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Advancements in medical imaging and artificial intelligence (AI) have revolutionized 

the field of cardiac diagnostics, providing accurate and efficient tools for assessing cardiac 

function. AI diagnostics claims to improve upon the human-to-human variation that is 

known to be significant1–3. However, when put in practice, for cardiac ultrasound, AI models 

are being run on images acquired by human sonographers whose quality and consistency 

may vary. With more variation than other medical imaging modalities4,  variation in image 

acquisition may lead to out-of-distribution (OOD) data and unpredictable performance of 

the AI tools. Recent advances in ultrasound technology has allowed the acquisition of both 

3D as well as 2D data, however 3D has more limited temporal and spatial resolution and is 

still not routinely acquired5. Because the training datasets used when developing AI 

algorithms are mostly developed using 2D images, it is difficult to determine the impact of 

human variation on the performance of AI tools in the real world. The objective of this 

project is to leverage 3D echos to simulate realistic human variation of image acquisition 

and better understand the OOD performance of a previously validated AI model2. In doing 

so, we develop tools for interpreting 3D echo data and quantifiably recreating common 

variation in image acquisition between sonographers. We also developed a technique for 

finding good standard 2D views in 3D echo volumes. We found the performance of the AI 

model we evaluated to be as expected when the view is good, but variations in acquisition 

position degraded AI model performance. Performance on far from ideal views was poor, 

but still better than random, suggesting that there is some information being used that 

permeates the whole volume, not just a quality view. Additionally, we found that variations 

in foreshortening didn’t result in the same errors that a human would make. 
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1.  Introduction 

Echocardiography, or cardiac ultrasound, is the most prevalent imaging modality6. Cardiac 

ultrasound is able to provide an accurate, noninvasive views of the heart in real time with limited 

equipment and with high temporal resolution7. In traditional transthoracic echocardiology, a 

sonographer will acquire 2D images and videos of the heart in standard orientations or views. Two 

standard views are the apical four chamber (A4C) and apical two chamber (A2C) views which are 

both views taken along the major axis of the heart from its apex. These views are crucial for 

assessing cardiac function, diagnosing heart failure and cardiac hypertrophy1,6,8–15. These two views 

are in theory only separated by a probe rotation of roughly 60 degrees, however this depends on 

sonographer judgement for the view quality and probe placement. 

Recent advances in ultrasound technology have increased the temporal and spatial resolution of 

images acquired. Wide field of view allows for 3D images to be acquired with the same probes and 

hardware, however at lower resolution7,8. In addition to the standard TTE views, sometimes 

additional 3D images are acquired to better characterize complex cardiac structures and provide 

holistic evaluates of cardiac form and function. Focused images of the heart valves as well as the 

left ventricle can be used to accurately assess metrics that might be challenging to measure in 2D 

images.  

One example of acquisition error in 2D images is foreshortening, where inappropriate or 

suboptimal images of the left ventricle can cause overestimation of the cardiac function16,17. Apical 

views depend on being placed near the apex of the left ventricle, which should not contract in, 

however off-axis foreshortened views will show contraction of the left ventricle that exaggerate the 

left ventricular function. The result of this error is the underestimate of LV volume at systole and 

ultimately an overestimate of ejection fraction17. Although foreshortening is known to be a common 

source of measurement error, it is difficult to know how prevalent it is because it is difficult to 

quantify foreshortening in 2D images. There have been attempts to automatically detect 

foreshortening using machine learning or other algorithms16,18,19. These algorithms need to be run 

in real-time on the ultrasound machine or trained on other modalities limiting their practicality. 

Although adding 3D acquisitions to a study may add value in these cases, it also takes additional 

time and training. The result is that 3D echo images are much less prevalent. In the Cedars Sinai 

Medical Center (CSMC), apical 3D echo images are outnumbered by other video acquisitions 

roughly 11,000 to 1 making 3D echo datasets of reasonable size rare. 

There is a large, and quickly growing, body of research dedicated to AI in medicine and 

specifically cardiology. Several models aim to automate echo measurements or diagnosis1–3,20. 

These models show promise in revolutionizing how echocardiology is performed. Because of the 

large disparity in prevalence of 2D vs 3D echos and the often-proprietary data format of 3D images, 

AI models in this field are almost exclusively trained and evaluated on 2D TTE images. 2D datasets 

curated in this way contain only images acquired by human sonographers in specific views and do 

not span the full distribution of possible echo images.  

It is known that machine learning models can perform unpredictably on out of distribution data21. 

Training methods including data augmentations that translate, rotate and resize images attempt to 

broaden the coverage of the datasets and mitigate these risks. But these augmentations can only 

simulate the transformation of an image constrained to the 2D plane. Real ultrasound acquisitions 

can include rotations and translation in 3D. One of the main goals of AI in medicine is the mitigation 

of human error. For models that do not perform well with 3D view transformations, the performance 

of the model could be strongly dependent on the sonographer’s acquisition quality. 
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In this research, we propose methods for evaluating AI model performance on off-axis views by 

introducing realistic 3D spatial transformations to the acquisition plane in 3D volumes. Although 

3D echos remain relatively rare in the CSMC system, searching over 16 years, we curated a dataset 

of 1,528 apical 3D images. Through reverse engineering, we were able to decode the Phillips 3D 

DICOM data format these images are stored in. We developed functions for slicing 3D data into 2D 

images and simulating realistic transformations that could be introduced by sonographer motion. 

We use a deep learning image view classifier, trained specifically for this task, to find the ideal view 

to compare performance vs. distance from ideal view. 

To test these methods, we chose to evaluate the EchoNet-Dynamic model1 for measurement of 

left ventricular ejection fraction (LVEF) as the downstream tasks. LVEF is the ratio of the diastolic 

LV volume to the systolic LV volume as a percentage of volume ejected. It is an important 

measurement for assessing cardiac function and heart failure11,22,23. Typically, LVEF measurements 

are made by tracing the LV for systolic and diastolic frames in an A4C view video. EchoNet-

Dynamic is a ResNet derived regression model that was trained on 144,184 videos from SHC. These 

images are primarily of the apical-4-chamber and apical-2-chamber views. It has been well validated 

on external datasets and even a randomized clinical trial2. We evaluate the performance of this 

model on synthetically produced 2D images with simulated probe rotation, translation, and 

foreshortening to draw conclusions about the robustness of this model in the real world and 

dependence on view quality. 

2.  Methods 

To realize the impact of this research, several challenges were to be overcome. One of the largest 

challenges is simply working with 3D echo. To be able to make use of the 3D echo data, we first 

needed to pull the DICOM images from the hospital dataset, reverse engineer the proprietary data 

format, and develop tools for interpreting and slicing 3D volumes. The next crucial step was to align 

the 3D volumes along standard views so that they could be analyzed together. This was done using 

a view classifier that we trained just for this project. Finally, we evaluate the performance of the 

EchoNet EF prediction model. 

2.1.  Working With 3D Echo 

The 3D echo dataset used in this research is a subset of all of the echos in CSMC’s database 

between 2012 and 2022, nearly 15 million images. Of these images, 1,349 of these are 3D 

acquisitions taken in the apical position. The apical 3D echos were used because of their ability to 

generate A4C and A2C 2D views with relatively benign artifacts from the slicing process. All 3D 

echos were captured on Philips EPIQ CVx ultrasounds. A breakdown of the relative size relevant 

factors for the CSMC 2D and 3D datasets can be found in Table 1. 
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Table 1. Breakdown of CSMC image types from 2006-2022 

Dataset N Studies N Images Mean EF Frame Rate Acquisition Duration 
All Echos 369,306 14,922,383 69.10% 26.42 fps 2.75 seconds 
3D Apical Echos 1528 1,349 56.26% 18.32 fps 2.81 seconds 

Like standard 2D echos, 3D echos are stored in DICOM format. Unlike 2D echo, the data stored 

in the “pixel data” tag in the DICOMs is only a snapshot of the volume that the sonographer chose 

to capture and not the full 3D echo data. The full data is stored in a proprietary compressed format 

under other tags that we were able to reverse engineer. The decompressed data consists of voxel 

data and physical bounds for the captured volume. Unlike voxel data captured in MRI and 3D 

formats, this voxel data is not rectilinear - instead it is defined by a spherical coordinate system, as 

shown in figure Fig. 1. This coordinate system is parameterized by one linear dimension (ρ), and 

two rotational dimensions (φ and 𝜃). For each of these axes, the physical bounds given in the 

DICOM define a section of a sphere containing the scanned region that called the frustum. For 

convenience, we will also be using a 3D cartesian coordinate system with the origin at the probe on 

the surface of the skin and the x axis pointing parallel to the probe into the body. 

To generate 2D slices of 3D videos, we must first define points on a plane corresponding to the 

2D view that we wish to sample. Although there are many degrees of freedom and ways to slice a 

3D volume, we decided to constrain our slices to just 4 degrees of freedom to ensure relatively 

Fig. 1. Diagram showing the 3D world and spherical 
coordinate systems. 
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realistic looking slices and clinical relevance. We first define a square region on the x-y plane 

centered at the center of the volume and whose width is the max width of the volume to ensure that 

any slice will be centered and reasonably zoomed. We rotate this plane around the x-axis and then 

translate it forward or backward through the volume. A translation of 1 corresponds to all the way 

forward through the volume and -1 corresponds to all the way backward through the volume. 

Translations of roughly -0.5 to 0.5 result in reasonable slices. Two additional degrees of freedom 

were added to simulate foreshortening. A horizontal axis is defined on the plane and the slice is 

rotated forward or backward. We found that an axis location of 30% from the top of the plane to the 

bottom is reasonable for simulating foreshortening in our dataset. 

Once we have defined the plane that we wish to slice, we then define a grid of points on that 

plane resulting in an array with a shape of (n, m, 3) where the last dimension contains the XYZ 

location of each point. We then transform these points into spherical coordinates using the following 

equations resulting in an array with the same shape but whose last dimension contains 𝜌, 𝜑, 𝜃. 

 

𝜌 = √𝑥2 + 𝑦2+𝑧2 

𝜑 = 𝑡𝑎𝑛−1 (
𝑧

𝑥
) 

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

√𝑥2+𝑧2
) 

Eq. 1 

Because the spherical coordinates are aligned with the voxel data, we can obtain the voxel 

indices for each point on the plane by simply renormalizing them using the volume bounds.  

 

𝑖 =
𝜌 − 𝜌𝑚𝑖𝑛

𝜌𝑚𝑎𝑥 − 𝜌𝑚𝑖𝑛
 

𝑗 =
𝜑 − 𝜑𝑚𝑖𝑛

𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛
 

𝑘 =
𝜃 − 𝜃𝑚𝑖𝑛

𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛
 

Eq. 2 

To generate a 2D image all we need to do is round each index to the nearest integer and lookup 

its value in the voxel data. Any indices out of bounds of the volume result in an intensity of 0. 

Although this sampling method works, the relatively low-resolution voxel data results in voxel 

artifacts due to the relatively low resolution of 3D data. To mitigate this problem, we implemented 

trilinear interpolation between voxels which results in much smoother images as shown in Fig. 2. 
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2.2.  View Classifier 

With the slicing algorithm that we developed, we are able to accurately simulate the motion of 

a human moving a probe around a heart, but to characterize a particular view as being a quantifiable 

rotation and translation away from an optimal view, we need to first define the optimal view. To do 

this we trained a 2D image view classifier on a standard 2D echo dataset of known standard views. 

This dataset contains 30,045 echo videos labeled as A4C, A2C, PLAX, Subcostal, or Other views 

from Stanford Healthcare (SHC). The breakdown of label frequencies can be found in Table 2. 

During training, random frames are selected from videos in the dataset. Because when running 

inference on the 3D dataset this model would encounter images unlike anything in the training 

dataset, we attempted to increase the coverage of the training dataset by adding random mirroring 

augmentation and additional labels for mirrored A4C, A2C, PLAX and Subcostal. We used a 

ResNet1824 image classifier architecture and cross-entropy loss to train the view classifier. The view 

classifier achieved an AUC of 0.997 for both A4C and A2C views on the SHC test set. 

 
Table 2. Distribution of labels in the view classifier training dataset. 

View N Total N Train N Val N Test 
A4C 5,036 4,054 499 483 
A2C 3,224 2,577 318 329 
PLAX 4,059 3,239 403 417 
Subcostal 2,726 2,166 283 276 
Other 15,000 12,000 1,500 1,500 

Fig. 2. The impact using trilinear interpolation when generating 2D slices 
from 3D echo. 
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2.3.  EF Inference 

The EchoNet model we evaluated has been shown to be accurate on several datasets and even 

in a randomized clinical trial situation, but it is not known how sensitive it is to small changes in 

view quality due to poor probe placement and foreshortening. 

We addressed this problem by running inference on slices of 3D volumes while varying the 

rotation, translation and foreshortening from the ideal view. For each 3D volume, we ran both EF 

and view inference on every combination of translations -0.5 to 0.5 and rotation 0 to 360 degrees. 

After the best A4C slice, we introduced foreshortening to this view, -40 to 40 degrees, and ran EF 

inference again. With these results, we were able to draw conclusions about the performance of the 

EF model as a function of rotation, translation, and foreshortening from the ideal A4C view. 

3.  Results 

We constrained the slice degrees of freedom to rotation and translation and generated view and 

EF predictions for every combination of rotation and translation. These predictions were then plotted 

as a 2D image that summarizes how the model predictions change as the slices are rotated and 

Fig. 3. Phase diagram showing A4C EF prediction and view activation for 
every combination of rotation and translation. The human measured EF for this 
patient is 66%. 

Fig. 4. MAE performance across dataset as view is rotated and translated. 
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translated shown in Fig. 3. In these plots we can see that regions of high activation for A4C 

correspond to regions of more accurate EF predictions. The point of maximum A4C activation on 

this plot for each example is considered to be the optimal view for subsiquent analysis. 

 

 

When EF inference was run on optimal view slices, the mean absolute error (MAE) was 7.3 

(7.0-7.7%). Although this is worse than the claimed performance of this model (6.3% comparing 

model to human or 2.8% comparing model to final value in clinical trial)2, it is consistent with 

interobserver variability and the variability between 2D and 3D echo4,25. As shown in Fig. 4, when 

we introduce either rotation or translation to the slice, the error increases. The MAE for rotation 

increases to 10.9% (10.6-11.1%) while the MAE for translation increases to 14.7% (14.6-14.9%) 

suggesting that there is more information being used near the center of the volume than near the 

edges as represented by slices with larger translation error.  

 One characteristic we noticed was a relatively high frequency of low error, regardless of view 

quality, especially for patients with near normal EF. This led us to hypothesize that when faced with 

a poor view, the model makes a guess near the mean of the dataset. We investigate this hypothesis 

by looking at the prediction trends in various situations. In Fig. 5, we compare the EF prediction 

distributions of 90-degree rotations and translations of 0.5 to the ideal view slices. We can see that 

when the view is near ideal, the distribution is relatively tight, and centered around zero. For both 

introduced rotation and translation, we see that the distributions are shifted to the left, corresponding 

to underestimates of EF on poorly oriented views. This underestimate cannot be explained by a 

difference in mean LVEF for the EchoNet training set compared to our 3D dataset. Both datasets 

have mean LVEF values of roughly 55%1. 

Fig. 5. EF Error distribution for best view, 90 degrees of 
rotation, and a translation of 0.5. 
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We also analyzed the subset of patients with human measured EF of greater than 70% and the 

subset of EF less than 30%. In these subsets, the increase in MAE due to introduced rotation and 

translation is much greater as shown in Fig. 6. This is because for patients with extremely abnormal 

EF, the model is not able to achieve high accuracy predictions when the view is poor by predicting 

a value near the mean. For these patients, this effect is stronger than the tendency of the model to 

underpredict. Therefore, for patients with an LVEF < 30%, the model tends to overpredict EF when 

the view is poor. An interesting consequence of these two effects is that for low EF patients, there 

is a threshold where increasing translation decreases error because low EF predictions are nearer to 

the human measurements for these patients. Fig. 7 illustrates how EF and A4C predictions vary with 

rotation and translation for a patient with a high human measured EF.  

When looking at foreshortening specifically, we might expect the model to overpredict EF if it 

calculates EF in the same way as human sonographers, but we see a similar trend as with rotation 

and translation. This suggests that when predicting EF, the AI model is not segmenting the LV and 

calculating LV volume to determine EF the way a sonographer would. Fig.  shows the results for 

varying foreshortening from ideal views.  

Fig. 6. EF model performance for the >70% and <30% EF subsets. 
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4.  Discussion 

This work demonstrates how 3D echos can be used to evaluate the performance of AI models 

on realistically out-of-distribution data that these models would likely encounter in real world 

applications. Understanding distribution shifts and model performance in real world applications 

may be necessary to understand how AI truly performs in clinical practice, a major barrier in AI 

research adoption in medicine26,27. We presented the methods used for interpreting and utilizing 3D 

a. 

Fig. 7. Example slices and predictions for a range of (a.) rotations and (b.) 
translations for a selected example volume. 

b. 

Fig. 8. Performance figures for slices with introduced foreshortening. 
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echo data and evaluated the performance of an established AI model predicting LVEF with these 

methods. 

We found that the EF model we evaluated performed well when the ideal slice is viewed, but 

error increases as we introduce rotation, translation, or foreshortening. The overall behavior of the 

model when subjected to OOD data is to guess a value, usually a little below the mean of the training 

dataset. This overall result of this is a tendency to underestimate EF when the view is poor. The 

model tends to overpredict EF for patients with very low EF and underestimate EF for patients with 

very high EF. These trends extent to foreshortening where humans would overestimate EF. 

Although it makes intuitive sense for the model to guess somewhere near the mean of the dataset 

when faced with OOD data, the mechanism causing underestimates for OOD data would require 

further investigation to explain. We hypothesize that the model is gauging the overall amount of 

motion in the heart to predict EF and for poor views there is a lack of apparent motion, thus the 

videos look more similar to ones of patients with low EF.  

The performance of the EF model even on ideal view slices from 3D echo has lower performance 

than on 2D videos in prior work. There are several factors that may contribute to this error. First, 

3D echo has fundamentally lower spatial and temporal resolution. While the frame rate of standard 

2D echos is usually around 30-50 frames per second, 3D echos are much slower, in the range of 13-

24 frames per second, with higher framerates associated with lower spatial resolution. Second, the 

3D dataset might be comprised of a different distribution of patients than the general population due 

to selection bias for patients needing additional 3D echos. This is likely, given the average EF of 

the 3D dataset is 13% lower than the overall CSMC population. Finally, the view classifier we use 

to find the “ideal” slice is not perfect. It is trained on a dataset of human acquired images that aren’t 

always perfect. Our classifier also only has 4 standard views when in reality there are many more 

views and several different views may have been grouped together under “A4C”. Like the EchoNet 

model, the view classifier was only trained on 2D images and performance on OOD 3D slices might 

not be reliable. This would result in the ideal slice for predicting EF not being found. 

There is significant opportunity for future research in this field with the use of 3D echo data. An 

improved view classifier would allow more accurate identification of ideal view orientation. For 

models trained on clinical 2D datasets, like the EchoNet-Dynamic dataset, it is difficult to quantify 

the amount of foreshortening and perturbances present. Future work could use 3D echo data to train 

a model that is able to predict the amount of foreshortening or perturbance in a 2D slice. This would 

allow us to retrospectively evaluate the view quality and distribution of datasets models are trained 

on. Additionally, with better tools to simulate and evaluate 3D distribution shifts, there is an 

opportunity to develop new data augmentations and normalization techniques addressing the spatial 

nature of echocardiology. Ultimately, as 3D echo data becomes more prevalent, future models could 

use these techniques to train on 2D slices of 3D data in addition to standard 2D views. These 

proposed methods would further our understanding and improve the robustness of AI models in 

echocardiology. 

When black box AI models are deployed in healthcare, clinicians may have no sense of whether 

a model is performing within its operating domain and could lead to either overreliance or mistrust 

of the AI. In this study, we show how relatively subtle changes to the input data can significantly 

impact model performance. This has significant impact as with more AI models getting integrated 

into healthcare systems, it is important to consider how the deployment environment can be different 

from the environment they were trained and validated in. We show how identifying, simulating, and 
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evaluating these hypothetical distribution shifts can lead to a better understanding of our AI systems 

and their performance in the real world.  
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