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Protein-protein interactions play an essential role in nearly all biological processes, and it
has become increasingly clear that in order to better understand the fundamental processes
that underlie disease, we must develop a strong understanding of both their context speci-
ficity (e.g., tissue-specificity) as well as their dynamic nature (e.g., how they respond to
environmental changes). While network-based approaches have found much initial success
in the application of protein-protein interactions (PPIs) towards systems-level explorations
of biology, they often overlook the fact that large numbers of proteins undergo alternative
splicing. Alternative splicing has not only been shown to diversify protein function through
the generation of multiple protein isoforms, but also remodel PPIs and affect a wide range
diseases, including cancer. Isoform-specific interactions are not well characterized, so we
develop a computational approach that uses domain-domain interactions in concert with
differential exon usage data from The Cancer Genome Atlas (TCGA) and the Genotype-
Tissue Expression project (GTEx). Using this approach, we can characterize PPIs likely
disrupted or possibly even increased due to splicing events for individual TCGA cancer
patient samples relative to a matched GTEx normal tissue background.
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1. Introduction

Alternative splicing is a crucial mechanism that underlies the increased complexity of higher
eukaryotes. It is now estimated that ∼95% of human genes1,2 undergo splicing changes, and the
increase in protein diversity that results from splicing has been put forth as one of the primary
explanations for the apparent mismatch between species complexity and their genome size.3,4

Importantly, alternative isoforms of the same gene can exhibit highly different interaction
profiles and thus affect the dynamics of protein interaction networks.5 Splicing has been shown
to be a key regulator of tissue specificity (especially in the brain),2,6 and dysregulation has
been increasingly implicated in a wide array of diseases,7 from cancer8,9 to neurodegenerative
diseases.10 Thus, it is critical to understand the changes in protein interactions due to splicing
that underlie cellular function and dysfunction.

However, a systematic study of splicing-related protein network dynamics is hampered
by multiple challenges. Although emergent experimental approaches to directly screen for
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isoform-level protein-protein interactions are promising,5 they are very early in development
and highly restricted in resolution. Furthermore, all such screens are naturally bounded by
not only a combination of technical and cost constraints, but also the inherent complexity of
the underlying networks and the vast number of potential cell types and conditions of interest.
Fortunately, the now standard use of RNA-sequencing provides a window into the exploration
of splicing patterns across varied conditions. While RNA-seq data alone is still insufficient
to chart out the entirety of any particular splicing interaction network, it can be used to
understand condition-specific splicing dynamics.

Here, we present Splitpea (SPLicing InTeractions PErsonAlized), a method for detecting
sample-specific PPI network rewiring events. Splitpea takes advantage of the key insight that
splicing can disrupt critical protein domains that mediate PPIs through domain-domain in-
teractions (DDIs), which have been derived based on a mix of structural, evolutionary, and
computational approaches.11–14 Splitpea integrates PPI and DDI information with sample-
specific differential splicing events, and can be used easily in concert with existing, established
computational approaches for the identification and quantification of differential splicing.15 In
the scenario where only an individual sample is available or a different background context is
preferable (versus existing control samples), Splitpea provides functionality to use a separate
reference database of background splice events; for example, one can choose to use normal
GTEx data as background for individual TCGA cancer samples (matched by tissue type).
Furthermore, as part of Splitpea’s characterization of the potential downstream interaction
network changes, Splitpea indicates likely direction: gain, loss, or chaos (mixed / unclear).

Thus, to our knowledge, Splitpea is the first general tool to characterize potential direction
of protein interaction rewiring due to splicing for individual samples. We demonstrate the util-
ity of Splitpea on breast and pancreatic cancer samples from TCGA, using matched normal
tissue samples (breast and pancreas) from GTEx. All source code for Splitpea and the corre-
sponding analyses are available via Github (https://github.com/ylaboratory/splitpea),
with additional links to download all data and associated networks.

1.1. Prior work

Prior work considering domain-domain interactions in the context of splicing have mostly
focused on query-based or visualization interfaces. Many consider interactions at the isoform
level, aiming to provide a context-specific isoform interaction graph.16–18 There has been rel-
atively less work focusing on characterizing network rewiring events. Recently, the first tool
to characterize the mechanistic effects of splicing on downstream PPIs was proposed,19 but
this tool is unable to differentiate between the potential directionality of interaction rewiring
(likely gain or loss events). Specifically for the study of cancer, there has also been large-scale
analysis efforts to characterize the impact of splicing on PPIs across patients.8 Though this
work was not patient-specific, it provided strong evidence to demonstrate that there exists a
large catalog of isoform changes (with potential downstream impacts on PPIs and regulatory
networks) that exist independently of expression changes in cancer. Beyond using PPI net-
works, there have also been exciting efforts integrating cancer RNA-seq together with somatic
mutation data and using functional networks to interpret the downstream impact of splicing.20
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2. Methods

2.1. Protein interaction and domain interaction data

Human protein-protein interactions were downloaded from BioGRID (v4.4.207),21 DIP (2017-
02-05),22 HIPPIE (v2.2),23 HPRD (Release 9),24 Human Interactome (HI-II),25 IntAct (2022-
04-18),26 iRefIndex (v18.0),27 and MIPS (Nov 2014).28 All proteins were mapped to Entrez
Gene IDs.29

Known and predicted domain-domain interactions were downloaded from 3did
(v2017 06),11 DOMINE (v2.0),12 IDDI (2011.05.16),13 and iPFAM (v1.0).14 For predicted
DDIs, only interactions with confidence > 0.5 were used in downstream analyses.

Protein domain locations were translated to genomic locations using the Ensembl BioMart
API and the biomaRt R package30 and indexed using tabix31 to facilitate fast retrieval given
a set of genomic coordinates.

2.2. Tissue and tumor splicing data processing

Spliced exon values in the form of percent spliced in (PSI or ψ) were obtained for both normal
pancreas and breast tissue samples from the Genotype-Tissue Expression (GTEx) project and
pancreatic cancer and breast cancer samples from The Cancer Genome Atlas (TCGA) using
the IRIS database.32 IRIS uses rMATS33 to tabulate ψ values for skipped exon events (the
most abundant splicing event). Though we use rMATS ψ values in this study, Splitpea is
agnostic to the choice of upstream differential splicing analysis tool and can easily be applied
in concert with other tools that use a form of ψ as their quantification metric.34–37

Specifically, we delineate ψi as the ψ value for exon i = 1, ..., nE, where there are nE total
exons that had a reported exon skipping event. Note that the precise exons captured in the
sample of interest and the background samples are typically non-identical. We are only able to
estimate ψ for exons that are captured in both, and thus, nE represents the number of exons
that lie at the intersection of the two larger sets of exons. In the scenario where a background
reference distribution of ψ values are provided, we calculate ∆ψi as the following:

∆ψ
(s)
i = ψ

(s)
i − 1

nB

nB∑
b=1

ψ
(b)
i (1)

where ψ(s)
i is the ψ for exon i in our sample of interest s (e.g., a cancerous pancreatic sample

from TCGA), while ψ(b)
i is the ψ for the same exon i in an individual background sample b

(e.g., a normal pancreatic sample from GTEx), and nB is total number of background samples.
Intuitively, larger nB will provide better estimates of the background distribution, especially
if there is large variability in splicing patterns. We recommend assembling backgrounds with
at least nB ≥ 30 for the empirical cumulative density function estimate below.

ψ values lie in the range [0, 1]; thus ∆ψ ∈ [−1, 1], and we are naturally primarily interested
in significant events for large |∆ψ| values (cases where exons are significantly skipped or
significantly retained relative to reference). To calculate an estimated significance level for
|∆ψ(s)

i |, we rely on similar intuition as used in previous studies,8,38 that the normal reference
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samples can be used to construct an empirical cumulative density function for each exon:

F̂nE
(ti) =

1

nB

nB∑
b=1

1|ψ(b)
i |≤ti (2)

where 1A is the indicator function for event A. Given this exon-specific F̂nE
(ti), we can estimate

an empirical p-value for each exon i in sample s

p̂
(s)
i =

1

2
(1− F̂nE

(|∆ψ(s)
i |)) (3)

Finally, as input to Splitpea, we filtered exons to only those that are significantly different
from background (p̂(s)i < 0.05) and those with a ∆ψ change bigger than 0.05 (|∆ψ| > 0.05),
defined as ψ below. We chose to use a p-value cutoff here as opposed to a multiple hypothesis
corrected value to reduce false negatives, because we are interested in any possible rewiring
events. We hope that this will better enable Splitpea’s use for hypothesis generation tasks. In
general, these thresholds can be easily varied depending on the downstream purpose.

2.3. Clustering ∆ψ values

For each cancer type, we remove any exons that had missing values in any of the samples, then
filtered the exons by variance, keeping only those with variance greater than 0.01. The final set
of ∆ψ for each cancer type were clustered using the complete hiearchical clustering algorithm
and plotted with the heatmap.2 function in the gplots R package.39 Clinical annotations for
TCGA samples were obtained from the Genomic Data Commons portal with Pam50 calls
from Netanely et al.40

2.4. Network rewiring algorithm

There is inherent complexity in considering the impact of exon changes on protein domains,
and finally, proteins, as there are several many-to-many relationships. A single exon can include
multiple protein domains, but a single protein domain can also span multiple exons; proteins
can thus consist of multiple exons as well as multiple protein domains. Splitpea hones in on
potentially domain-mediated protein interactions by first overlaying DDIs on the aggregated
PPI network based on the presence of each of the domains that constitute the pair of interactors
in the protein. In other words, for a pair of proteins g1 and g2, we consider protein domain d1
in g1 and domain d2 in g2 as potentially mediating a known PPI between g1 and g2 if a DDI
has been reported between d1 and d2. Fig. 1A depicts an example interaction where several
DDIs potentially mediate the same PPI.

In the event that there are multiple exons within the same protein domain, we attribute
the minimum ∆ψ value to the entire protein domain. The underlying assumption here is
that loss of any portion of a particular protein domain may potentially negatively impact
the protein domain’s downstream capacity to interact with other domains. Splitpea then
determines the directionality of change based on whether or not there is consistency across
the changing domains. In the event that there are mixed exon changes, the directionality
is labeled as “chaos,” or undetermined (Fig. 1B). The weight of the edge is calculated as
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Fig. 1. Overview of Splitpea. Splitpea combines prior knowledge in the form of protein-protein and
domain-domain interactions with splicing changes to provide a view of a rewired network for a given
experimental context. Splitpea defines a rewiring event when exon changes affect an underlying
domain-domain interaction. Toy scenarios that would result in the three possible rewiring events
predicted by Splitpea are illustrated in B.

the mean domain-level ∆ψ values. Essentially, the following pseudocode describes the crux of
Splitpea’s algorithm for a given sample with a set of exons with associated ∆ψ values:

for each PPI between gu, gv do

Ψ(u) := significant exons for gene u

Ψ(v) := significant exons for gene v

D(u) := {du|du ∈ gu,∃ exoni s.t. exoni ∈ Ψ(u) & exoni ∈ du}
D(v) := {dv|dv ∈ gv,∃ exoni s.t. exoni ∈ Ψ(v) & exoni ∈ dv}
wuv := network rewiring edge weight between gu, gv
δuv := direction classification of network rewiring between gu, gv
for each DDI between du ∈ D(u), dv ∈ D(v) do

∆ψdu := min({∆ψi| exoni s.t. exoni ∈ Ψ(u) & exoni ∈ du})
∆ψdv := min({∆ψi| exoni s.t. exoni ∈ Ψ(v) & exoni ∈ dv})

if ∀du, dv ∈ DDI(du, dv), ∆ψdu > 0,∆ψdv > 0 then
δuv = positive

else if ∀du, dv ∈ DDI(du, dv), ∆ψdu < 0,∆ψdv < 0 then
δuv = negative

else
δuv = chaos

wuv =
1

|D(u)|+|D(v)|(
∑

d∈D(u) Ψ(u) +
∑

d∈D(v) Ψ(v))

return wuv, δuv
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wuv and δuv are reported as long as Ψ(u) or Ψ(v) is non-empty. Please note that the wuv
calculation only includes domains that have a DDI that is considered to be mediating the PPI
between gu, gv. For readability, the equation above omits the removal of non-DDI pairs.

2.5. Consensus network

The main factor to consider when aggregating several sample-specific Splitpea networks into
a consensus network is whether the directionality of edges agree. Thus, a “positive” consensus
network and “negative” consensus network are built separately. “Chaos” edges are ignored
since they are of ambiguous state. For each consensus network, two factors are considered for
the edge weight: the sum of the original edge weights wuv and how many networks support
the same directionality δuv. The downstream analysis with each consensus network focuses
on the largest connected component. As is common in biological networks, we found that
the largest connected component covers the majority of the edges of the complete consensus
network (breast cancer: 96.4% edges retained in negative consensus, 89.5% edges retained
in positive consensus; pancreatic cancer: 96.1% edges retained in negative consensus, 88.8%
edges retained in positive consensus).

2.6. Network embedding and clustering

To enable network clustering and other downstream uses of the Splitpea patient-specific net-
works, we created whole graph level embeddings. Here, we chose to focus only on potential
gain-of-interaction edges and first filtered each patient-specific network accordingly. Taking
the largest connected component, we applied the FEATHER41 algorithm from the KarateClub
NetworkX extension library42 to generate an embedding for each network.

We clustered the resulting embeddings for each cancer type using hierarchical density-based
clustering (HDBSCAN)43 with minimum cluster sizes of 10. Clustering results were generally
robust to the choice of the minimum cluster size parameter; 10 was chosen for downstream
interpretability (and we would consider samples with fewer neighbors as outliers). Final plots
were produced using principal component analysis (PCA), plotting all embeddings by their
first two components.

3. Results

3.1. Quantifying splicing changes in pancreatic and breast tumors

In total, we collected data from TCGA covering 177 pancreatic primary tumors and 1,088
breast primary tumors, together with 192 normal pancreatic tissue and 218 normal breast tis-
sue samples from GTEx that were used as a reference distribution of normal splicing variation
for each respective cancer type. With these data, we calculated a ∆ψ value corresponding to
the change in exon splicing in each tumor sample relative to its normal tissue background,
resulting in ∆ψ estimates for a total of 139,661 unique exons across all breast cancer samples
and 98,761 unique exons across the pancreatic cancer samples. Furthermore, we calculated an
accompanying p-value that compares how extreme the observed ψ value for each exon in each
cancer sample is relative to the corresponding background distribution of ψ values for normal
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tissue samples (see Methods).

3.2. ∆ψ values primarily reflect primary diagnoses

We then clustered the ∆ψ matrices for each tumor type and checked whether they corre-
sponded to relevant clinical and pathological tumor features for both breast cancer (Fig. 2A)
(pam50 subtypes, diagnosed type, pathologic stage, and age) and pancreatic cancer (Fig. 2B)
(site of origin, diagnosed type, pathologic stage, age, and sex). While the majority of clinical
features are not meaningfully clustered with ∆ψ values, we do observe that the most unique
patient cluster for pancreatic cancer (far right columns in Fig. 2B) are all pancreatic neuroen-
docrine tumors. Neuroendocrine tumors are a rare subset of pancreatic cancers that originate
not in the cells of the pancreas but in neuroendocrine cells. Interestingly, this cell type has
commonality with neurons which are known to undergo more splicing changes.44 For breast
cancer, we see some clustering of lobular carcinomas (red cluster in “type” bar Fig. 2A), but
otherwise do not see obvious patterns of clinical or pathological separation with ∆ψ values
alone.

−0.5 0 0.5

delta PSI

ex
on

s

A B

breast invasive carcinoma samples

pam50
type
stage
age
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site

pancreatic adenocarcinoma samples

age
stage
type

Fig. 2. Clustering on ∆ψ values. We cluster the ∆ψ values showing different sample groups for
different spliced exons. Heatmaps depict splicing changes relative to average normal tissue back-
ground. Bar columns show known clinical information about each sample. In general, there are more
subgroup level exon changes for breast cancer, (A) but these are not strongly correlated with any
clinical variable. In pancreatic cancer, a small subset of neuroendocrine samples (B, dark blue) share
similar splicing patterns. All other samples do not have obvious meaningful structure.
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3.3. Quantifying rewired protein-protein interactions for pancreatic and
breast tumors

We applied Splitpea to build patient-specific rewired PPI networks for 177 pancreatic and
1,088 breast primary tumor samples. Each PPI network contains three types of edges (gain,
loss, or chaotic (mixed)) based on how underlying splicing changes may affect the individual
protein-protein interaction (Fig. 3). In general, most splicing changes cause potential loss of
protein interactions, though breast cancer had relatively fewer loss of edges proportionally
on average (76% edges) than pancreatic cancer (84% of edges). Chaos (mixed) edges, where
domain interactions have inconsistent directions per protein are relatively uncommon and
comprise on average less than 2% of total edges for pancreatic and breast cancer. Between
the two cancer types, breast cancer has more potential gain-of-interaction edges and a lower
proportion of potential lost edges relative to pancreatic cancer. Interestingly, there is also more
variability across edge types per sample in breast cancer samples.

breast cancer pancreatic cancer

positive negative chaos positive negative chaos

0.00

0.25

0.50

0.75

1.00
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tio

n 
of

 e
dg

es

Fig. 3. Proportion of relative gain and loss in edges across breast cancer and pancreatic cancer
samples. Breast cancer samples have proportionally more “gain of interactions” than pancreatic
cancer samples, but in both cancer types, interaction loss is much more prevalent. For each TCGA
cancer sample, the proportion of edges gained versus lost is calculated using the total number of edges
in the largest connected component of the entire Splitpea rewired network (both directions) as the
denominator. To be conservative, the number of edges retained in the largest connected components
for the gain-only subnetwork and loss-only subnetworks are used as numerators.

Looking at individual patient networks (Fig. 4), we can see potential hubs and protein
clusters that undergo extensive remodeling. In Fig. 4A, we show an example of one pancreatic
tumor network with the most remodeling changes in the oncogene, RAB35, proto-oncogenes,
HRAS and FYN, the signaling protein, MAPK3, the cell cycle and growth genes, NEDD8 and
PRKAA1, among others. Breast cancer patient-specific networks have a different topology
(Fig. 4C), though there is also overlap of proto-oncogenes HRAS and FYN.
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A

B C

Fig. 4. Patient specific rewired networks. Here, we show two sample network outputs from Splitpea
and the accompanying exon value cutoff. The large network (A) depicts pancreatic patient sample
(TCGA-HZ-7918-01A-11R-2156-07), with edge losses in red and gains in blue. The corresponding
volcano plot is shown in (B), where exons with significant ∆ψ (p̂ < 0.05) as well as absolute change
(|∆ψ| > 0.05) are shown in red. Box (C) shows a patient-specific network for an example breast
cancer sample, TCGA-BH-A0BG-01A-11R-A115-07, which exhibits a very different topology from
the pancreatic sample in A.

3.4. A consensus network of changes across breast cancer patients

While patient-specific networks highlight network rewiring at the level of individual tumor
samples, we also sought to look for more general cancer level patterns of PPI rewiring. Towards
this end, we assembled a consensus rewiring network for breast cancer by taking splicing
rewiring events conserved across 80% of patient samples and assembling a meta-network of
these events. Edges were only preserved when their type (gain, loss) was consistent. Chaos
edges were not included in the consensus network. Naturally, as the threshold increases, the
number of genes preserved in the network decreases (Fig. 5A). Interestingly, up through the
80% threshold, gained edges are relatively more consistently preserved (Fig. 5B). Visualizing
the breast cancer consensus network (Fig. 5C) revealed that the most gained interaction
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Fig. 5. Meta-network of breast cancer patients. The line graphs show the number of nodes preserved
for different consensus thresholds (A) or the proportion of nodes relative to the non-thresholded
consensus network (B) for edge loss (negative, red) and edge gain (positive, blue) events. The dashed
line in both graphs denotes a threshold of 80%, corresponding to the visualization of the consensus
network of splicing rewiring events conserved across 80% of breast cancer patient samples (C, red:
edge loss; blue: edge gain).

involved the gene, FKBP5, which is an immune regulator responsible for protein trafficking
and folding. This protein has been studied in breast cancer for its various hormone receptor
signaling functions.45

3.5. Network clusters reveal novel patient subgroups

The patient-specific networks generated by Splitpea have many downstream applications,
especially when the networks are used as features for other machine learning tasks. Here,
we demonstrate their utility by finding patient subgroups across both breast and pancreatic
cancer when the networks are clustered (Fig. 6). Specifically, we use a state-of-the-art graph
embedding method, FEATHER,41 which calculates characteristic functions using different
random walk weights for node features, but any graph embedding method could be used
for this type of analysis. For each cancer type, we clustered the network embeddings using
HDBSCAN (see Methods). Interestingly, three distinct groups emerged across the cancer
types (Fig. 6A). The dominant source of variation across the networks is the gain or loss of
PPIs involving KRAS (Fig. 6B). Mutations in KRAS are known to affect subgroups of both
pancreatic and breast cancer46 with ties to prognosis. It is possible that splicing changes in
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interacting partner genes also induce changes to KRAS that may have yet unknown interaction
effects with these somatic mutations, highlighting the potential of Splitpea to find additional
disease subtypes. Furthermore, other interesting cancer drivers have distinct patterns of gains
and losses, including RAB5A, which appears to have PPI gains in the BRCA outliers, and
IKBKB, which is enriched for gains in the predominantly pancreatic cancer cluster 3.
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Fig. 6. Splitpea networks cluster into distinct subgroups. (A) PCA plots of graph embeddings of
each patient-specific Splitpea network, with samples colored by either cancer type (left) or cluster
(right). Clusters were assigned using HDBSCAN, with outliers colored in grey. (B) For each cluster,
the top nodes undergoing the most changes (mean interactions gained or lost) were also identified.
The bar graphs are roughly separated by genes that have the most gain of interactions (left) versus
those that have primarily losses (right). Interestingly, the main variation captured in PC1 seems
to be defined by networks that change in KRAS. Other cancer driver genes also undergo distinct
patterns of gains and losses that drive clustering patterns.
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4. Discussion and conclusion

We present a new method, Splitpea, for characterizing protein-protein network rewiring events.
Splitpea is flexible and can be applied with different background contexts to highlight splicing
changes between a disease and relevant background context of interest. We applied Splitpea
to breast and pancreatic cancer samples to highlight the potential of Splitpea to find new and
relevant cancer biology, both on an individual patient sample level and more broadly across
samples of a single tumor type. To our knowledge, Splitpea is the first systematic method for
identifying both potential gains in addition to PPIs lost for individual experimental samples.

Splitpea makes heavy use of existing knowledge of protein-protein interactions. Because
of this, our method is inherently limited by the availability of known PPIs (which are largely
incomplete), as well as DDIs, which are even less complete. As more of these are experimentally
characterized, Splitpea will continue to improve, capturing more accurate and comprehensive
sets of network rewiring events. Since we wrote Splitpea to be modular, updates to PPIs and
DDIs can be easily integrated once they become available. Specifically, study bias is a well-
reported issue in PPIs, and thus there is a large amount of overlap between well-studied nodes
(including many cancer driver genes) with nodes of high degree in PPI networks, and given
the dependency of Splitpea on reported PPIs, this also affects our results. As more systematic
experimental PPI screens and more reliable PPI predictions become available, we can also
readily adapt Splitpea.

We have only scratched the surface of cancer biology here. In our initial exploration of
breast and pancreatic cancer, we have discovered subgroups and outliers within each cancer
type that can be characterized by different network hubs. We believe this merits more thorough
exploration, as it may carry important implications for precision medicine efforts. Beyond
this, it will also be interesting to apply Splitpea to more cancer types and look for pan-cancer
conservation patterns.

Acknowledgments

This work was supported by the Cancer Prevention & Research Institute of Texas (RR190065).
VY is a CPRIT Scholar in Cancer Research.

References

1. Q. Pan, O. Shai, L. J. Lee, B. J. Frey and B. J. Blencowe, Deep surveying of alternative splicing
complexity in the human transcriptome by high-throughput sequencing, Nature Genetics 40,
1413 (December 2008).

2. E. T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S. F. Kingsmore, G. P.
Schroth and C. B. Burge, Alternative isoform regulation in human tissue transcriptomes, Nature
456, 470 (November 2008).

3. D. L. Black, Protein diversity from alternative splicing: a challenge for bioinformatics and post-
genome biology, Cell 103, 367 (October 2000).

4. T. W. Nilsen and B. R. Graveley, Expansion of the eukaryotic proteome by alternative splicing,
Nature 463, 457 (January 2010).

5. X. Yang, J. Coulombe-Huntington, S. Kang, G. M. Sheynkman, T. Hao, A. Richardson, S. Sun,
F. Yang, Y. A. Shen, R. R. Murray, K. Spirohn, B. E. Begg, M. Duran-Frigola, A. MacWilliams,

Pacific Symposium on Biocomputing 2024

590



S. J. Pevzner, Q. Zhong, S. A. Trigg, S. Tam, L. Ghamsari, N. Sahni, S. Yi, M. D. Rodriguez,
D. Balcha, G. Tan, M. Costanzo, B. Andrews, C. Boone, X. J. Zhou, K. Salehi-Ashtiani, B. Char-
loteaux, A. A. Chen, M. A. Calderwood, P. Aloy, F. P. Roth, D. E. Hill, L. M. Iakoucheva, Y. Xia
and M. Vidal, Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing,
Cell 164, 805 (February 2016).

6. F. E. Baralle and J. Giudice, Alternative splicing as a regulator of development and tissue
identity, Nature Reviews. Molecular Cell Biology 18, 437 (2017).

7. M. M. Scotti and M. S. Swanson, RNA mis-splicing in disease, Nature Reviews. Genetics 17, 19
(January 2016).
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