefficient shrinkage and feature selection.

Boosting We consider boosting,44 a powerful ensemble machine learning technique that con-
structs a strong predictive model by combining multiple weak learners—simple models— that
are trained sequentially. In each iteration of the boosting process, a new weak learner is
trained giving more importance to the instances that were poorly predicted by the previous
models, meaning the model attempts to correct the errors of its predecessors. This procedure
is repeated sequentially, with each new model targeting the instances where the combined
ensemble has performed the worst. The final model is a weighted combination of all the weak
models, which often yields a strong predictive performance by aggregating the strengths of
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all individual models. Decision trees are the most common type of weak learners used in
boosting algorithms. However, we also study how boosting can help improve predictive per-
formance when traditional linear methods used in the field, such as Elastic Net, are used as
weak learners.

Gradient boosting machines A specific implementation of the boosting techniques are
gradient boosting machines (GBM). The key idea behind GBMs is the use of the gradient
descent algorithm to minimize a loss function, which quantifies how well the model predicts
the target variable. In each iteration, rather than directly focusing on the poorly predicted
instances, a new decision tree is fit to the negative gradient (residuals) of the loss function
with respect to the prediction of the ensemble model from the previous stage. This new
decision tree provides a direction in which the prediction should be adjusted to minimize the
loss function. The predictions are then updated by taking a step in this direction. Extreme
Gradient Boosting (XGBoost)32 and LightGBM33 are two optimized implementations of GBMs
that have gained significant popularity due to their efficiency and performance. XGBoost
offers several advanced features such as regularized boosting, handling of missing values, and
tree-pruning that makes it faster and more robust. LightGBM also offers high performance
and efficiency but is particularly notable for its effectiveness with large datasets and high-
dimensional data, due to its innovative histogram-based algorithm that reduces memory usage
and speeds up training.

AutoML Automated Machine Learning (AutoML)45 refers to the automated process of end-
to-end model development, encompassing steps from feature engineering to model selection,
hyperparameter tuning, and model evaluation. AutoML methods have been developed to
streamline the machine learning pipeline while reducing time and expertise required to develop
effective predictive models. In particular, we consider AutoGluon46 (AG), a state-of-the-art
AutoML framework known for its robust performance, efficiency and ease of use. AutoGluon
automatically trains and optimizes multiple models such as neural networks, nearest neighbors,
linear models, and gradient boosting machines, combining them into a stacked ensemble.

2.3. Population-conditional re-sampling solutions

We introduce a set of population-conditional re-sampling techniques to address population
imbalance in datasets. These techniques serve as auxiliary methods designed to reduce model
bias towards the majority population and can be integrated with any predictive model. While
we focus on human populations in this work, these techniques can also be applied to any data
where samples can be grouped into different populations, groups, or categories. Moreover,
they are suitable for tasks beyond single-target classification, such as regression, and they can
also be extended to multi-output tasks.

Population-conditional oversampling and undersampling We modify the traditional
oversampling and undersampling techniques used in imbalanced classification tasks, and adapt
them to address imbalances at the population level, regardless of the target variables (both
categorical and continuous). We organize the training dataset as X ∈ RN×d such that each row
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represents an individual, and the target variable or variables are concatenated to the rest of
the input features as the final attributes. The population label is then used as a downstream
label y′ ∈ RN for the oversampling or undersampling rule, originally designed to work with
single-target imbalanced classification datasets, such that the “minority” samples are those
pertaining to the populations with lowest representation in the dataset. After this procedure,
we discard the population labels and split the columns of the re-sampled training dataset as
features and targets and fit the prediction models.

We explore population-conditional random oversampling (OS) by picking samples at ran-
dom with replacement from the minority populations. We also adapt the Synthetic Minority
Over-sampling Technique (SMOTE),47 which is commonly used to address class imbalances by
generating synthetic samples. Our modification enables us to synthetically increase the number
of instances from the minority populations in the training set. Note that in the case of re-
gression tasks, our approach differs from existing SMOTE variations for regression,48,49 which
involve identifying “minority” samples based on the distribution of the target values rather
than external categorical labels associated with the samples. Finally, we also consider adapting
the SMOTE-Edited Nearest Neighbours (SMOTE-ENN) algorithm,50 a method that combines
both oversampling and undersampling techniques. Our proposed population-conditional vari-
ation can also be applied to any other re-sampling technique originally designed to address
class imbalance in classification problems.

Population-conditional weighting In a similar fashion, traditional class-based sample
weighting techniques for class imbalance give more importance to underrepresented classes
in the target variable. In contrast, we propose to emphasize the individual instances from un-
derrepresented populations given the population labels each sample has assigned, regardless
of their target variable. We calculate Np, the size (i.e. number of samples) of each population
p ∈ P in the training set, and assign a weight wp = N

Np
to each sample corresponding to pop-

ulation p, inversely proportional to the size of its population, where N is the total size of the
training dataset.

2.4. Evaluation setup

For training, data is either filtered to only contain European ancestry individuals, mirroring
the typical bias seen in many genetic studies, or contain the complete, multi-ethnic dataset
that includes individuals from underrepresented populations. The testing data is fixed and
contains samples from each population group, allowing the assessment and model performance
comparison across each population in all the experiments. Model hyperparameters are adjusted
by 5-fold cross validation, with hyperparameter configurations drawn from comprehensive
search spaces until 1000 configurations are explored or a search budget of 120 hours is reached.
Then, the model is fitted on the full training set with the chosen hyperparameter configuration,
and evaluated on the held out test set (20% of the data).

Predictive performance is evaluated using the coefficient of determination (R2) for regres-
sion tasks, and the Area Under the Receiver Operating Characteristic Curve (ROC AUC) for
classification tasks. R2 represents the proportion of variance in the predicted phenotype that
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is explained by the genotype, and its value lies between 0 and 1. An R2 nearing 1 signifies the
model’s high accuracy in phenotype prediction using the given genetic data. In contrast, val-
ues approaching 0 highlight the model’s limited predictive capability. ROC AUC measures the
model’s ability to distinguish between the positive and negative classes. The value ranges from
0 to 1, with 0.5 indicating performance equivalent to random chance, and values approaching
1 indicating high predictive accuracy.

3. Results

3.1. Continuous phenotypes

We first analyze the use of multi-ethnic data and the predictive performance of several linear
and non-linear models, including Lasso, Elastic Net, LightGBM, and XGBoost, for the 10
continuous phenotypes described in Table 1. Fig. 3 shows the increase in R2 when training
the models with multi-ethnic data, compared to training with only with European individuals
on a linear model (Lasso), which is the common practice in the field. Note that relative
performance (ratio) cannot be computed per population, as the baseline model obtains an
R2 of 0 for some population groups when predicting some of the phenotypes. We observe
that prediction performance significantly improves across all populations and methods when
including multi-ethnic data in training. Specifically, the gradient boosting method LightGBM
is the model that obtains the highest boost in predictive performance consistently across all
ancestry backgrounds, including European and underrepresented ones.

Fig. 3. Aggregated results of increase in R2 for the 10 continuous phenotypes, with a 95% confidence
interval, comparing the scores for models trained on multi-ethnic data (including populations un-
derrepresented in the UK Biobank) versus models trained exclusively on the British-with-European-
ancestry population.

In an effort to gain deeper insights into how various methodologies can influence a pheno-
type, we focus on the Standing Height phenotype. Fig. 4 shows our experiments on different
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models and techniques, with the complexity of machine learning techniques increasing from
left to right. Our experiments begin with Elastic Net (EN), starting from a simple linear
model trained on individuals of European descent. We then include multi-ethnic data and in-
troduce population-conditional weighting during training. Subsequently, we explore creating
an ensemble of Elastic Nets using boosting. As a more complex boosting algorithm, we include
LightGBM, followed by AutoGluon, an AutoML method that trains multiple ML models to
form a stacked ensemble, including LightGBM as one of its members.

Fig. 4. Comparison of R2 scores across diverse populations for the Standing Height phenotype.
“EN” represents Elastic Net. The population used for training is provided in parenthesis, with “EUR”
signifying European-only training data, and “Multi-E” indicating the use of multi-ethnic data. The
symbol “W” marks the application of population-conditional sample weighting.

We note incremental performance for all populations, starting with Elastic Net which
yields an R2 of 0 for South Asian and East Asian individuals when trained solely on Eu-
ropean data. Introducing multi-ethnic data leads to significant R2 improvements, narrowing
the performance gap between populations. Moreover, population-conditional weighting boosts
performance for underrepresented groups. Finally, non-linear methods like LightGBM and Au-
toGluon have proven especially effective for the European, South Asian and East Asian pop-
ulations. Gains are more modest for the African samples due to the higher genetic variation
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Table 2. R2 results for standing height. All the proposed population-conditional (PC) re-sampling
methods use multi-ethnic training data. EN: Elastic Net, AG: AutoGluon.

Population Training Lasso EN Boosted EN LightGBM XGBoost AG

European

European-only 0.508 0.477 0.506 0.520 0.520 0.520
Multi-ethnic 0.497 0.473 0.503 0.517 0.517 0.519
PC-Random OS 0.451 0.435 0.492 0.503 0.501 0.510
PC-SMOTE 0.465 0.422 0.499 0.513 0.505 0.508
PC-SMOTE-ENN 0.189 0 0.132 0.319 0.388 0.372
PC-Weighted 0.452 0.435 0.496 0.506 0.501 0.513

South Asian

European-only 0 0 0 0 0 0
Multi-ethnic 0.342 0.452 0.460 0.554 0.547 0.554
PC-Random OS 0.506 0.499 0.523 0.542 0.549 0.557
PC-SMOTE 0.486 0.480 0.509 0.552 0.533 0.541
PC-SMOTE-ENN 0.520 0.467 0.525 0.544 0.548 0.553
PC-Weighted 0.506 0.498 0.523 0.537 0.543 0.563

African

European-only 0.374 0.368 0.372 0.373 0.355 0.351
Multi-ethnic 0.442 0.427 0.440 0.441 0.437 0.443
PC-Random OS 0.442 0.426 0.439 0.386 0.429 0.439
PC-SMOTE 0.434 0.411 0.421 0.400 0.433 0.414
PC-SMOTE-ENN 0.443 0.397 0.427 0.401 0.431 0.418
PC-Weighted 0.442 0.426 0.437 0.406 0.423 0.442

East Asian

European-only 0 0 0 0 0 0
Multi-ethnic 0.174 0.426 0.413 0.535 0.513 0.534
PC-Random OS 0.487 0.500 0.511 0.536 0.540 0.548
PC-SMOTE 0.466 0.479 0.497 0.525 0.526 0.547
PC-SMOTE-ENN 0.490 0.479 0.502 0.534 0.533 0.547
PC-Weighted 0.487 0.500 0.513 0.511 0.524 0.552

within this group, making phenotype prediction a more challenging task. Models trained on
multi-ethnic datasets can still struggle to capture the intricate relationships between genotype
and phenotype specific to African populations. As we integrated increasingly complex and de-
biasing techniques, we observed an overall improvement in R2, underscoring that non-linear
models, multi-ethnic data, and de-biasing techniques collectively drive enhanced results.

Table 2 provides a comprehensive comparison of various models in predicting standing
height across different ancestry groups using diverse training techniques. For the individuals of
European descent, training with either European-only or multi-ethnic data showcased similar
results, with LightGBM, XGBoost, and AutoGluon emerging as top performers. In contrast,
for the South Asian and East Asian groups, introducing multi-ethnic data and applying the
proposed population-conditional re-sampling significantly improves predictive performance.
The best results in the Asian groups are obtained applying the population-conditional sample
weighting with AutoGluon. For the African group, top performance was observed not only
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with AutoGluon trained on multi-ethnic data but also with the Lasso combined with the
population-conditional SMOTE-ENN. This finding underscores the importance of not only
model choice but also nuanced training strategies, especially for diverse groups.

3.2. Binary phenotypes

We extend our experiments to classification models to observe if they follow similar trends as
the regression results presented above. Table 3 showcases the ROC AUC results for two bi-
nary phenotypes (diabetes and atrial fibrillation). For both phenotypes, AutoGluon frequently
achieves the highest ROC AUC scores, followed by LightGBM, outperforming the linear mod-
els. Particularly, the population-conditional weighted training improves model outcomes for
the underrepresented groups when using multi-ethnic data.

Table 3. Performance of various models and training techniques in predicting binary phe-
notypes (Diabetes and Atrial Fibrillation), as measured by ROC AUC scores per group. The
proposed population-conditional (PC) method uses multi-ethnic training data.

Phenotype Population Training Lasso Elastic Net LightGBM AutoGluon

Diabetes

European
European-only 0.520 0.530 0.585 0.604
Multi-ethnic 0.501 0.508 0.606 0.616
PC-Weighted 0.494 0.495 0.562 0.610

South Asian
European-only 0.546 0.547 0.550 0.570
Multi-ethnic 0.535 0.535 0.539 0.562
PC-Weighted 0.528 0.533 0.563 0.586

African
European-only 0.508 0.527 0.483 0.509
Multi-ethnic 0.527 0.533 0.507 0.494
PC-Weighted 0.516 0.516 0.543 0.493

East Asian
European-only 0.391 0.409 0.480 0.552
Multi-ethnic 0.421 0.385 0.554 0.579
PC-Weighted 0.400 0.429 0.638 0.558

Atrial
fibrillation

European
European-only 0.537 0.537 0.591 0.625
Multi-ethnic 0.538 0.539 0.594 0.624
PC-Weighted 0.538 0.537 0.609 0.629

South Asian
European-only 0.504 0.485 0.562 0.513
Multi-ethnic 0.478 0.498 0.547 0.548
PC-Weighted 0.479 0.501 0.487 0.586

African
European-only 0.544 0.521 0.559 0.665
Multi-ethnic 0.554 0.532 0.523 0.592
PC-Weighted 0.550 0.509 0.499 0.566

East Asian
European-only 0.350 0.424 0.596 0.405
Multi-ethnic 0.313 0.397 0.507 0.459
PC-Weighted 0.322 0.424 0.542 0.374
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4. Conclusions and Future Work

Our results advocate for the implementation of non-linear and ensemble methods, particularly
LightGBM and AutoGluon, combined with the proposed population-conditional techniques to
enhance genotype-to-phenotype prediction tasks for populations underrepresented in existing
datasets. Strategies such as boosting and population-conditional sample weighting and re-
sampling proved to be influential additions in order to better generalize across population and
improve prediction accuracy. These methods were effective for both continuous and binary
phenotypes, demonstrating their applicability for both regression and classification models.

Our study illustrates the use of methodological advancements to enhance prediction accu-
racy in the face of a lack of diverse genetic datasets. While the ideal solution would simply be
the inclusion of more representative datasets, this is not an accurate reflection of the current
data landscape. As such, we recommend for our models and techniques to be implemented
when researchers are dealing with datasets of biased representation, especially in genetics.
Using these methods should be a priority in situations demanding equitable outcomes, such
as in clinical studies.

Failure to address these disparities could engender biases in precision medicine, which
might unfavorably impact underrepresented populations. While our study addressed twelve
phenotypes, expanding this focus to include other disease phenotypes in future research could
yield a deeper understanding of genetic influences on disease. Although AutoGluon includes
simple neural network models, future work could delve into a broader spectrum of deep learning
architectures, including convolutional layers and attention mechanisms.

The moderate improvement in the African population compared to the Asian groups when
applying multi-ethnic training and population-conditional re-sampling can be attributed to
the inherent genetic diversity present within the African group, as the SNPs selected for this
study are predominantly enriched for representation in Eurasian populations. For future work,
a more refined SNP selection tailored for more diverse ancestral backgrounds could poten-
tially enhance the predictive performance and rectify this limitation. A deeper investigation
into linkage disequilibrium among SNPs could also optimize the SNP selection process by
minimizing redundancies. Although models studied are able to capture genotype-phenotype
relationships, covariates, particularly genetic principal components, could allow for a more ac-
curate accounting of the underlying population structure. Incorporating advanced explainable
ML techniques51 alongside further analysis of covariates can elucidate the underlying mecha-
nisms through which non-linear relationships boost predictive performance, offering a clearer
insight into genotype-phenotype mappings. These approaches could refine model performance
and enhance prediction accuracy across different ancestry backgrounds.

Given the prevalent bias in many clinical and genetic datasets,10 underrepresented pop-
ulations are often overlooked, with potentially grave implications for health outcomes. This
issue is especially pertinent in an era where precision health methods and AI algorithms are
becoming increasingly prominent. Thus, implementing strategies such as those presented in
our study could considerably enhance the equability and effectiveness of precision medicine
for underrepresented groups.
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