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The availability of multiple publicly-available datasets studying the same phenomenon has the 

promise of accelerating scientific discovery. Meta-analysis can address issues of reproducibility 

and often increase power. The promise of meta-analysis is especially germane to rarer diseases like 

cystic fibrosis (CF), which affects roughly 100,000 people worldwide. A recent search of the 

National Institute of Health’s Gene Expression Omnibus revealed 1.3 million data sets related to 

cancer compared to about 2,000 related to CF. These studies are highly diverse, involving different 

tissues, animal models, treatments, and clinical covariates. In our search for gene expression 

studies of primary human airway epithelial cells, we identified three studies with compatible 

methodologies and sufficient metadata: GSE139078, Sala Study, and PRJEB9292. Even so, 

experimental designs were not identical, and we identified significant batch effects that would have 

complicated functional analysis. Here we present quantile discretization and Bayesian network 

construction using the Hill climb method as a powerful tool to overcome experimental differences 

and reveal biologically relevant responses to the CF genotype itself, exposure to virus, bacteria, and 

drugs used to treat CF.  Functional patterns revealed by cluster Profiler included interferon 

signaling, interferon gamma signaling, interleukins 4 and 13 signaling, interleukin 6 signaling, 

interleukin 21 signaling, and inactivation of CSF3/G-CSF signaling pathways showing significant 

alterations. These pathways were consistently associated with higher gene expression in CF 

epithelial cells compared to non-CF cells, suggesting that targeting these pathways could improve 
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clinical outcomes. The success of quantile discretization and Bayesian network analysis in the 

context of CF suggests that these approaches might be applicable to other contexts where exactly 

comparable data sets are hard to find. 

Keywords: Cystic Fibrosis, Bayesian Network, Data. 

a This work was supported by funding from the Cystic Fibrosis Foundation to B.A.S. 

(STANTO19G0, STANTO20P0, STANTO23R0 and STANTO19R0), the National Institutes of 

Health to B.A.S (P30-DK117469 and R01HL151385) and the Flatley Foundation. 

1. Introduction

Worldwide initiatives are currently discussing the principles of acquiring, standardizing, 

storing, and making scientifically produced data accessible for reuse. However, one of the key 

difficulties is addressing the heterogeneity of the data, which is called batch effects. These 

batch effects occur when we compare multiple datasets obtained from different laboratories, 

platforms, or processed at different time points. These internal differences can lead to 

misinterpretations of the results and it is not only a common issue in omics data analysis but in 

many cross-study comparisons.1,2 In recent years, there has been increasing consideration of 

batch effects in data analysis and several approaches have been proposed to address them.3 The 

simplest way to handle batch effects is to include them in the statistical model during analysis. 

Other approaches involve estimating and creating a new dataset adjusted by batch effects, to 

perform the statistical analyses.4 However, it is important to note that this technique can reduce 

statistical power, particularly when the batch-group is unbalanced, meaning that batch 

differences may be influenced by group differences. This correction can either diminish group 

differences or introduce new batch effects due to errors in batch effect estimation that may be 

inflated by false positives.5 

Cystic fibrosis (CF) is a recessive genetic disorder characterized by alterations in 

electrolyte transport across polarized epithelia resulting from mutations in the CF 

transmembrane conductance regulator gene (CFTR).6 Numerous studies on CF have identified 

similarities or specific gene signatures that are closely related.7,8 However, the amount of 

available transcriptomic datasets for reanalysis and comparison is continually growing.9 

Integrating data from diverse sources can provide a more comprehensive understanding of 

underlying biological processes that may not be evident from individual studies alone, 

especially when dealing with multiple conditions and distinct variables.10 The Meta-analysis 

instrument of individual microarray studies on CF can help assess the connections between 

respiratory disorders at the transcriptomic level and provide insights for pathway analysis, but 

deal with several conditions like: usage of antibiotics, type of mutations, infections by virus or 

bacteria.10 

Meta-analysis is a statistical tool that allows the analysis of results from different scientific 

studies conducted in different locations or by using different methods.11 In the late 1990s, 

network meta-analysis (NMA), also known as multiple-treatments or mixed-treatment 

comparison meta-analysis was introduced as an extension to standard meta-analysis12. NMA 

can compare multiple treatments simultaneously, even when direct comparisons are lacking in 
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existing studies.12 One systematic review of NMA methods found that around two-thirds of 

NMA studies utilized a Bayesian approach.13 The Bayesian network (BN) models are 

promising in the medical field because they represent the relationships between variables based 

on real-world, making them more contextually meaningful than purely numeric associations14 

It has been used in various areas of medical science and can include different types of 

variables, such as clinical, diagnosis, prognosis, and symptoms.15 This versatility allows 

researchers to integrate prior beliefs with sample data and BN analysis has recently been 

utilized in epidemiology, public health, and medicine.13,16 On the other hand, there is limited 

knowledge about BN meta-analysis, which may be attributed to researchers' lack of 

understanding or familiarity with Bayesian methods. Nevertheless, there is significant potential 

for the application of BN meta-analysis in medicine.12 

Standard meta-analysis only allows for comparing two interventions at a time, whereas BN 

Meta-analysis enables the inclusion of evidence from both direct and indirect comparisons in a 

single analysis.12 However, BN analysis interpretations still require specific assumptions for 

accuracy of the algorithm learning and interpretation of network structure, making it a 

challenging task.17 To address these issues inherent in Meta analysis, our study proposes a 

novel approach to pairing multiple transcriptomic datasets by quantile discretization and 

integrating metadata variables in a new BN Meta Transcriptomic analysis. This approach aims 

to provide new and valuable insights into understanding the complexities of a multifactorial 

disease like CF. 

2.  Methods 

2.1.  Data Selection 

We accessed datasets available in the Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/) by searching the keyword "cystic fibrosis". A total of 17 

datasets were returned by this query, which was performed in November 2022. Nine datasets 

were excluded from further analysis due to methodological incompatibility or insufficient 

metadata, which involved the use of different cell tissues or experimental designs and did not 

measure the same patients variables. We retrieved metadata for these three studies. Three of 

these studies measured gene expression in airway epithelial cells. The first dataset 

(PRJEB9292), published by Balloy et al.,18 included both non CF and CF epithelial cells 

infected with Pseudomonas aeruginosa for different time points. The second dataset 

(GSE139078) 19 involved epithelial cells from CF patients infected by Rhinovirus or control 

and treated with Ivacaftor or Lumacaftor/ivacaftor, modulator drugs used to enhance the 

functional of CFTR. The third study20 included two datasets: a pilot dataset with 13 samples 

and a validation dataset contained 35 samples. All datasets provided patient genotype, 

modulator information, and infection status with either Pseudomonas aeruginosa or 

Rhinovirus. 

2.2.  Data Harmonization and Analysis 

The metadata description included means and standard deviation for numeric variables and 

frequencies and percentages for categorical data. RNAseq datasets were individually 
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normalized by library size and log CPM (count per million) transformation and differential 

expression analyses were performed individually for each dataset using deseq2.21 In the Balloy 

dataset, we compared CF vs. non-CF infected or not infected with Pseudomonas aeruginosa; in 

the De Jong dataset, CF epithelial cells infected with virus or not infected with virus; and in the 

Salas dataset, epithelial cells of CF patients compared to non-CF subjects. In this exploratory 

design, the DEGs were used to filter the large number of targets, and they were determined by 

applying specific criteria: genes with a P-value less than 0.05 and a log2 expression fold 

change greater than 1 or less than -1 were considered as differentially expressed. These criteria 

were chosen to serve as a filter and help reduce processing time. Each study was normalized 

individually, and each gene was discretized according to sample distributions. The count table 

with filtered genes were discretized into quartiles (1st - Minimal to 25%, 2nd - 25% to 50%, 

3rd - 50% to 75%, and 4th - 75% to maximum values by sample distribution) using 

Hartemink's algorithm, which is available in the bnlearn package.22,23 Afterward, all the 

transformed transcriptomic datasets were merged into a single discretized dataset, to which 

metadata was added. The learning algorithm used to establish the Bayesian network structure 

was based on the heuristic Hill climb method.24,25 Bayesian network learning was used to 

visualize conditional dependencies between multiple clinical and transcriptome variables.26 

The dependencies are represented qualitatively by a directed acyclic graph where each node 

corresponds to a variable and a direct arc between nodes represents a direct influence. 

Robustness of the arcs was scored by a non-parametric bootstrap test (100×replicates).27 For 

functional analysis of genes related to CF, virus infection, bacterial infection, and use of 

modulators, enrichment pathway analysis was performed using the clusterProfiler package and 

REACTOME geneset.28,29 For the Pathway meta-analysis we use the qusage package.30 All 

analyses were performed in R version 4.0.224 and the Bayesian network and discretization 

scripts are available in github (https://github.com/FfKB/BNCF). Figure 1. presents a summary 

of the study selection process and experimental design. 
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Figure 1. Experimental Design. A) Diagram illustrating the study selection process using a 

Sankey diagram. The excluded datasets are highlighted in red, while the eligible datasets are 

highlighted in green. B) Flowchart depicting the data processing steps in the study. 

3.  Results 

3.1.  Study descriptions 

A total of three studies comprising four datasets were considered for analysis: GSE139078, 

Sala Study, and PRJEB9292. The GSE139078 dataset consists of CF patients who were 

infected with rhinovirus (RHV). The PRJEB9292 dataset includes four patients divided into 

four time points, enabling a comparison between gene expression in non CF subjects and CF 

patients infected with Pseudomonas aeruginosa. The Sala study included two datasets: the 

pilot study and the validation study, which involved a comparison of gene expression profiles 

between CF patients and non CF subjects. The analysis also includes the assessment of 

modulator use (Lumacaftor and Ivacftor; and Ivacftor alone) in three datasets (GSE139078, 

Sala Pilot, and Sala Validation). All CF patients included in these studies have the 

F508del/F508del genotype, a common genetic mutation (~50%) associated with CF. However, 

sex and age data were not available for all the datasets, thus, that metadata was not included in 

the Bayesian Network Analysis. These carefully selected datasets provide comprehensive 

insights into gene expression patterns related to CF, considering factors such as viral and 

bacterial infections and the influence of modulators (Table 1). 

 

Table 1. The characteristics of subjects from the selected datasets. 
  GSE139078 Sala Pilot Sala Validation PRJEB9292 

Male sex, n(%) 48 (84.2) - - - 

Age, mean (SD) 3.4 (1.4) 35.3 (5.3) 34.1 (8.2) - 

Infection by virus, n(%) 38 (66.7) - - - 

Infection by P. aeruginosa, 

n(%) 

- - - 32 (100) 

Cystic Fibrosis, n(%) 57 (100) 7 (53.8) 24 (68.6) 4 (50)* 

Modulators (Luma/Iva), n(%) 10 (17.5) 2 (15.4) 10 (28.6) - 

Modulators (Ivacaftor), n(%) 9 (15.8) 0 (0) 2 (5.7) - 

Genotypes F508del, n(%) 57 (100) 7 (53.8) 24 (68.6) 16 (50) 

* = 4 Patients in 4 different timepoints (0, 2, 4 and 6).  

3.2.  Filtering gene expression data for use in the model 

 

We began by selecting significant genes through a conventional RNAseq comparison 

within each dataset. In the Sala Pilot and Validation studies, we compared patients with CF 

against non-CF individuals to identify genes associated with CF in these datasets. The De Jong 

datasets exclusively included CF samples, so we compared the presence or absence of virus 

infection. Lastly, the Balloy dataset consisted of different time points of infection by 

Pseudomonas aeruginosa, with an uninfected control established as point zero for comparison. 

In all of the studies, we observed changes in gene expression across various comparisons, such 
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as CF versus non-CF, presence or absence of virus, and infection by Pseudomonas aeruginosa. 

It gave us an idea about which genes should be integrated in our Bayesian Network Model. In 

the De Jong study, we identified 280 genes (220 up-regulated and 60 down-regulated) (Figure 

2A). In the Balloy study, we identified 350 genes (221 up-regulated and 129 down-regulated) 

(Figure 2B). In the Sala pilot study, we identified 789 genes (639 up-regulated and 150 down-

regulated) (Figure 2C), and in the Sala validation study, we identified 2716 genes (2114 up-

regulated and 602 down-regulated) (Figure 2D). The differences between all the comparisons 

can be accessed for both up-regulated genes (Figure 2E) and down-regulated genes (Figure 

2F). 

 
Figure 2. Differential gene expression analysis of epithelial cell datasets. A) GSE139078 

shows gene expression changes in cystic fibrosis (CF) patients infected with a virus compared 

to non-infected CF patients. B) PRJEB9292 compares gene expression in CF patients and 

controls infected with Pseudomonas aeruginosa (P.a). C and D) The Sala Cohort dataset 

compares gene expression between CF patients and non CF subjects in a pilot study (C) and 

validation study (D). Red dots represent significant genes with fold changes above or below 

±0.5, blue dots represent significant genes without fold change variation, and green dots 

represent non-significant genes with fold change variation. E and F) Venn diagrams represent 

the overlap and exclusivity of differentially expressed genes (DEGs) in each comparison, using 

the upregulated (>1 fold change and p-value <0.05) and downregulated (<-1 fold change and p-

value <0.05) DEGs. 
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3.3.  The Bayesian network is capable of identifying genes associated with all conditions and 

covariates. 

To circumvent experimental design limitations and to measure the relationship between all 

conditions and covariates present, we discretized the log CPM table and retrieved all the 

significant genes obtained from all comparisons of each dataset combined with its respective 

metadata (infection type (viral or bacterial), CF, modulators (Luma/Iva or Ivacaftor) and 

genotype (F508del or non CF controls) to create a new dataset. In total we included 1976 

genesin the Bayesian network model. As a result, the Bayesian network reveals which genes 

have a direct relationship with the presence of bacteria, virus, usage of modulators, CF, and the 

genotype (F508del). Each condition has its own network community despite the genotype, and 

it is associated with the presence of CF (Figure 3A). Genes present in each network community 

were used for functional analysis. The functional analysis revealed an Interferon signaling 

(alpha/beta and gamma) associated with CF, virus, and bacterial network communities. 

However, IL-9, IL-21, and IL-6 signaling were exclusively related to CF. Virus exposure was 

exclusively associated with the TGF-beta pathway, and the bacterial exposure did not have any 

exclusive pathway. Modulator treatment was associated with the response of EIF2AK1 to 

heme deficiency, late endosomal microautophagy, and IL-1 signaling (Figure 3B). 

Figure 3.  Bayesian Network signatures associated with cystic fibrosis (CF), infection, and 

mediators. Associations were extracted using Bayesian Network analysis and reconstructed 

using the "igraph" package in R. A) The main variables (CF, mutations, mediators, and 

infection) are represented by red nodes and clusters are depicted with red dotted lines. B) 

Genes presented in each cluster were used for over-represented pathway analysis. 
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3.4.  The CF Bayesian signature pathway is consistent across all datasets and shows higher 

expression levels when compared to non-CF epithelial cells. 

The pathways that were discovered in the Bayesian Network Analysis, related to CF were 

subjected to qusage pathway meta-analysis to measure their activation levels in each study 

individually, as well as their combination across all studies. As a result, the Interferon 

signaling, interferon gamma signaling, interleukin 4 and 13 signaling, interleukin 6 signaling, 

interleukin 21 signaling, and Inactivation of CSF3 G-CSF signaling pathways exhibited an 

overall alteration across all studies with significant p-values, while the pathways Interleukin 9 

signaling and Signaling of TBF-g receptor complex were not significant (Figure 4). We 

investigated the gene composition of these significant pathways in CF and non-CF to 

understand their expression. Across all significant pathways investigated (Figure 5). A) 

Interferon signaling, B) Interferon gamma signaling, C) Interleukin 4 and interleukin 13 

signaling, D) Interleukin 6 signaling, E) Inactivation of CSF3 G CSF signaling, and F) 

Interleukin 21 signaling. The analysis revealed a considerable proportion of epithelial cells 

derived from CF patients displayed a heightened expression of these genes present in the upper 

quartile (+75%), in comparison with non-CF. These genes were poorly expressed in all 

samples in the quantile transformed integrated dataset (Figure 5). 

 
Figure 4. Meta-analysis of pathway enrichment across datasets. The accumulated pathway 

analysis between all studies was conducted using the pipeline available in the qusage package. 
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Dotted lines separate studies by color: red for GSE139078, blue for Sala pilot study, purple for 

Sala validation study, and green for PJREB292. Significant pathways increased related to 

cystic fibrosis (CF) were identified, including A) Interferon signaling, B) Interferon gamma 

signaling, C) Interleukin 4 signaling, D) Interleukin 6 signaling, E) Interleukin 9 signaling, F) 

Interleukin 21 signaling. Pathways decreased in CF include: G) Inactivation of CSF3 and G-

CSF signaling, and H) Signaling by TGF-beta receptor complex. 

 
Figure 5. Quantile distribution of expressed genes in each significant pathway related to cystic 

fibrosis (CF). A) Interferon signaling, B) Interferon gamma signaling, C) Interleukin 4 and 

Interleukin 13 signaling, D) Interleukin 6 signaling, E) Inactivation of CSF3 and G-CSF 

signaling, and F) Interleukin 21 signaling. 

4.  Discussion 

Integrating data from transcriptomics or other high-throughput systems, such as 

proteomics, metabolomics, and lipidomics, is expected to yield new insights. Unfortunately, it 

also introduces significant heterogeneity arising from various designs or methodologies, 

commonly known as batch effects. Batch effects are pervasive across all types of high-

throughput biological platforms, including single measurement methods like PCR or ELISA.31 

When performing a meta-analysis, batch effects may create bias and reduce statistical power, 
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making it challenging to detect all relevant features, especially those with small effect sizes or 

in unbalanced samples.4 On the other hand, integrating several smaller datasets theoretically 

improves statistical power, provided that technical heterogeneity, including batch effects, is 

effectively resolved. 

Efforts to mitigate batch effects have been proposed, as they are known to interfere with 

downstream statistical analysis, potentially introducing false significance between groups that 

only exist between batches without biological meaning.32,33 Batch effects can also lead to the 

loss of biological signals contained in the data.34,35 The proposed quantile transform approach 

tends to be respectful of each dataset's characteristics, and by mapping each variable's 

probability in a probabilistic graphical model, it can handle variables present in the metadata, 

such as group allocation, clinical data, and dichotomous variables, which can be added and 

probabilistically related to each other.36 To achieve this, we evaluated four distinct Cystic 

Fibrosis Datasets with CF genotype, modulator therapy, and different types of infection, 

incorporating gene expression with these variables, without applying any batch correction 

while respecting each dataset's individuality. This approach has demonstrated a high level of 

accuracy in classifying cancer types when applied to expression datasets. 37 

To reduce processing time, we filtered the genes by selecting those that were differentially 

expressed in all datasets. For the Baloy dataset, we identified 350 differentially expressed 

genes (221 upregulated and 129 downregulated genes). In their original publication,18 the 

authors found a significantly higher number of upregulated genes than down regulated genes 

compared to noninfected control cells, although their comparisons were done at each time 

point. In our study, we bulked the controls and the Pseudomonas aeruginosa infection time 

point 0 as a control and compared to Pseudomonas aeruginosa infection. In De Jong's study,19 

the author separated the cells by classes and made two different comparisons: virus infection 

versus controls and virus infections plus modulator with either Ivacaftor or 

Ivacaftor/Lumacaftor. We compared all cells together against the controls and identified 195 

upregulated genes and 60 downregulated genes. In the study by Sala et al.,20 our comparisons 

were similar, with 639 and 2114 upregulated genes in the pilot and validation datasets, 

respectively, and 568 and 1834 downregulated genes, and 150 and 112 upregulated genes, and 

320 and 403 downregulated genes in our analysis, respectively. Differences can be noticed 

between the studies not only in how the comparisons were done, but also in the methods used 

for comparisons. In our study, all the analyses were performed with the DESEQ2 package,21 

whereas Sala and De Jong's studies used edgeR.38 

The pathway analysis performed by Balloy18 and Sala20 did not use the same geneset. In 

our study, we used the Reactome geneset 39, and only De Jong19 used Reactome geneset as 

well. However, the inflammatory responses were similar in all studies. In Sala's study, they 

associated the chaperone pathway in CF, while in our study, it was associated with the 

modulators. Other pathways, such as Interleukin 6, 9, and 21, were exclusively associated with 

CF in our analysis. The role of IL-6 is controversial; however, it participates in 

proinflammatory responses with TNF-a and interleukin-1b. IL-6 is a regulator of the host 

inflammatory response and is negatively associated with pulmonary function in chronic 

infection in CF and during acute exacerbation of respiratory symptoms or during a period of 

apparent clinical stability. In bronchoalveolar lavage fluid, IL-6 was significantly elevated in 
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infants with CF.40 Increased expression of IL-9 and IL-9R is responsible for the mucus-

overproducing in the lung epithelium of patients with cystic fibrosis41 and IL-21 is a 

multifunctional cytokine that acts on various immune cells.42 Interestingly, in mice fibroblasts, 

IL-21R is expressed and upregulates matrix metalloproteinases in response to IL-21 by CD8+ 

T cells.43 

When it comes to viral infection, we found that viruses have only one exclusive pathway 

associated with our analysis, which is related to TGF‐b signaling. This pathway is involved in 

pulmonary fibrosis and other organ-related processes. Viruses utilize various mechanisms to 

modulate this pathway, including altering TGF‐b protein expression and its receptors, as well 

as modulating the SMAD cascades, TGF-b lead to enhanced cell growth and induction of 

fibrosis.44 On the other hand, bacterial infection does not influence any pathways in our 

analysis. As for the use of modulators, we identified three exclusive pathways: "Response of 

EIF2AK1 to heme deficiency," "late endosomal microautophagy," and "IL-1 signaling". The 

HRI kinase (or EIF2AK1) plays two main roles during development: it ensures a balanced 

synthesis of globin and heme and promotes the survival of erythroid precursors during iron 

deficiency.45 Inhibitors of P-gp (P-Glycoprotein) such as fostamatinib46 and Ivacaftor can be 

associated with various stress conditions, including oxidative stress, heme deficiency, osmotic 

shock, and heat shock.47 In the context of CF, the usage of modulators is associated with an 

autophagy pathway, which compromises CFTR recycling to lysosomal degradation.48 

Moreover, in our study, the genes associated with modulators were linked to this pathway. In 

CF patients, CFTR modulators have been shown to increase airway nitric oxide (NO) by 

increasing the concentrations of IL-1α, IL-1β, and other Th17-associated cytokines in sputum, 

which is related to NO metabolism.49 

The overall pathway activation in all studies discovered by the Bayesian network approach 

in CF confirms previous studies describing a hyperinflammatory state in CF, as well as the 

participation of other pathways such as interleukin 4, 6, 13, and 21. Notably, interleukin 4 and 

13 were not exclusively associated with CF status. The roles of IL-4 and IL-13 in the 

epithelium of CF patients share several biological properties, including chloride secretion.50 On 

the other hand, IL-4 inhibits antiviral immunity,51 and neutralization of IL-13 reduces death 

and disease severity in COVID-19 without affecting viral load, indicating an 

immunopathogenic role for this cytokine.52 Additionally, G-CSF and GM-CSF can induce 

elastase and MMP-9 release by neutrophils 53. Interestingly, all the genes presented in the 

pathway analysis were in the last quantile of expression in our dataset. The main limitation of 

this study is that it serves as the initial proof of concept for quantile discretization in the 

integration of raw datasets. A comparison with different methods should be conducted. 

Additionally, clinical non-numeric data were included in a single analysis. Therefore, this 

analysis must be interpreted carefully and should serve as a guide for future models aiming to 

integrate all datasets and variables in a similar manner. Unfortunately, this study was limited to 

using only four CF datasets due to the considerable challenge of aligning complete metadata, 

which encompasses treatment, genotype mutation profiling, and infection status. It is 

uncommon to find metadata with all these features available, and new studies using this 

approach must be conducted to assess its efficacy. Despite these limitations, this study sheds 

light on various biological processes related to CF, particularly concerning viral and bacterial 
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infections, as well as the impact of modulators on epithelial cells within a single assessment, 

providing valuable insights into these complex. 

5.  Conclusion 

The analysis of integrated data remains a powerful hypothesis generation tool among data 

scientists. However, dealing with the heterogeneity of multiple datasets poses real challenges. 

In this study, we proposed a novel approach to integrate several datasets while respecting the 

unique characteristics of each individual dataset. By applying quantile transformation to 

multiple datasets and integrating them, we obtained biologically meaningful results that align 

with existing literature and established associations with other variables such as modulators, 

virus, and bacterial infections, and included access to good quality metadata. Our analysis 

revealed an inflammatory signature in CF patients, with exclusive associations observed in 

interleukin 4, 6, 13, and 21 pathways. Furthermore, we identified potential links between virus 

infections and the TGF-b pathway, as well as associations between modulators and pathways 

such as "Response of EIF2AK1 to heme deficiency," "late endosomal microautophagy," and 

"IL-1 signaling." These findings contribute to a better understanding of the complex 

interactions in CF and highlight potential targets for further research and development of new 

integration protocols. Nonetheless, additional studies employing this methodology are 

imperative to determine the extent to which this innovative approach can uncover novel 

associations compared to traditional methods. 

  References  

1. Lin, S. et al. Comparison of the transcriptional landscapes between human and mouse 

tissues. Proc. Natl. Acad. Sci. U. S. A. 111, 17224–17229 (2014). 

2. Fei, T., Zhang, T., Shi, W. & Yu, T. Mitigating the adverse impact of batch effects in 

sample pattern detection. Bioinformatics 34, 2634–2641 (2018). 

3. Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical 

variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578 (2018). 

4. Nygaard, V., Rødland, E. A. & Hovig, E. Methods that remove batch effects while 

retaining group differences may lead to exaggerated confidence in downstream analyses. 

Biostatistics 17, 29–39 (2016). 

5. Buhule, O. D. et al. Stratified randomization controls better for batch effects in 450K 

methylation analysis: a cautionary tale. Front. Genet. 5, 354 (2014). 

6. Carraro, G. et al. Transcriptional analysis of cystic fibrosis airways at single-cell resolution 

reveals altered epithelial cell states and composition. Nat. Med. 27, 806–814 (2021). 

7. Clarke, L. A., Sousa, L., Barreto, C. & Amaral, M. D. Changes in transcriptome of native 

nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. 

Respir. Res. 14, 38 (2013). 

8. Hampton, T. H. & Stanton, B. A. A novel approach to analyze gene expression data 

demonstrates that the DeltaF508 mutation in CFTR downregulates the antigen presentation 

pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, L473–82 (2010). 

Pacific Symposium on Biocomputing 2024

545

http://paperpile.com/b/0erqpo/34vu
http://paperpile.com/b/0erqpo/34vu
http://paperpile.com/b/0erqpo/C64R
http://paperpile.com/b/0erqpo/C64R
http://paperpile.com/b/0erqpo/sYZm
http://paperpile.com/b/0erqpo/sYZm
http://paperpile.com/b/0erqpo/GD9Z
http://paperpile.com/b/0erqpo/GD9Z
http://paperpile.com/b/0erqpo/GD9Z
http://paperpile.com/b/0erqpo/PNUD
http://paperpile.com/b/0erqpo/PNUD
http://paperpile.com/b/0erqpo/B3DA
http://paperpile.com/b/0erqpo/B3DA
http://paperpile.com/b/0erqpo/3UfP
http://paperpile.com/b/0erqpo/3UfP
http://paperpile.com/b/0erqpo/3UfP
http://paperpile.com/b/0erqpo/8NfW
http://paperpile.com/b/0erqpo/8NfW
http://paperpile.com/b/0erqpo/8NfW


 

 
 

9. Brazma, A. Minimum Information About a Microarray Experiment (MIAME)--successes, 

failures, challenges. ScientificWorldJournal 9, 420–423 (2009). 

10. Clarke, L. A., Botelho, H. M., Sousa, L., Falcao, A. O. & Amaral, M. D. Transcriptome 

meta-analysis reveals common differential and global gene expression profiles in cystic 

fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics 106, 

268–277 (2015). 

11. Hackenberger, B. K. Bayesian meta-analysis now - let’s do it. Croat. Med. J. 61, 564–568 

(2020). 

12. Liu, Y. et al. A Gentle Introduction to Bayesian Network Meta-Analysis Using an 

Automated R Package. Multivariate Behav. Res. 1–17 (2022). 

13. Chambers, J. D. et al. An assessment of the methodological quality of published network 

meta-analyses: a systematic review. PLoS One 10, e0121715 (2015). 

14. Huang, S. et al. Applications of Support Vector Machine (SVM) Learning in Cancer 

Genomics. Cancer Genomics Proteomics 15, 41–51 (2018). 

15. McLachlan, S., Dube, K., Hitman, G. A., Fenton, N. E. & Kyrimi, E. Bayesian networks in 

healthcare: Distribution by medical condition. Artif. Intell. Med. 107, 101912 (2020). 

16. Lee, A. W. Review of mixed treatment comparisons in published systematic reviews shows 

marked increase since 2009. J. Clin. Epidemiol. 67, 138–143 (2014). 

17. Briganti, G., Scutari, M. & Linkowski, P. Network Structures of Symptoms From the Zung 

Depression Scale. Psychol. Rep. 124, 1897–1911 (2021). 

18. Balloy, V. et al. Normal and Cystic Fibrosis Human Bronchial Epithelial Cells Infected 

with Pseudomonas aeruginosa Exhibit Distinct Gene Activation Patterns. PLoS One 10, 

e0140979 (2015). 

19. De Jong, E. et al. Ivacaftor or lumacaftor/ivacaftor treatment does not alter the core CF 

airway epithelial gene response to rhinovirus. J. Cyst. Fibros. 20, 97–105 (2021). 

20. Sala, M. A. et al. The proteostatic network chaperome is downregulated in F508del 

homozygote cystic fibrosis. J. Cyst. Fibros. 20, 356–363 (2021). 

21. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 

22. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. & Young, R. A. Using graphical models 

and genomic expression data to statistically validate models of genetic regulatory networks. 

Pac. Symp. Biocomput. 422–433 (2001). 

23. Scutari, M. Bayesian network constraint-based structure learning algorithms: Parallel and 

optimized implementations in the bnlearn R package. J. Stat. Softw. 77, (2017). 

24. R. Core Team. An Introduction to R. (Samurai Media Limited, 2015). 

25. Liu, Y., Wang, L. & Sun, M. Efficient Heuristics for Structure Learning of -Dependence 

Bayesian Classifier. Entropy  20, (2018). 

Pacific Symposium on Biocomputing 2024

546

http://paperpile.com/b/0erqpo/8XNu
http://paperpile.com/b/0erqpo/8XNu
http://paperpile.com/b/0erqpo/f4zC
http://paperpile.com/b/0erqpo/f4zC
http://paperpile.com/b/0erqpo/f4zC
http://paperpile.com/b/0erqpo/f4zC
http://paperpile.com/b/0erqpo/mEB1
http://paperpile.com/b/0erqpo/mEB1
http://paperpile.com/b/0erqpo/bZ0K
http://paperpile.com/b/0erqpo/bZ0K
http://paperpile.com/b/0erqpo/aiQu
http://paperpile.com/b/0erqpo/aiQu
http://paperpile.com/b/0erqpo/d5km
http://paperpile.com/b/0erqpo/d5km
http://paperpile.com/b/0erqpo/66JB
http://paperpile.com/b/0erqpo/66JB
http://paperpile.com/b/0erqpo/aqwT
http://paperpile.com/b/0erqpo/aqwT
http://paperpile.com/b/0erqpo/uF5c
http://paperpile.com/b/0erqpo/uF5c
http://paperpile.com/b/0erqpo/tOAJ
http://paperpile.com/b/0erqpo/tOAJ
http://paperpile.com/b/0erqpo/tOAJ
http://paperpile.com/b/0erqpo/4CNF
http://paperpile.com/b/0erqpo/4CNF
http://paperpile.com/b/0erqpo/6asQ
http://paperpile.com/b/0erqpo/6asQ
http://paperpile.com/b/0erqpo/Bpyz
http://paperpile.com/b/0erqpo/Bpyz
http://paperpile.com/b/0erqpo/PQvo
http://paperpile.com/b/0erqpo/PQvo
http://paperpile.com/b/0erqpo/PQvo
http://paperpile.com/b/0erqpo/peSq
http://paperpile.com/b/0erqpo/peSq
http://paperpile.com/b/0erqpo/XMFU
http://paperpile.com/b/0erqpo/3QQ9
http://paperpile.com/b/0erqpo/3QQ9


 

 
 

26. Prada-Medina, C. A. et al. Systems Immunology of Diabetes-Tuberculosis Comorbidity 

Reveals Signatures of Disease Complications. Sci. Rep. 7, 1999 (2017). 

27. Friedman, N., Goldszmidt, M. & Wyner, A. Data analysis with Bayesian networks: A 

bootstrap approach. (2013) doi:10.48550/ARXIV.1301.6695. 

28. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. 

Innovation (Camb) 2, 100141 (2021). 

29. Yaari, G., Bolen, C. R., Thakar, J. & Kleinstein, S. H. Quantitative set analysis for gene 

expression: a method to quantify gene set differential expression including gene-gene 

correlations. Nucleic Acids Res. 41, e170 (2013). 

30. Meng, H., Yaari, G., Bolen, C. R., Avey, S. & Kleinstein, S. H. Gene set meta-analysis 

with Quantitative Set Analysis for Gene Expression (QuSAGE). PLoS Comput. Biol. 15, 

e1006899 (2019). 

31. Goh, W. W. B., Wang, W. & Wong, L. Why Batch Effects Matter in Omics Data, and How 

to Avoid Them. Trends Biotechnol. 35, 498–507 (2017). 

32. Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-

throughput data. Nat. Rev. Genet. 11, 733–739 (2010). 

33. Li, T., Zhang, Y., Patil, P. & Johnson, W. E. Overcoming the impacts of two-step batch 

effect correction on gene expression estimation and inference. Biostatistics 24, 635–652 

(2023). 

34. Nyamundanda, G., Poudel, P., Patil, Y. & Sadanandam, A. A Novel Statistical Method to 

Diagnose, Quantify and Correct Batch Effects in Genomic Studies. Sci. Rep. 7, 10849 

(2017). 

35. Cai, H. et al. Identifying differentially expressed genes from cross-site integrated data 

based on relative expression orderings. Int. J. Biol. Sci. 14, 892–900 (2018). 

36. Guha, N., Baladandayuthapani, V. & Mallick, B. K. Quantile Graphical Models: Bayesian 

Approaches. J. Mach. Learn. Res. 21, 1–47 (2020).  

37. Jung, S., Bi, Y. & Davuluri, R. V. Evaluation of data discretization methods to derive platform 

independent isoform expression signatures for multi-class tumor subtyping. BMC Genomics 16 

Suppl 11, S3 (2015). 

38. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 

(2010). 

39. Cold Spring Harbor Laboratory. Reactome, a Knowledgebase of Biological Processes. 

(2003). 

40. Nixon, L. S., Yung, B., Bell, S. C., Elborn, J. S. & Shale, D. J. Circulating immunoreactive 

interleukin-6 in cystic fibrosis. Am. J. Respir. Crit. Care Med. 157, 1764–1769 (1998). 

Pacific Symposium on Biocomputing 2024

547

http://paperpile.com/b/0erqpo/jmoY
http://paperpile.com/b/0erqpo/jmoY
http://paperpile.com/b/0erqpo/9wnN
http://paperpile.com/b/0erqpo/9wnN
http://dx.doi.org/10.48550/ARXIV.1301.6695
http://paperpile.com/b/0erqpo/9wnN
http://paperpile.com/b/0erqpo/vADT
http://paperpile.com/b/0erqpo/vADT
http://paperpile.com/b/0erqpo/lbGY
http://paperpile.com/b/0erqpo/lbGY
http://paperpile.com/b/0erqpo/lbGY
http://paperpile.com/b/0erqpo/hK0F
http://paperpile.com/b/0erqpo/hK0F
http://paperpile.com/b/0erqpo/hK0F
http://paperpile.com/b/0erqpo/19LB
http://paperpile.com/b/0erqpo/19LB
http://paperpile.com/b/0erqpo/RCNr
http://paperpile.com/b/0erqpo/RCNr
http://paperpile.com/b/0erqpo/8gkp
http://paperpile.com/b/0erqpo/8gkp
http://paperpile.com/b/0erqpo/8gkp
http://paperpile.com/b/0erqpo/vDJT
http://paperpile.com/b/0erqpo/vDJT
http://paperpile.com/b/0erqpo/vDJT
http://paperpile.com/b/0erqpo/OALu
http://paperpile.com/b/0erqpo/OALu
http://paperpile.com/b/0erqpo/JMEj
http://paperpile.com/b/0erqpo/JMEj
http://paperpile.com/b/0erqpo/IwKv
http://paperpile.com/b/0erqpo/IwKv
http://paperpile.com/b/0erqpo/IwKv
http://paperpile.com/b/0erqpo/QpeX
http://paperpile.com/b/0erqpo/QpeX
http://paperpile.com/b/0erqpo/JNyG
http://paperpile.com/b/0erqpo/JNyG


 

 
 

41. Hauber, H.-P. et al. Increased expression of interleukin-9, interleukin-9 receptor, and the 

calcium-activated chloride channel hCLCA1 in the upper airways of patients with cystic 

fibrosis. Laryngoscope 113, 1037–1042 (2003). 

42. Asao, H. Interleukin-21 in Viral Infections. Int. J. Mol. Sci. 22, (2021). 

43. Brodeur, T. Y. et al. IL-21 Promotes Pulmonary Fibrosis through the Induction of 

Profibrotic CD8+ T Cells. J. Immunol. 195, 5251–5260 (2015). 

44. Mirzaei, H. & Faghihloo, E. Viruses as key modulators of the TGF-β pathway; a double-

edged sword involved in cancer. Rev. Med. Virol. 28, (2018). 

45. Rios-Fuller, T. J. et al. Translation Regulation by eIF2α Phosphorylation and mTORC1 

Signaling Pathways in Non-Communicable Diseases (NCDs). Int. J. Mol. Sci. 21, (2020). 

46. Duran, G. E. & Sikic, B. I. The Syk inhibitor R406 is a modulator of P-glycoprotein 

(ABCB1)-mediated multidrug resistance. PLoS One 14, e0210879 (2019). 

47. Rolf, M. G. et al. In vitro pharmacological profiling of R406 identifies molecular targets 

underlying the clinical effects of fostamatinib. Pharmacol Res Perspect 3, e00175 (2015). 

48. Maiuri, L., Raia, V. & Kroemer, G. Strategies for the etiological therapy of cystic fibrosis. 

Cell Death Differ. 24, 1825–1844 (2017). 

49. Nissen, G. et al. Interleukin-1 beta is a potential mediator of airway nitric oxide deficiency 

in cystic fibrosis. J. Cyst. Fibros. 21, 623–625 (2022). 

50. Zünd, G., Madara, J. L., Dzus, A. L., Awtrey, C. S. & Colgan, S. P. Interleukin-4 and 

interleukin-13 differentially regulate epithelial chloride secretion. J. Biol. Chem. 271, 

7460–7464 (1996). 

51. Moran, T. M., Isobe, H., Fernandez-Sesma, A. & Schulman, J. L. Interleukin-4 causes 

delayed virus clearance in influenza virus-infected mice. J. Virol. 70, 5230–5235 (1996). 

52. Donlan, A. N. et al. IL-13 is a driver of COVID-19 severity. JCI Insight 6, (2021). 

53. Castellani, S. et al. G-CSF and GM-CSF Modify Neutrophil Functions at Concentrations 

found in Cystic Fibrosis. Sci. Rep. 9, 12937 (2019). 

 

Pacific Symposium on Biocomputing 2024

548

http://paperpile.com/b/0erqpo/oA7S
http://paperpile.com/b/0erqpo/oA7S
http://paperpile.com/b/0erqpo/oA7S
http://paperpile.com/b/0erqpo/btaP
http://paperpile.com/b/0erqpo/8Znj
http://paperpile.com/b/0erqpo/8Znj
http://paperpile.com/b/0erqpo/v60h
http://paperpile.com/b/0erqpo/v60h
http://paperpile.com/b/0erqpo/Ss8o
http://paperpile.com/b/0erqpo/Ss8o
http://paperpile.com/b/0erqpo/Llu4
http://paperpile.com/b/0erqpo/Llu4
http://paperpile.com/b/0erqpo/g7Rx
http://paperpile.com/b/0erqpo/g7Rx
http://paperpile.com/b/0erqpo/aJ0U
http://paperpile.com/b/0erqpo/aJ0U
http://paperpile.com/b/0erqpo/K50N
http://paperpile.com/b/0erqpo/K50N
http://paperpile.com/b/0erqpo/M6af
http://paperpile.com/b/0erqpo/M6af
http://paperpile.com/b/0erqpo/M6af
http://paperpile.com/b/0erqpo/XB6T
http://paperpile.com/b/0erqpo/XB6T
http://paperpile.com/b/0erqpo/Gux6
http://paperpile.com/b/0erqpo/XdYJ
http://paperpile.com/b/0erqpo/XdYJ



