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Access to safe and effective antiretroviral therapy (ART) is a cornerstone in the global response to the 
HIV pandemic. Among people living with HIV, there is considerable interindividual variability in 
absolute CD4 T-cell recovery following initiation of virally suppressive ART. The contribution of host 
genetics to this variability is not well understood. We explored the contribution of a polygenic score 
which was derived from large, publicly available summary statistics for absolute lymphocyte count from 
individuals in the general population (PGSlymph) due to a lack of publicly available summary statistics for 
CD4 T-cell count. We explored associations with baseline CD4 T-cell count prior to ART initiation 
(n=4959) and change from baseline to week 48 on ART (n=3274) among treatment-naïve participants in 
prospective, randomized ART studies of the AIDS Clinical Trials Group. We separately examined an 
African-ancestry-derived and a European-ancestry-derived PGSlymph, and evaluated their performance 
across all participants, and also in the African and European ancestral groups separately. Multivariate 
models that included PGSlymph, baseline plasma HIV-1 RNA, age, sex, and 15 principal components 
(PCs) of genetic similarity explained ~26-27% of variability in baseline CD4 T-cell count, but PGSlymph 
accounted for <1% of this variability. Models that also included baseline CD4 T-cell count explained 
~7-9% of variability in CD4 T-cell count increase on ART, but PGSlymph accounted for <1% of this 
variability. In univariate analyses, PGSlymph was not significantly associated with baseline or change in 
CD4 T-cell count. Among individuals of African ancestry, the African PGSlymph term in the multivariate 
model was significantly associated with change in CD4 T-cell count while not significant in the 
univariate model. When applied to lymphocyte count in a general medical biobank population (Penn 
Medicine BioBank), PGSlymph explained ~6-10% of variability in multivariate models (including age, 
sex, and PCs) but only ~1% in univariate models. In summary, a lymphocyte count PGS derived from 
the general population was not consistently associated with CD4 T-cell recovery on ART. Nonetheless, 
adjusting for clinical covariates is quite important when estimating such polygenic effects. 
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1. Introduction

1.1. Incomplete CD4 T-Cell Recovery in Response to Antiretroviral Therapy 

Human immunodeficiency virus type 1 (HIV-1) is a global health challenge, with 38.4 million 
individuals worldwide living with HIV1, including nearly 1.2 million in the United States2. This virus 
depletes CD4 T lymphocytes (hereafter referred to as CD4 cells), a critical component of the immune 
system3. Effective antiretroviral therapy (ART) controls viral replication, improves health and prevents 
transmission4. With viral load reduction, CD4 cell counts may return to normal levels, but in many 
individuals this is not achieved5–7. Understanding the etiology of CD4 cell recovery is important 
because individuals with lower CD4 cell counts may be at increased risk for non-AIDS conditions such 
as hepatic cirrhosis, cardiovascular disease, kidney disease, and cancer8.  

The etiology of incomplete CD4 cell recovery has not been fully elucidated, but many biological, 
demographic, treatment, and genetic factors have been associated9. Individuals who begin ART with 
CD4 cell counts <200 cells/mm3 are less likely to achieve normal CD4 cell counts >500 cells/mm5–7. 
Other biological factors associated with this treatment response include higher body mass index (BMI), 
lower naïve/memory CD4+ cell ratio, lower CD4/CD8 cell ratios, and other immunological factors9. 
Demographic factors have also been associated with poor CD4 cell recovery including older age, male 
sex, and Eastern African ancestry, as well as specific ART regimens9,10. Additionally, variants that 
influence the absorption, distribution, metabolism, and elimination of ART may also play a role11. 
Genes with single nucleotide polymorphisms (SNPs) reported to be associated with CD4 cell recovery 
on ART have included IL-2, IL-2Rβ, IL-2Rγ, IL-15, IL-15Rα, TRAIL, Bim, TNF-α, and IFN-γ12. One 
particular SNP (rs6897932) in IL7RA was associated with a faster CD4 cell count increase in individuals 
of both European and African ancestry, but another SNP in this gene (rs3194051) was only associated 
with this response in individuals of African ancestry13,14. Another study suggested that differences in 
CCR5 genotype and CCL3L1 dosage were associated with the extent and rate of CD4 cell recovery15. 
Additionally, HLA-Bw4 homozygosity was associated with impaired CD4 cell recovery16. Particular 
mitochondrial DNA haplogroups were associated with CD4 cell recovery in individuals of European 
and African ancestry17,18. More recently, whole exome sequencing associated 41 genes with CD4 cell 
response in females19.  

Although multiple genes and SNPs have been associated with poor CD4 cell count recovery on 
ART, these explain a small fraction of the variance. Previous studies considered effects of SNPs 
individually, which fails to consider whether combinations of many SNPs may explain a larger portion 
of the variance. Many conditions are polygenic (e.g., coronary artery disease), meaning that many genes 
and variants have impact20. It is conceivable that CD4 cell recovery on ART is also polygenic, so it is 
worth exploring whether polygenic scores may explain a larger portion of the genetic variance, which 
has never been investigated for this treatment response. Furthermore, understanding the 
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pharmacogenomic underpinnings of treatment response has the potential to better individualize 
therapy21. 

 
1.2 Polygenic Scores May Predict Complex Treatment Responses 
 
One way to assess the contribution of many variants in combination is by applying Polygenic Scores 
(PGS), which are the mathematical, cumulative aggregation of risk derived from the total contribution 
of numerous variants in the genome22. PGS effectively predict phenotypes such as schizophrenia23–27, 
bipolar disorder23,28,29, breast cancer30–33, type 2 diabetes30,34,35, coronary artery disease 30,34,36, and atrial 
fibrillation30,34,37. Given their success in other disease areas, it is plausible that PGS could predict poor 
CD4 cell recovery in response to ART.  

When using PGS, it is important to consider the potential for ancestral health disparity. Across many 
phenotypes, PGS is more predictive for individuals of European ancestry because this population has 
more readily available summary statistics from large genome-wide association studies (GWAS)38. An 
ultimate goal of PGS is clinical implementation so that patients can be informed of their genetic risk 
for disease38. However, clinical implementation could create a larger health disparity whereby 
individuals of European ancestry may more readily benefit from these risk prediction models38. Thus, 
it is important to improve risk prediction for global populations. This is particularly important for HIV 
given its global distribution of prevalence, particularly in Africa. We hope to better predict genetic risk 
in individuals of African ancestry by generating a PGS based on summary statistics generated in a 
dataset of individuals largely of African ancestry, in addition to a PGS generated in a dataset of 
individuals largely of European ancestry. Additionally, we plan to use PRScsx, a method that more 
effectively predicts polygenic risk in global populations39. 

In this study, we assess whether the PGS generated from a general population is predictive of CD4 
cell recovery in persons living with HIV (PWH). A similar approach used a body mass index PGS 
generated from a general population to study ART-associated weight gain40. As there are no large 
GWAS studies of CD4 cell count, either in the general population or in PWH, we generate statistical 
power by using summary statistics on total lymphocyte count from a general population, for which 
large sample sizes are publicly available. Finally, the principle of predicting phenotypic effects in a 
population affected by a health condition by using genetics from the general population was effective 
in one study that found that variants associated with cardiac QRS duration in individuals without cardiac 
diseases were also associated with arrhythmia and atrial fibrillation41. We assess whether this same 
principle applies to treatment response by testing whether the genetic underpinnings of lymphocyte 
count in a general population predicts CD4 cell recovery in PWH. We hypothesize that cumulative 
genetic variants that affect total lymphocyte count also affect recovery of the CD4 T cell subset in 
response to ART (i.e., that a lymphocyte count PGS [PGSlymph] generated from the general population 
will be associated with CD4 cell recovery on ART). We also hypothesize that PGSlymph will be 
associated with CD4 cell counts prior to initiating ART. 
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2. Methods

Figure 1: Study Overview: EUR and AFR PGSlymph were trained using lymphocyte count GWAS summary 
statistics. Both PGSlymph were applied to individuals in the AIDS Clinical Trials Group (ACTG) to assess its predictability 

of CD4 cell response to ART. 
2.1 Data and Study Participants 

2.1.1 Lymphocyte Count Meta Analysis 

We used publicly available summary statistics from a published meta-analysis of existing GWAS for 
lymphocyte count in populations of European and African ancestry in the general population42. The 
meta-analysis included 524,923 individuals of European ancestry with 47,264,266 SNPs, and 13,477 
individuals of African ancestry with 34,121,887 SNPs42. The European ancestry summary statistics 
were subset to 1,120,498 SNPs that were present on the European linkage disequilibrium (LD) panels 
and the African ancestry summary statistics were subset to 1,225,091 SNPs that were present on the 
African LD reference panels. 

2.1.2 AIDS Clinical Trials Group 

Participants were ART-naïve individuals who had initiated ART in prospective, randomized clinical 
trials of the AIDS Clinical Trials Group (ACTG), and had consented to genetic research and provided 
DNA under ACTG protocol A512843. Data were generated by conducting a retrospective analysis of 
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this cohort. Individuals had initiated ART in the United States in studies ACTG384, A5095 
(NCT00013520), A5142 (NCT00050895), A5202 (NCT00118898), and A5257 (NCT25285539)44–47. 
All participants provided written, informed consent for genetic testing. Drug class components of 
regimens were randomly assigned except for nucleoside reverse transcriptase inhibitor (NRTI) choice 
in A5142. Included individuals had the following data: imputed genotype, sex, genetically inferred 
ancestry (GIA), lymphocyte count or CD4 cell count data. Additional eligibility criteria included HIV-
1 RNA <400 copies/mL at week 48 on ART. 
 
2.1.3 Penn Medicine BioBank 
 
The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked biobank research 
program at the University of Pennsylvania48. PMBB participants included in this study provided consent 
for research including access to their medical records, blood sample collection, and generation of 
genetic data48. Individuals with both imputed genotype data from PMBB v2.0 and with lymphocyte 
count data were included in PGS analysis as a positive control. Included individuals had the following 
data: imputed genotype, lymphocyte count, sex, and GIA. 
 
2.2 Genotyping and Quality Control 
 
2.2.1 AIDS Clinical Trials Group 
 
DNA extracted from whole blood was labeled with coded identifiers and genotyped in seven phases. 
Phases 1-3 were genotyped at the Broad Institute (Phases 1 and 2 with HumanHap650Yv3_A, and 
Phase 3 with Human1M-Duov3_B). Phases 4-7 were genotyped at the Vanderbilt Technologies for 
Advanced Genomics (VANTAGE) facility (Phase 4 using the Human Core Exome chip, phase 5 with 
the HumanOmni2.5Exome-8-v1.1_A1 chip, Phase 6 with the HumanOmni25-8v1-2_A1 chip, and 
phase 7 with the Illumina Infinium Multi-Ethnic Global BeadChip (MEGAEX).  

Post-genotype quality control procedures utilizing PLINK v1.949 were conducted by Vanderbilt 
Technologies for Advanced Genomics Analysis and Research Design (VANGARD). Prior to 
imputation, samples with genotyping efficiency < 99% or with discordance between genotype sex and 
reported sex were removed. After completing these quality control procedures, each genotyping phase 
was imputed separately utilizing the TOPMed reference panel, which was parallelized by chromosome 
to increase computational efficiency50. During the imputation process, liftOver was used to transform 
genotype data to genome build 3850. After imputation, PLINK was used to merge the seven imputed 
datasets, and variants with imputation R2 scores < 0.3, genotyping call rates < 95%, or minor allele 
frequency (MAF) < 0.05 were dropped49. GIA was determined using principal component analysis 
(PCA) with 1000 Genomes as the reference, subsequently assigning each participant to one of six 
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superpopulations: African (AFR), Admixed American (AMR), East Asian (EAS), European (EUR), 
South Asian (SAS), and Other. 
 
2.2.2 Penn Medicine BioBank 
 
DNA was extracted from blood samples. Approximately 80% of samples were genotyped by the 
Regeneron Genomics Center (RGC) using an Illumina Global Screening Array v.2.0 (GSAv2)48, while 
the remaining 20% were genotyped by the Center for Applied Genomics (CAG) at the Children’s 
Hospital of Philadelphia using the GSAv1 and GSAv2 genotyping array48. 

Prior to imputation, sample level quality control was conducted48. Using PLINK v1.9, variants with 
genotyping call rates < 95%, individuals with sample call rates < 90%, and individuals with discordance 
between reported sex and genotype sex were dropped48. Autosomes were imputed utilizing a TOPMed 
version R2 genome build 38 reference panel48,50. After imputation, variants with imputation R2 scores 
< 0.3, genotype call rate < 99%, MAF < 1%, and/or were multi-allelic were dropped using PLINK 
v1.948. Individuals with sample call rate < 99% or discordant sex information were also dropped48. PCA 
was done to identify GIA using 1000 Genomes as the reference and subsequently separated individuals 
into six superpopulations: African (AFR), Admixed American (AMR), East Asian (EAS), European 
(EUR), South Asian (SAS), Other48. 
 
2.3 Polygenic Score Calculation 

 
The PGSlymph was constructed using PRScsx (version released on July 29 2021), which integrates 
summary statistics and LD panels across genetically diverse populations to better predict polygenic risk 
in global populations39. 1000 Genomes phase 3 LD reference panels were used in the calculation51. 
Summary statistics from the lymphocyte count meta-analysis were used to train the PGSlymph42. The 
PGSlymph was applied to ACTG study participants with CD4 cell count data using PLINK2 “--score” 
function49. As positive controls, the PGSlymph was also applied to individuals with lymphocyte count 
data in ACTG as well as individuals with lymphocyte count data in PMBB. 
 
2.4 Statistical Analysis 

 
The results were analyzed to assess model predictability across all ancestries combined, and in 
European and African ancestries separately. Linear regressions were calculated, and performance was 
assessed with an R2 value generated from a multivariate linear regression between the phenotype of 
interest and the PGSlymph. Additionally, performance of individual covariates was assessed with effect 
sizes generated from these regressions. We used a p-value threshold of 0.05 to assess significance. 
Regressions were calculated in individuals of European and African ancestry only, as well as 
individuals of all superpopulations combined. PGSlymph was applied to two different cohorts, ACTG 
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and PMBB. In ACTG, the predictability of the PGSlymph for three different phenotypes was assessed: 
the square root (SQRT) of CD4 cell count at study entry prior to ART (baseline), change in CD4 cell 
count from study entry to 48 weeks of ART (a measure of treatment response), and inverse normal 
lymphocyte count prior to ART (a control variable). We performed two regressions for each phenotype, 
one without correcting for any covariates, and one correcting for age, sex, principal components (PC) 
of genetic similarity 1-15, as well as log10-HIV-1 RNA (a measure of viral load). Additionally, we 
adjusted for SQRT of baseline CD4 cell count in regression models between PGSlymph and change in 
CD4 cell count on ART. In addition to these regressions, we also evaluated interactions between the 
PGSlymph and age, sex, viral load, and baseline CD4 cell count to identify whether PGSlymph interacts 
with any covariate. In PMBB, the predictability of PGSlymph for inverse normal lymphocyte count was 
assessed as a positive control and to understand predictability in a general medical biobank population. 
Similarly, two regressions were performed, one without correcting for covariates, and one correcting 
for age, sex, and PC1-15. These results were visualized using SynthesisView52. 
 
3. Results 
 

Table 1: ACTG Participant Demographics at Baseline 
 

Lymphocyte Count 
Data 

Baseline CD4 Cell 
Count Data 

On-Treatment CD4 Cell 
Count Data 

Total, N 4680 4959 3274 

European ancestry, n (%) 1835 (39.2%) 1958 (39.4%) 1319 (40.3%) 

African ancestry, n (%) 1721 (36.8%) 1826 (36.8%) 1154 (35.2%) 

Male/Female, n (%) 3824/856 (81.7%/18.3%) 4051/908 (81.7%/18.3%) 2715/559 (82.9%/17.1%) 

Age, mean (range) 37.9 (17.0-77.0) 38.0 (17.0-77.0) 38.2 (17.0-76.0) 

 
Table 2: PMBB Demographics 

 
Lymphocyte Count Data 

Total, N 37211 

European ancestry, n (%) 25330 (68.1%) 

African ancestry, n (%) 10217 (27.5%) 

Male/Female, n (%) 18215/18996 (49.0%/51.0%) 

Mean Age (Range) 55.6 (13.9-101.7) 
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Figure 2: Summary of Regression Results Between PGSlymph and Phenotype without Controlling for Covariates 

(Age, Sex, PC1-15, log10HIV-1 RNA (viral load), and SQRT of baseline CD4 cell count) 
 

 
Figure 3: Summary of Regression Results Between PGSlymph and Phenotype While Controlling for Covariates (Age, 

Sex, PC1-15, log10HIV-1 RNA (viral load), and SQRT of baseline CD4 cell count) 
 
4. Discussion 
 
A lymphocyte count PGS trained in the general population did not effectively predict baseline CD4 cell 
count or change in CD4 cell count in response to ART, leading to rejection of our hypothesis that poor 
CD4 cell recovery in response to ART is dependent on each individual’s overall genetic predisposition 
to this outcome. When running regressions without correcting for covariates, R2 values were low across 
all ancestry groups and most regressions were not statistically significant (Figure 2, Supplementary 
Table 1. In contrast, clinical covariates were predictive of these phenotypes. When correcting for 
covariates, performance of the model improved markedly. Baseline regressions performed modestly 
(R2 = 0.278) while on-treatment regressions were not very predictive (R2 = 0.073), although all values 
were statistically significant (Figure 3, Supplementary Table 2). However, because the PGSlymph itself 
was not highly predictive, the success of this model was mostly due to the contribution of covariates. 
Additionally, when including covariates in the model, the model including the African PGSlymph better 
predicted change in CD4 cell count on-treatment in individuals of African ancestry than the model 
including the European PGSlymph (R2 was greater by 0.003) (Figure 3, Supplementary Table 2). This is 
the only case where we see improved performance by an AFR PGSlymph compared to a EUR PGSlymph. 
Interestingly, when considering effects of individual covariates in this model, the influence of the AFR 
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PGSlymph is significant (p = 0.044) in individuals of African ancestry with an effect size of -2.062 
(Supplementary Table 3). In comparison to other covariates, this effect size is minimal, but suggests 
that the AFR PGSlymph is playing a role. Furthermore, this shows that our methods improved PGSlymph 
performance in individuals of African ancestry, which was likely because of a combination of a 
PGSlymph based on African ancestry summary statistics and utilizing PRScsx for calculation. 

In univariate analyses, lymphocyte count PGS did not effectively predict baseline lymphocyte 
count in ACTG participants. R2 values were also low and insignificant (Figure 2, Supplementary Table 
5). Performance improved when including covariates in this model, as R2 values rose to ~0.10 and 
regressions became statistically significant (Figure 3, Supplementary Table 6). Within the covariate 
models, the influence of the EUR PGSlymph is significant in individuals of European ancestry (p = 0.018) 
with a minimal effect size of 0.025 (Supplementary Table 7). However, as the effect size is small, 
though significant, the EUR PGSlymph is not adding much to this model. Still, this significant effect is 
exhibited as the R2 value of the EUR PGSlymph covariate model in individuals of European ancestry 
(0.103) is slightly higher than the R2 value of the AFR PGSlymph covariate model in individuals of 
European ancestry (0.101) (Figure 3, Supplementary Table 6). Additionally, in the multivariate model, 
the influence of the AFR PGSlymph is significant in the multi-ancestry group (p=8.7e-3) with an effect 
size of 8.3e-3 (Supplementary Table 9). Although this evidently did not have a large impact on the 
model, the effects of this are still present as the R2 value of the AFR PGSlymph covariate model in the 
multi-ancestry group (0.098) is slightly higher than the R2 value of the EUR PGSlymph covariate model 
in the multi-ancestry group (0.097) (Figure 3, Supplementary Table 6). Also, it is interesting that the 
R2 value did not increase as high as in CD4 cell count regressions, perhaps because viral load was the 
greatest contributing covariate (viral load had the lowest p-value of all variables in all CD4 cell count 
regressions), and total lymphocyte counts are not greatly affected by viral load, in contrast to CD4 cell 
counts53 (Supplementary Table 3). 

Although this model did not perform well in PWH, it performed slightly better when applied to 
a general medical biobank population. The PGSlymph best predicted lymphocyte count in a general 
medical biobank population. Regressions were highly statistically significant, likely due to a large 
sample size (~37,000 individuals). In the univariate model, the African PGSlymph applied to the multi-
ancestry group and the European PGSlymph applied to the European population had the highest R2 values 
(~0.01) (Figure 2, Supplementary Table 11). It is interesting that these regressions had the highest R2 
values, as these are the only ACTG lymphocyte count regressions that had a significant contribution 
from PGSlymph in the multivariable model. Seeing these patterns across the general population and PWH 
shows that the AFR PGSlymph performs best in a multi-ancestry group and the EUR PGSlymph performs 
best in individuals of European ancestry. When controlling for covariates, performance of the model 
increased. R2 values rose to ~0.06-0.10 and p-values dropped even lower (Figure 3, Supplementary 
Table 12). This mirrors the impact of covariates seen in PWH. The effect size of the EUR PGSlymph was 
~0.01 in all ancestry groups (Supplementary Table 13). It is interesting that without covariates, the EUR 
PGSlymph in individuals of European ancestry was the only regression mirroring this effect size (Figure 
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2, Supplementary Table 11). The effect size of the AFR PGSlymph was much lower, ~-5e-3 
(Supplementary Table 14). This effect size was mirrored in the AFR PGSlymph regressions without 
covariates in European and African ancestry, as the R2 values were also low (~3e-3 or 8e-3), but 
interestingly the R2 value was higher when the AFR PGSlymph was applied to the multi-ancestry group 
(~0.01) (Figure 2, Supplementary Table 11).  

Although these results showed that PGSlymph itself is not predictive of this treatment response, 
some results show that in combination with covariates, the impact of PGSlymph can become significant, 
suggesting a possible synergistic effect between PGSlymph and clinical covariates in the model. In the 
regressions between AFR PGSlymph and change in CD4 cell count in individuals of African ancestry, 
the impact of the PGSlymph was insignificant, but when including clinical covariates in the regression, 
the impact of the PGSlymph became significant (Supplementary Table 3). However, the AFR PGSlymph 
did not significantly interact with any covariates, eliminating the possibility of a synergistic effect 
(Supplementary Table 4). Additionally, in the regressions between the AFR PGSlymph and baseline 
lymphocyte count in PWH of all ancestry groups, as well as in the regressions between the EUR 
PGSlymph and baseline lymphocyte count in individuals of European ancestry, the same patterns were 
observed (Supplementary Table 7, Supplementary Table 9). Similarly, the AFR PGSlymph did not 
significantly interact with any covariates, but the EUR PGSlymph significantly interacted with age 
(Supplementary Table 8, Supplementary Table 10). Thus, it is possible that in PWH, there are 
synergistic effects between the EUR PGSlymph and covariates, thus leading the PGSlymph to become 
significant. These findings highlight the importance of including clinical covariates in PGS analyses, 
not only because the covariates themselves very predictive of treatment response, but also because they 
seem to interact with the PGSlymph in some way. Another explanation for this observation is that 
covariates with strong effects overshadow the effects of PGSlymph when not controlled for. Covariates 
such as viral load have such high significance and large effect sizes, that the effects of smaller impact 
variables such as PGSlymph are not seen unless these covariates were controlled for. Thus, it is important 
to consider clinical covariates when implementing PGS in a clinical setting. 

This study had several limitations. First, the sample size of the African ancestry summary 
statistics that were used to generate the African PGSlymph were small (~13,000 individuals), which is 
due to the lack of availability of lymphocyte count summary statistics for individuals of African 
ancestry. To improve these results, more lymphocyte count GWAS data are needed in future studies, 
as it is possible that the AFR PGSlymph could have performed better with a larger base sample size. 
Additionally, the ACTG sample size was modest (~4600 individuals) which was subset to even smaller 
groups when stratified by ancestry. It is possible that associations with PGSlymph may have become 
statistically significant with a larger sample size. Subsequent work in this area could investigate whether 
this model is predictive of other drug response traits, specifically other ART treatment responses.  

Polygenic scores have the potential to leverage large, publicly available datasets to find novel 
genetic discoveries in pharmacogenomic cohorts. This study utilized a novel method to predict CD4 
cell recovery in response to ART and illustrated the importance of including clinical covariates in a 
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PGS model. As more associations or lack thereof are found, we continue to narrow down the biological 
underpinnings of responses to ART including suboptimal CD4 cell recovery. 
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