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A single gene can produce multiple transcripts with distinct molecular functions. Rare-variant 

association tests often aggregate all coding variants across individual genes, without accounting for 

the variants’ presence or consequence in resulting transcript isoforms. To evaluate the utility of 

transcript-aware variant sets, rare predicted loss-of-function (pLOF) variants were aggregated for 

17,035 protein-coding genes using 55,558 distinct transcript-specific variant sets. These sets were 

tested for their association with 728 circulating proteins and 188 quantitative phenotypes across 

406,921 individuals in the UK Biobank. The transcript-specific approach resulted in larger estimated 

effects of pLOF variants decreasing serum cis-protein levels compared to the gene-based approach 

(pbinom < 2x10-16). Additionally, 251 quantitative trait associations were identified as being significant 

using the transcript-specific approach but not the gene-based approach, including PCSK5 transcript 

ENST00000376752 and standing height (transcript-specific statistic, P = 1.3x10-16, effect = 0.7 SD 

decrease; gene-based statistic, P = 0.02, effect = 0.05 SD decrease) and LDLR transcript 

ENST00000252444 and apolipoprotein B (transcript-specific statistic, P = 5.7x10-20, effect = 1.0 SD 

increase; gene-based statistic, P = 3.0x10-4, effect = 0.2 SD increase). This approach demonstrates 

the importance of considering the effect of pLOFs on specific transcript isoforms when performing 

rare-variant association studies. 
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1. Introduction

Alternative splicing allows for one gene to produce many transcript isoforms. When these isoforms 

differ in their coding sequence content, they can result in proteins with distinct molecular functions. 

Over 95% of protein-coding genes are alternatively spliced1 which contributes to the large diversity 

of the human transcriptome and proteome. This process is instrumental in creating the complex and 

coordinated gene expression patterns that underlie all biological processes.  

    Alterations to the transcriptome by genetic variation is instrumental in driving differences in 

phenotypic expression. Many of these disruptions have been identified through genome-wide 

association studies (GWAS), which test the impact of common single nucleotide variants (SNVs) 

on phenotypes on a population scale. Studies such as these are critical in drug-discovery efforts, as 

they can be used to identify new therapeutic targets for disease. Additionally, lack of genetic 

validation of therapeutic hypotheses has been shown to reduce the likelihood of a successful clinical 

trial2,3, suggesting that genetically validated targets are essential in the development process.  

     A large amount of phenotype heritability is not well captured through common-variant GWAS 

alone4. Rare, coding SNVs can be exceptionally disruptive to the transcriptome and have dramatic 

Pacific Symposium on Biocomputing 2024

247



 

 

 

effects on phenotypes, even more so than common variants5. Rare variant association studies 

(RVAS) provide avenues to explain the “missing heritability” of traits6, and provide a 

complementary approach to common-variant GWAS. Though, assessing genotype-phenotype 

associations with these low-frequency SNVs is difficult due to lack of sufficient sample size and 

statistical power. 

     One approach in ameliorating the statistical challenges of rare variant analysis is the aggregation 

of SNVs with similar predicted functional consequences, known as burden testing7,8. For example, 

an analysis may collect rare protein-truncating variants (PTVs), also known as predicted loss-of-

function variants (pLOF), that are expected to result in non-functional gene products through 

nonsense-mediated decay9. These pLOF variants can then be aggregated and tested for their 

collective association with phenotypes of interest. This allows for an increase in statistical power 

and ability to detect genotype-phenotype associations which would otherwise be impossible at the 

level of single-variant tests.  

     However, burden testing assumes that all aggregated variants will have a similar effect on the 

function of the gene and, consequently, the associated phenotype. This assumption does not hold if 

a gene has multiple transcript isoforms with diverse downstream functions. For example, where a 

given SNV may encode a missense variant that is deleterious in some encoded protein isoforms but 

not others, or where an SNV may encode a variant of any function that overlaps some transcript 

isoforms but is not transcribed in others. The most common techniques for creating variant sets for 

burden testing consider the most deleterious consequence of an SNV across all documented 

isoforms. Subsequently, the expected impact of the SNV may be overestimated. Due to these 

challenges, we propose the inclusion of transcript-aware analyses when studying rare variants, in 

addition to the standard gene-based approach.  

     Our analysis uses whole-exome sequencing data from the UK Biobank to perform transcript-

specific burden analyses on 406,921 individuals of European ancestry. Rare pLOFs were identified 

across 17,035 genes and aggregated by transcript, resulting in 55,558 unique, transcript-specific 

variant sets tested against the circulating levels of 728 cis-encoded proteins and 188 quantitative 

traits. The results of the transcript-specific burden tests were compared to the results from the 

maximally inclusive, standard, gene-based burden method. 

2. Data 

2.1. UK Biobank 

The UK Biobank consists of approximately 500,000 volunteer participants, who were aged 40–69 

years when recruited between 2006 and 201010,11. Both array genotyping and whole-exome 

sequencing have been performed on most of these participants12. Data from genotyping, sequencing, 

questionnaires, primary care data, hospitalization data, cancer registry data, and death registry data 

were obtained through application number 26041. Proteomic profiling was also performed on a 

subset of participants through application number 6585113. Ethical oversight for the UK Biobank is 

provided by an Ethics and Governance Council which obtained informed consent from all 

participants to use these data for health-related research. Data management and analytics were 

performed using the REVEAL/SciDB translational analytics platform from Paradigm4. 
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2.2. Variant calling and definition 

The source of genetic data for the main analysis was exome sequencing data. DNA from whole 

blood was extracted and sequenced by the Regeneron Genetics Center (RGC) using protocols 

previously described14. Of the variants called by RGC, additional quality-control filters were 

applied: Hardy-Weinberg equilibrium (among the European subpopulation, as defined by Pan-

UKB15) P > 1x10−10, and missingness across all individuals less than 2%. Variants were annotated 

using ENSEMBL Variant Effect Predictor (VEP)16 version 109.3, using the LOFTEE plug-in 

version 1.0.4 to identify high-confidence predicted PTV variants9 in protein-coding genes with 

minor allele frequency <1%. Bcftools was used to filter variants with genotype quality (GQ) > 20 

and depth (DP) > 7 or 10 for SNPs and indels respectively. For the gene-based burden, variant 

effects were scored against all available transcripts in ENSEMBL, and the most severe predicted 

impact was retained. Variants were aggregated in each protein-coding gene as follows: pLOF 

variants were defined as “HC” (high confidence) from LOFTEE and their most severe consequence 

from VEP as “stop gained,” “splice donor,” “splice acceptor,” or “frameshift.” For the transcript-

based burden, the consequence for each variant was assessed individually by transcript.  

2.3. Participant definition for overall analyses 

An initial round of quality control was performed by RGC, which removed subjects with evidence 

of contamination, discrepancies between chromosomal and reported sex, and high discordance 

between sequencing and genotyping array data. A European ancestry population was defined using 

data from the Pan-UKB Team15, resulting in a set of 406,921 European ancestry individuals with 

exome sequencing data available. Two sets of genetic principal components (PCs) were defined, as 

described by Backman et al17: a set derived from common array variants, of which 10 were used, 

and a set derived from rare exome variants, of which 20 were used. Rare exome derived PCs  were 

calculated by applying the following filters on variants on the autosomes: MAF > 2.6x10-5 and < 

0.01, Hardy-Weinberg equilibrium P > 1x10-12, and genotype missingness < 2%. Regions of high 

LD were removed, and SNPs were pruned with PLINK’s18 indep-pairwise function, using a 

window-size of 1,000 base pairs, a step size of 100 base pairs, and an R2 threshold of 0.1. Indels 

were removed, then R’s Smart PCA was implemented to derive the PCs. Array derived PCs for the 

European subset were derived by imposing a MAF filter > 0.01 and INFO score = 1 before running 

Smart PCA.  

2.4. Phenotype sources 

The main source of phenotype data was from a release of structured data by the UK Biobank Data 

Showcase on December 22, 2022. We tested 188 quantitative phenotypes, including physical 

measures, blood counts, metabolomics, touchscreen questionnaire responses on family history, 

telomere length, and urine biochemistry. Quantitative traits were rank-based inverse normal 

transformed to have a mean of zero and a standard deviation of one. 
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GTEx version 8 bulk RNAseq data was aggregated across 54 tissue types from 948 donors. For each 

gene, expression was calculated across all tissues, identifying 145,219 transcripts with mean TPM 

expression > 0. 

2.6. Olink proteomics 

Characterization of 1,463 proteins across 54,306 individuals was undertaken by the UK Biobank 

Proteomics Project (UKB-PPP). Proteomic profiling was conducted across four panels utilizing the 

Olink Explore Assay. Sample collection, preparation, data pre-processing, and quality control is 

described in detail in Sun et al13. Quantified protein expression levels were rank-based inverse 

normal transformed to have a mean of zero and standard deviation of one. 

3. Methods

3.1. Transcript-specific variant set curation 

Rare, predicted loss-of-function (pLOF) variants sets (MAF < 1%) were created across 145,219 

transcripts with mean TPM > 0 across all 53 GTEx tissue types. Overall, 72,769 transcripts had at 

least one overlapping rare pLOF variant. Identical variant sets that were representative of more than 

one transcript were combined into a single label, resulting in 55,558 unique transcript-specific 

variant sets across 17,035 genes. 

3.2. Whole-genome ridge regression analysis 

REGENIE v3.1.119 was used to perform a whole-genome ridge regression taking subject relatedness 

into account, while using a Firth approximation to estimate P values. For all quantitative traits, 

REGENIE was performed using an additive model across the entire European-ancestry population, 

including related individuals, controlling for age, sex, age2, age x sex, age2 x sex, 10 rare-variant 

derived principal components, and 20 common-variant derived principal components. For the Olink 

proteomics, batch numbers 1-7 were added as one-hot encoded covariates.  

3.3. Comparison of estimated effect sizes by approximating a binomial distribution 

The effect sizes across transcript and gene-based burden tests were compared in cases only where 

there was a significant association for a quantitative phenotype in both methods. Deviation from a 

binomial distribution was modeled using R’s binom.test() to determine is the proportion of results 

with stronger associations in the transcript-based model differs from the null hypothesis. 

3.4. Binary case-control phenotype regression 

As a follow-up to the quantitative traits analysis, we tested a single binary phenotype, Alzheimer’s 

disease, across multiple TREM2 transcript-specific variant sets. Diagnoses were extracted from 

inpatient hospital diagnoses, the cancer and death registries, primary care, and self-reported data. 

We adjusted for age, sex, age2, age x sex, age2 x sex, 10 rare-variant derived principal components, 

20 common-variant derived principal components, availability of primary care, and country of 

recruitment.  
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4. Results 

4.1. Transcript-specific variant sets show stronger associations with lower serum cis-protein 

levels 

To evaluate the validity of transcript-specific pLOF variant sets, they were first tested for their 

association with cis-encoded proteins. Variant sets with at least 10 carriers were tested across 728 

circulating serum proteins in 47,297 individuals of European ancestry and compared to the gene-

based approach. Several gene and transcript-specific variant sets were identical, and their removal 

resulted in 913 unique transcript variant sets tested across 432 serum protein levels. Among 580 

results that were significant for both the transcript and gene-based burden approach, 75% (N = 437) 

had lower effect estimates on cis-serum proteins in the transcript-based burden (Figure 1), which is 

substantially greater than expected by chance (pbinom  < 2x10-16). Of the 437 transcript-based results 

with lower cis-protein effect estimates, 45 had non-overlapping 95% confidence intervals with the 

effect estimates of the gene-based approach.  

4.2. Some pLOF-cis protein associations are only detectable using transcript-specific variant 

sets 

The transcript-based burden on cis-proteins resulted in 35 associations across 21 loci that were non-

significant in the gene-based burden. Of these associations only significant in the transcript-based 

burden, 22 associations across 12 loci had non-overlapping 95% confidence intervals with the gene-

based approach (Table 1), and all of them had lower estimated effect sizes. 

 

 

 

Figure 1. Comparison of estimated effect sizes on circulating serum proteins. Each dot 

represents an association of the transcript or gene-based burden with a cis-encoded protein.  
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Table 1. Transcript-specific results with significant association on circulating cis-proteins, and transcript-

based burden 95% CI not-overlapping with gene-based burden 95% CI. Multiple transcripts listed when 

variant sets are identical. 

  From these data, we focused on TREM2 as it has a known role in Alzheimer’s disease (AD) risk. 

TREM2 is primarily expressed in microglia, and rare loss-of-function mutations including the 

missense variant R47H have been shown to increase AD risk20. When testing TREM2 transcript-

specific pLOF variant sets (Figure 2), we observe more significant associations with larger 

reductions in serum TREM2 levels in the ENST00000338469 and ENST00000373113 models, 

compared to ENST00000373122 or the gene-based method (Table 2). 

     The primary variant that explains the difference in signal is rs538447052, a splice acceptor 

variant at the boundary of exon 4. The canonical transcript with the highest brain expression21, 

ENST00000373113, and ENST00000338469, are both unaffected by rs538447052 as it functions 

there as an intron variant. By excluding rs538447052 from these variant sets, we see a much stronger 

association with decreasing serum TREM2. 

      Next, we tested the relationship between Alzheimer’s disease and TREM2 and its transcript 

isoforms. Our analysis is limited by a low number of affected carriers; however, we detect an 

enrichment of AD cases when using the more stringent TREM2 transcript models, 

ENST00000373113 and ENST00000338469 (Table 2). This association is absent in the 

ENST00000373122 and gene-based models and is consistent with the weaker observed effects on 

serum TREM2.  

 

 

Gene/cis-

protein 

 

P value 
gene -

based 

burden 

Effect 
size gene 

-based 

burden 

N 

carriers 
gene -

based 

burden 

95% CI 

gene -based 

burden 

P value 
transcript -

based 

burden 

Effect size 
transcript -

based 

burden 

N carriers 
transcript-

based 

burden 

95% CI 

transcript-

based burden Transcripts 

CD300LF 5.3x10-1 -0.03 195 -0.1,0.1 3.6x10-19 -1.0 38 -1.2,-0.8 

ENST00000326165; 

ENST00000464910; 

ENST00000583937 

CD84 4.12x10-5 -0.2 51 -0.3,-0.1 1.3x10-20 -1.0 10 -1.2,-0.8 

ENST00000368048; 

ENST00000368051; 

ENST00000368054 

CLEC10A 3.0x10-4 -0.1 103 -0.2,-0.1 7.1x10-18 -1.0 13 -1.2,-0.7 
ENST00000416562; 

ENST00000571664 

CPPED1 4.6x10-2 -0.2 43 -0.5,0.01 3.2x10-13 -1.6 13 -2.0,-1.1 ENST00000381774 

MSR1 1.4x10-2 -0.1 110 -0.2,-0.02 5.0x10-13 -0.8 23 -1.0,-0.6 ENST00000262101 

MSRA 5.9x10-3 -0.2 93 -0.4,-0.1 7.3x10-8 -1.3 13 -1.7,-0.8 ENST00000528246 

NRP2 1.8x10-1 0.1 32 -0.04,0.2 2.6x10-14 -0.7 13 -0.9,-0.5 ENST00000357785 

PLXNB2 1.5x10-2 -0.1 85 -0.1,-0.01 4.9x10-10 -0.4 23 -0.5,-0.3 
ENST00000359337; 
ENST00000449103 

SETMAR 5.8x10-2 -0.1 133 -0.1,0.02 1.2x10-09 -0.3 51 -0.4,-0.2 ENST00000425863 

TREM2 8.8x10-3 -0.2 66 -0.3,-0.04 2.2x10-16 -1.2 17 -1.5,-0.9 ENST00000373113 

TXNRD1 5.4x10-5 -0.4 35 -0.6,-0.2 1.3x10-9 -1.0 12 -1.3,-0.7 

ENST00000503506; 
ENST00000524698; 

ENST00000526390; 

ENST00000526950; 
ENST00000529546 

TYMP 2.6x10-2 -0.2 54 -0.4,-0.02 2.6x10-5 -0.9 13 -1.3,-0.5 ENST00000425169 
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4.3.   Some pLOF-cis protein associations have opposite directions of effect in the transcript 

and gene-based models 

  Most effect size estimates maintain their direction of effect when comparing the gene and 

transcript-based methods. However, six associations from three loci resulted in opposing estimated 

effect sizes (Table 3). In all six cases, the transcript-variant set of pLOFs associates with lower 

serum cis-protein levels, as expected, while the gene-based method associates with higher serum 

cis-protein levels. 

 

 

 

     The difference in variants captured by the BST1, GPNMB, and HMOX2 gene-based and 

transcript-based variant sets are primarily attributable to variants missing from the terminal exon 

(Figure 3). The most significantly associated transcript variant set for each locus mainly exclude a 

single, frequent variant from the last exon, rs144539516, rs11537976, and rs11537976, respectively.  

 

 

Transcripts 

 P value 

AD 

Odds ratio 

AD 

95% CI 

AD 

N carriers 

AD 

N 
carriers 

with AD 

P value 
serum 

TREM2 

Effect size 
serum 

TREM2 

95% CI 
serum 

TREM2 

N carriers 
serum 

TREM2 

ENST00000338469 8.9x10-3 10.3 2.6,40.9 48 2 7.2x10-16 -1.4 -1.0,-1.7 12 

ENST00000373113 1.2x10-2 9.1 2.3,35.9 55 2 2.1x10-16 -1.2 -1.4,-0.9 17 

Inclusive model 9.6x10-2 1.0 0.3,3.1 435 3 8.7x10-3 -0.2 -0.3,0.0 66 

ENST00000373122 9.8x10-2 01.0 0.30,3.1 428 3 4.9x10-2 -0.2 -0.3,0.0 61 

Gene/cis-

protein 

P value gene 

-based 

burden  

Effect 

size 
gene-

based 

burden 

95% CI 

gene-based 

burden 

N carriers 
gene -

based 

burden 

P value 
transcript-

based 

burden 

Effect size 
transcript-

based 

burden 

95% CI 
transcript

-based 

burden 

N carriers 
transcript-

based 

burden Transcripts 

BST1 8.8x10-69 0.4 0.4,0.5 543 6.6x10-37 -1.1 -1.3,-01.0 37 
ENST00000265016; 
ENST00000382346 

BST1 8.8x10-69 0.4 0.4,0.5 543 1.1x10-36 -1.2 -1.4,-1.0 34 ENST00000505785 

BST1 8.8x10-69 0.4 0.4,0.5 543 2.7x10-22 -1.4 -1.6,-1.1 15 ENST00000514445 

GPNMB 2.9x10-21 0.2 0.1,0.3 446 1.1x10-212 -1.1 -1.1,-1.0 93 ENST00000409458 

HMOX2 2.2x10-21 1.0 0.8,1.2 26 5.2x10-8 -0.9 -1.2,-0.6 11 
ENST00000570445; 

ENST00000575051 

HMOX2 2.2x10-21 1.0 0.8,1.2 26 1.4x10-7 -0.9 -1.3,-0.6 10 

ENST00000574466; 

ENST00000575129; 

ENST00000576827 

Table 2. TREM2 transcript-specific associations with AD and circulating TREM2 levels. 

Figure 2. TREM2 transcript models and the gene-based, inclusive model.  

rs538447052 
3’ 5’ 

Table 3. Significant transcript-based burden results with opposing effect sizes compared to the gene-

based burden. Multiple transcripts are listed when the variant sets are identical. 
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Each of these excluded variants strongly associate with increased cis-serum protein levels when 

tested individually (Table 4). Rs144539516 and rs146410700 are 3’ UTR variants in at least one 

transcript, which may affect the post-transcriptional stability of the RNA product. Rs146410700 

also occasionally is identified as a missense variant in some transcripts and could influence protein 

stability, detectability, and post-translational regulation. Rs11537976 acts as a non-coding exon 

variant and may affect transcriptional regulation. In all instances, this provides an explanation for 

the unexpected gene-level association with increased protein. 

 

 

4.4. Transcript-specific variant sets show stronger associations with quantitative traits 

Since the transcript-based variant sets show larger effects on circulating cis-proteins compared to 

the gene-based method, we next extended the analysis to quantitative traits. Transcript-specific 

pLOF variant sets with at least 10 carriers were tested for their association with 318 quantitative 

traits in 406,921 individuals of European ancestry and compared to the gene-based approach. After 

removing identical results between the transcript and gene-based approach, 6,981,491 transcript-

trait and 2,740,011 gene-trait association tests were performed (Bonferroni corrected P value < 

5.1x10-9). Among 1,010 associations that were significant in both the transcript and gene-based 

approach, 73% (N = 745) had more extreme effect sizes in the transcript-specific approach (Figure 

4), which is substantially larger than expected by chance (pbinom < 2x10-16). Of these, 75 had non 

overlapping 95% confidence intervals with the gene-based approach. Additionally, 46% of 

associations significant in both methods were more significant in the transcript-approach despite 

having a lower number of tested carriers in practically all instances. 

Cis-protein Rsid P value Effect size  95% CI N carriers 

GPNMB rs11537976 1.5x10-233 0.6 0.5, 0.6 318 

BST1 rs144539516 7.6x10-102 0.5 0.5, 0.6 506 

HMOX2 rs146410700 1.2x10-91 3.4 3.0, 3.7 11 

Table 4: Single variant cis-protein association results for BST1, GPNMB, HMOX2 variants rs11537976, 

rs144539516, and rs146410700 

Figure 3: BST1, GPNMB, HMOX2 inclusive gene-based model and representative transcript-based 

models.  

3’ 

5’ 

5’ 

5’ 

3’ 
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4.5. Transcript-specific variant sets elucidate novel transcript-trait associations  

We identified 241 associations across 60 loci as being significant in the transcript-based approach 

but not in the gene-based burden. Of these, 56 transcript-trait associations had effect estimates with 

non-overlapping 95% confidence intervals with the gene-based burden (Table 5). These include 

PCSK5 transcript ENST00000376752 and standing height (transcript-specific statistic, P = 1.3x10-

16, effect = 0.72 SD decrease; gene-based statistic, P = 0.02, effect = 0.05 SD decrease) and LDLR 

transcript ENST00000252444 and apolipoprotein B (transcript-specific statistic, P = 5.7x10-20, 

effect = 1.0 SD increase; gene-based statistic, P = 3.0x10-4, effect = 0.2 SD increase). These data 

reflect genotype-phenotype associations that would have been otherwise undetected if testing only 

the standard, gene-based burden. 

 

Gene Phenotype 

P value 

gene-

based 

burden 

Effect 

size 

gene-

based 

burden 

N carriers 

gene-

based 

burden 

95% CI 

gene-

based 

burden 

P value 

transcript-

based 

burden 

Effect 

size 

transcript-

based 

burden 

N carriers 

transcript-

based 

burden 

95% CI 

transcript-

based 

burden Transcripts 

EPB41 
Reticulocyte 

percentage 
8.5x10-9 0.33 282 0.2,0.4 6.9x10-22 1.1 77 0.8,1.3 ENST00000373800 

LDLR 
Apolipoprotein 

B 
3.0x10-4 0.17 425 0.1,0.3 5.8x10-20 1.0 78 0.8,1.2 ENST00000252444 

SCUBE3 Standing height 1.2x10-4 -0.12 373 -0.2,-0.1 1.4x10-18 -0.6 71 -0.8,-0.5 ENST00000274938 

EPB41 Total bilirubin 1.5x10-4 0.19 275 0.1,0.3 8.3x10-17 0.8 74 0.6,1.0 ENST00000373800 

PCSK5 Standing height 1.9x10-2 -0.05 829 -0.1,-0.01 1.3x10-16 -0.7 50 -0.9,-0.5 ENST00000376752 

UGT1A9 Total bilirubin 6.9x10-3 0.17 227 0.04,0.3 8.7x10-16 0.4 355 0.3,0.5 ENST00000354728 

TINF2 
Telomere 

Length 
1.3x10-5 0.44 92 0.2,0.6 1.1x10-15 2.1 14 1.5,2.6 ENST00000557921 

PFKM HbA1c 4.8x10-8 -0.25 391 -0.3,-0.2 1.4x10-15 -0.5 201 -0.6,-0.4 ENST00000549941 

TTN 
Systolic blood 

pressure 
8.6x10-9 -0.08 4430 -0.1,-0.1 1.8x10-14 -0.2 1807 -0.2,-0.1 ENST00000359218 

Figure 4. Comparison of estimated effect sizes on 188 quantitative traits for the transcript and 

gene-based burden. Each dot represents an association of the transcript or gene-based burden 

with a quantitative trait. 
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CHD2 
Lymphocyte 

percentage 
1.4x10-5 0.50 67 0.3,0.7 1.8x10-14 2.1 12 1.5,2.6 ENST00000394196 

NF1 
Lymphocyte 

percentage 
4.4x10-8 -0.29 312 -0.4,-0.19 3.5x10-13 -1.4 25 -1.8,-1.0 ENST00000431387 

IGF2BP2 Standing height 2.5x10-8 -0.47 53 -0.6,-0.3 4.0x10-13 -0.9 25 -1.1,-0.7 
ENST00000346192;

ENST00000382199 

PKD1 Urate 3.3x10-6 0.21 313 0.1,0.3 4.5x10-13 0.6 97 0.4,0.8 ENST00000423118 

CREB3L3 
Apolipoprotein 

A 
6.5x10-4 -0.07 1709 -0.1,-0.03 2.2x10-12 -0.4 205 -0.6,-0.3 

ENST00000078445;

ENST00000595923 

CLEC11A Standing height 3.7x10-5 -0.02 13452 
-0.03,-

0.01 
3.5x10-12 -0.1 5719 -0.1,-0.04 ENST00000250340 

TPM4 
Thrombocyte 

volume 
9.1x10-6 0.62 42 0.3,0.9 8.4x10-12 1.8 12 1.3,2.3 ENST00000586833 

COL18A1 
Apolipoprotein 

A 
6.6x10-4 -0.07 1876 -0.1,-0.03 1.1x10-11 -0.2 620 -0.3,-0.2 ENST00000355480 

PFKM Pyruvate 8.7x10-9 0.55 105 0.4,0.7 1.4x10-11 1.2 30 0.9,1.6 ENST00000546465 

RNF10 
Reticulocyte 

count 
1.7x10-1 0.04 1296 -0.02,0.1 3.2x10-11 0.7 76 0.5,0.9 ENST00000413266 

ANK1 HbA1c 6.4x10-3 -0.23 118 -0.4,-0.1 8.3x10-11 -0.9 47 -1.1,-0.6 ENST00000520299 

NF1 Standing height 1.0x10-6 -0.17 322 -0.2,-0.1 9.6x10-11 -0.8 27 -1.0,-0.5 ENST00000431387 

MARCHF8 

Erythrocyte 

distribution 

width 

1.1x10-4 0.17 456 0.1,0.3 9.7x10-11 0.5 165 0.3,0.6 
ENST00000319836;

ENST00000395769 

PRC1 Platelet crit 1.7x10-5 -0.22 304 -0.3,-0.1 1.8x10-10 -0.5 130 -0.7,-0.4 ENST00000442656 

LARP1 

Mean 

corpuscular 

hemoglobin 

1.7x10-2 -0.23 87 -0.4,-0.04 8.9x10-10 -1.0 30 -1.3,-0.7 ENST00000518297 

MARCHF8 

Immature 

reticulocyte 

fraction 

7.7x10-6 0.21 441 0.1,0.3 1.0x10-09 0.5 157 0.3,0.6 
ENST00000319836;

ENST00000395769 

UGT1A8 Total bilirubin 4.8x10-2 -0.18 99 -0.4,0 1.4x10-09 0.4 227 0.3,0.5 ENST00000373450 

CREB3L3 Triglycerides 2.2x10-3 0.06 1880 0.02,0.1 1.7x10-9 0.4 223 0.3,0.5 
ENST00000078445;

ENST00000595923 

PTCH1 Standing height 5.2x10-4 -0.16 167 -0.3,-0.1 2.7x10-9 -0.4 87 -0.5,-0.3 ENST00000468211 

4.6. Transcript-specific variant sets limit pLOF variants in low expression exonic regions 

One method by which the transcript-aware variant sets improve burden testing is by excluding 

variants within weakly expressed exonic region. An example of this improvement can be shown 

with LDL cholesterol and the low-density lipoprotein receptor (LDLR). We evaluated seven distinct 

transcript-isoforms variant sets for their association with apolipoprotein B, the main protein found 

in LDL. All seven tested LDLR transcript sets were more statistically significant and had larger 

effect sizes as compared to the gene-based inclusive method (Table 6).  

     The best performing LDLR transcript, ENST00000252444, compared to the worst performing 

LDLR transcript, ENST00000557933, and the gene-based model, lacks pLOF variants primarily in 

two critical regions: the first exon and part of the penultimate exon, highlighted in pink (Figure 5).  

 

 

 

 

 

 

 

Figure 5. Two LDLR transcript models and the inclusive, gene-based model overlayed with pext = 0 

regions in pink. No pLOF variants appear in the terminal exons of all three models. 

3’ 5’ 

Table 5. Transcript-specific results with significant quantitative traits associations, and 95% CI of effect size 

not-overlapping with the gene-based burden 95% CI. For loci with multiple significant results, or multiple 

highly correlated phenotypes, the result with the lowest P value is shown. Multiple transcripts are listed when 

the variant sets are identical. 
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all tissues (TPM) 

3’ 5’ 

In both regions, pext, or the proportion expressed across transcripts22, is equal to 0, indicating that 

these regions have extremely low expression across all isoforms. All seven tested LDLR transcript-

aware variant sets excluded some variants in the pext = 0 regions, and subsequently, resulted in an 

improved apolipoprotein B association compared to the gene-based method.  

4.7. Transcript-specific variant sets exclude misannotated pLOF variants 

Additionally, the transcript-specific variant sets can improve association testing through the 

exclusion of misannotated variants. For example, polycysatin-1 (PKD1) is a well-characterized 

protein for its function in causing 85% of autosomal dominant polycystic kidney disease cases23. 

When damaged, the kidneys are unable to clear waste products like urea and creatinine which 

instead end up in high concentrations in the blood. Elevated serum urate is documented in rare-

variant burden testing of PKD1 pLOF variants24. Our results show an improved association of PKD1 

and urate using the transcript-based approach. When comparing the most significantly associated 

transcript variant set, ENST00000423118, and the gene-based burden, 12 variants are excluded. The 

most frequent among these is rs758337073, a PKD1 variant labeled as “likely benign” by ClinVar25. 

Rs758337073 is a “stop gained” pLOF in ENST00000488185 and is subsequently designated as a 

pLOF in the gene-based method. However, rs758337073 is not considered a pLOF in 23/24 PKD1 

transcripts. ENST00000488185 has low overall expression, and zero expression in kidney cortex or 

medulla as shown by GTEx, indicating that this is likely a misannotated pLOF, and its inclusion in 

the gene-based method adds noise and dampens the PKD1-urate burden association (Figure 6).  

 

 

 

 

 

 

5. Discussion 

The drug discovery process is long, costly, and rarely ends in approval. Human genetic evidence 

provides an opportunity for novel target identification and validation for existing programs. Both 

Gene Phenotype P value  Effect size  N carriers  95% CI  Transcripts 

Median 

expression in all 

tissues (TPM) 

LDLR Apolipoprotein B 5.8x10-20 1.0 78 0.8,1.2 ENST00000252444 7.8 

LDLR Apolipoprotein B 6.7x10-18 0.9 84 0.7,1.1 ENST00000558518 0.5 

LDLR Apolipoprotein B 3.2x10-16 1.0 67 0.7,1.2 ENST00000455727 0 

LDLR Apolipoprotein B 1.0x10-14 0.9 65 0.7,1.2 ENST00000545707 0 

LDLR Apolipoprotein B 4.4x10-13 0.9 56 0.7,1.2 ENST00000535915 0 

LDLR Apolipoprotein B 1.6x10-12 0.6 118 0.5,0.8 ENST00000558013 0 

LDLR Apolipoprotein B 1.7x10-9 0.5 124 0.4,0.7 ENST00000557933 0.1 

LDLR Apolipoprotein B 3.8x10-4 0.2 287 0.1,0.3 Inclusive model  

Table 6. Comparison of LDLR transcript-based models and the inclusive, gene-based model on 

apolipoprotein B levels 

Figure 6. Median expression of PKD1 transcript isoforms ENST00000423118 and 

ENST00000488185, and the inclusive, gene-based model.  

rs758337073 
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common and rare variant genetic analyses have been shown to improv the chances of a successful 

clinical trial and form the basis of rational drug discovery and development26. 

      Our analysis highlights the importance of incorporating transcript-aware analyses into RVAS. 

We find that a transcript-aware approach broadly leads to lower circulating levels of cis-proteins as 

compared to the gene-based method. Since we expect pLOFs to lead to nonsense-mediated decay, 

and a reduction of functional RNA and protein products, this indicates that the included variants are 

more likely to be functioning as true LOFs. This is also evident in quantitative-trait testing, where 

we observe increased absolute value of effect sizes for the isoform-specific variant sets. The 

transcript-level approach also identifies novel isoform-trait associations, and in rare cases, identifies 

associations with an opposite direction of effect as compared to the gene-based method, as is the 

case with GPNMB, HMOX2, and BST1 and their proteins encoded in cis. These data indicate the 

potential for a transcript-aware approach to elucidate new genetically validated drug targets, some 

of which may be isoform-specific.            

     Previously published literature has highlighted the importance of considering transcript data in 

RVAS. Cummings et al. described variants overlapping low confidence transcripts as a main 

contributor to the false annotation of pLOF variants. To counteract this, the authors developed the 

“proportion expressed across transcripts” (pext) score which quantifies the expression of transcript 

isoforms and exons. When testing pLOF variants in low pext-scored regions, the authors reported 

effect sizes comparable to the inclusion of synonymous variants. However, testing pLOF variants 

in high pext-scored regions resulted in substantially larger effect sizes22. This is consistent with our 

results showing that the transcript-level burden leads to larger effect sizes, in some cases, like for 

LDLR, by excluding variants in low expression exonic regions.  

     Our approach is limited in several ways. By only using transcript isoforms detected in at least 

one of 53 GTEx tissues, we exclude transcripts that may be expressed in other tissue and cell types. 

For example, several quantitative ocular phenotypes were tested, but we did not utilize data on 

ocular transcript isoform expression. Additionally, our analysis was only conducted on European-

ancestry individuals due to limited sample size of other ancestral groups; RVAS in other populations 

may yield additional associations. 

     One drawback to the transcript-aware approach is the reduction in sample size, as all isoform-

aware variant sets are smaller than their gene-based counterparts. Additionally, a given gene can 

have multiple alternatively spliced, biologically relevant isoforms, where a pLOF variant in any 

number of those isoforms may lead to the same deleterious effect on a phenotype. In that case, 

testing a single transcript would not be a sufficient representation, and instead it would be better to 

use a more inclusive multi-transcript or gene-based approach. 

     It is possible to test all transcript-variant sets alongside the gene-based method, as we have done 

here. However, this leads to an exceptionally stringent P value threshold and many highly related 

experiments. We suggest a curated implementation of the transcript-approach by testing only 

specific transcripts chosen a priori, for example, only canonical transcripts, MANE-select 

transcripts27 which intend to choose the most biologically relevant, representative isoform for each 

gene, or highly expressed transcript isoforms in relevant tissue types. 
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