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High throughput profiling of multiomics data provides a valuable resource to better un-
derstand the complex human disease such as cancer and to potentially uncover new sub-
types. Integrative clustering has emerged as a powerful unsupervised learning framework
for subtype discovery. In this paper, we propose an efficient weighted integrative cluster-
ing called intCC by combining ensemble method, consensus clustering and kernel learning
integrative clustering. We illustrate that intCC can accurately uncover the latent clus-
ter structures via extensive simulation studies and a case study on the TCGA pan can-
cer datasets. An R package intCC implementing our proposed method is available at
https://github.com/candsj/intCC.

Keywords: Integrative clustering; Consensus clustering; Multiomics data; Ensemble learn-
ing.

1. Introduction

Recent advancements in high throughput technologies have enabled rapid profiling of different
omics data, including genomics, epigenomics, transcriptomics, proteomics and metabolomics
which allow for in-depth study of the complex regulatory patterns from a systems biology per-
spective. For example, the Cancer Genome Atlas (TCGA) has generated over 2.5 petabytes of
multiomics data. Such datasets offer the opportunity to explore the heterogeneity underpin-
ning diseases such as cancer via unsupervised learning based on clustering framework, which
could help define cancer subtypes, bringing us a step closer towards personalized medicine.

In multimodal data structure, e.g., the different omics data, a key challenge in data analysis
is in identifying the most appropriate approach for data integration. For unsupervised cluster-
ing over multimodal data, these include the choice of a single step versus two-step approach.
A single step approach is also known as joint modeling which combines all datasets together.
Two-step approach works by clustering each dataset separately, followed by integration of
these clusters.

A number of integrative clustering methods and tools have been proposed to date. This
includes Bayesian Consensus Clustering (BCC1), iCluster,2 iClusterPlus,3 Cluster Of Clus-
ters Analysis (COCA4), Clusternomics5 and kernel learning integrative clustering (KLIC6).

c© 2023 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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BCC, Clusternomics and iClusterPlus are based on Bayesian modeling framework and rely on
Markov Chain Monte Carlo (MCMC) algorithm for fitting the model. These methods also as-
sume that the probability model for each dataset is specified. However, softwares for BCC and
Clusternomics currently only implement the algorithms for Gaussian distributed dataset, thus
limiting the applicability of these methods to non-Gaussian datasets such as SNPs, mutation
or copy number datasets.

On the other hand, iCluster works by assuming a Gaussian latent variable model for infer-
ring the cluster structures, whereas iClusterPlus increases the versatility of iCluster by incor-
porating statistical models for continuous, binary, multinomial count datasets via a Bayesian
latent variable model and employs MCMC algorithm for sampling from its posterior distri-
bution for statistical inference. However, software implementation of iClusterPlus currently is
limited to integrative clustering of at most four datasets. Since the model involves tuning a
number of parameters, the bottleneck is the computational time when the number of datasets
or features increases.

Another popular integrative clustering approach is COCA4 which was first introduced to
define cancer subtypes by clustering six different datasets, namely DNA copy number, DNA
methylation, mRNA expression, microRNA expression, protein expression, and somatic point
mutation. COCA works by first clustering each dataset using consensus clustering,7 followed
by clustering the binary matrix generated by aggregating the clusters obtained from each
dataset. While this approach is robust and easily scalable to a large number of datasets, a
limitation of COCA is that all datasets contribute equally to the final clustering which affects
the accuracy of the clusters obtained, especially in scenario in which certain dataset is less
reliable.

Taking inspiration from COCA and multiple kernel learning,8,9 KLIC6 was developed to
address the pitfall of COCA. Similar to COCA, KLIC works by first applying consensus
clustering to each dataset. The authors proved that these consensus matrices are positive
semi-definite kernels, which can then be used as input in multiple kernel k-means clustering
and allows for weights to be estimated for each kernel via a two-step optimization strategy
and convex quadratic programming. This approach allows for more informative dataset to
contribute more to the overall clustering. Currently, KLIC runs one clustering algorithm on
each dataset to generate the consensus matrix.

In this paper, we seek to extend the KLIC framework to a more robust integrative clustering
by proposing a two layer weighted integrative clustering which allows for more than one
clustering algorithm to be run on each dataset, i.e, ensemble clustering and aggregated together
via an efficient weight estimation.

2. Methods

Our proposed method can be viewed as a combination of (a) ensemble clustering, i.e, aggre-
gating multiple clustering algorithms, (b) consensus clustering, i.e., resampling, and (c) kernel
learning integrative clustering. While some papers use ensemble and consensus clustering
interchangeably, in this paper, we refer to ensemble clustering as a collection of multiple clus-
tering algorithms, e.g., k-means, hierarchical clustering or partitioning around medoid (PAM),
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whereas consensus clustering as a framework which draws a random sample from either the
sample or feature space. We now briefly describe the consensus clustering and kernel learning
integrative clustering framework.

Consensus clustering was originally proposed by Monti et al (2003).7 The main idea behind
consensus clustering is to apply a resampling scheme on the sample or feature dimension under
the assumption that different subsamples drawn from the dataset should not differ much in
the clustering results. The resampling scheme allows one to assess the stability of the cluster
assignments and the robustness of the dataset to perturbations, thus could aid in deriving a
more stable and reliable result that reveals the real structure underlying the dataset.

A key element derived from the consensus clustering is the consensus matrix which mea-
sures the agreement among samples. For a dataset with N samples, the consensus matrix M
is a N × N matrix whose element M(i, j) denotes the proportion of sample i and sample j

in the same cluster during the resampling iterations. Values which are close to 1 (and vice
versa 0) indicate that the two samples are always assigned to the same cluster (and vice versa
different clusters). 1−M is a distance measure which can be used to derive a final clustering
result.

Cabassi and Kirk (2020)6 proved that the consensus matrix is positive semi-definite and
thus can be used as input in kernel learning integrative clustering via the application of mul-
tiple kernel k-means algorithm. The kernel k-means algorithm utilizes the kernel trick by
projecting the data into a non-linear feature space via a kernel. This overcomes the drawback
of regular k-means clustering which cannot identify clusters that are not linearly separable in
the original input space. The integration of the multimodal data within the kernel learning
integrative clustering involves a convex sum of the kernels, i.e., consensus matrix from each
dataset, and the estimation of the weights in the convex sum. In the KLIC integrative clus-
tering algorithm of Cabassi and Kirk (2020),6 the authors adopted the optimization strategy
proposed by Gonen and Margolin (2014)10 which involves a convex quadratic programming.

In this paper, we reason that the weights in the kernel learning integrative clustering can
be estimated by utilizing the fuzziness in the consensus matrix. Furthermore, we extend the
framework of KLIC by allowing multiple base clustering algorithms, e.g., k-means, hierarchical
clustering, PAM, to be applied within each dataset and aggregated, i.e., ensemble clustering11

which has been shown to enhance the robustness of clustering results compared to individual
clustering algorithm. To this end, we propose an efficient weight estimation method and a two
layer weighted integrative consensus clustering.

2.1. Weight estimation

The consensus matrix can be used to assess cluster stability and composition. As a motivating
example, we generate two datasets, each with 10 features and 100 samples. For both datasets,
we assume that there are 3 clusters with cluster sizes 20, 30 and 50. All the features are gen-
erated from the Gaussian distribution. For dataset 1, 9 out of the 10 features are informative,
where the means of cluster 1, 2 and 3 are 1, -1 and 0, respectively with unit variance. For
dataset 2, 3 out of the 10 features are informative, where the means of cluster 1, 2 and 3 are
0.2, -0.2 and 0, respectively with unit variance. Non-informative features are generated from
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standard Gaussian distribution. We designate datasets 1 and 2 as having high and and low
signal-to-noise-ratio (SNR), respectively and run consensus clustering on both datasets using
100 iterations of k-means and resampling 80% of samples and features in each iteration. Figure
1 shows the heatmaps of the consensus matrices. The diagonal blocks plot the in-cluster val-
ues, whereas the off diagonals blocks plot the out-of-cluster values. For the low SNR dataset,
the off diagonal blocks are much noisier compared to the high SNR dataset. We argue that
this can be used to derive the weights in the multiple kernel integrative clustering. Specifically,
we define the weights based on the ratio of in-cluster proportion to out-of-cluster proportion
using the cluster estimated by the algorithm itself. Clustering result closer to the real struc-
ture tends to have higher in-cluster proportion and lower out-of-cluster proportion. In other
words, datasets with a higher ratio of in-cluster proportion to out-of-cluster proportion will
be assigned larger weights.

High SNR

1
2

3

TrueCluster

Low SNR
TrueCluster

Fig. 1. Heatmaps of consensus matrices for high and low signal-to-noise ratio (SNR) datasets. True
cluster membership is given in the annotation above each heatmap. Predicted cluster membership
corresponds to the three gap-separated blocks in each heatmap.

Without loss of generality, we consider P consensus matrices M1, ...,MP for number of
clusters K. Here, the consensus matrices could arise by applying different clustering algorithms
to the same dataset or could denote consensus matrices derived from different datasets. We
further define:

W p
in(k): in-cluster proportion for cluster k of consensus matrix Mp.

W p
out(k): out-of-cluster proportion for cluster k of consensus matrix Mp.

W p
in: average in-cluster proportion across all clusters of consensus matrix Mp.

W p
out: average out-of-cluster proportion across all clusters of consensus matrix Mp.

Rp: ratio of in-cluster proportion to out-of-cluster proportion for consensus matrix Mp.
Wp: weight for consensus matrix Mp.
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We propose calculating the weights as follows:

W p
in(k) =

∑
i∈k,j∈kMp(i, j)∑
I {i ∈ k, j ∈ k}

, W p
in =

∑K
k=1W

p
in(k)

K

W p
out(k) =

∑
i∈k,j /∈kMp(i, j)∑
I {i ∈ k, j /∈ k}

, W p
out =

∑K
k=1W

p
out(k)

K

Rp =
W p

in

W p
out

Wp =
Rp∑P
i=1R

i

In practice, true cluster membership is unknown, thus the weights will be computed based
on predicted cluster membership. Using this formula, W1 = 0.726 and W2 = 0.274 for the
consensus matrices derived based on predicted cluster membership of the two datasets above.

2.2. Two Layer Weighted Integrative Consensus Clustering

We now describe our proposed two layer weighted integrative consensus clustering. We assume
that there are D datasets, X1,...,XD, and number of clusters K.

Layer 1: For each dataset Xd where d = 1, 2, ..., D:

(1) Perform ensemble clustering using P different clustering methods, where p = 1, 2, ..., P .
This will generate consensus matrices Md

p, where p = 1, 2, ..., P .
(2) Compute the weights wd

1 , w
d
2 , ..., w

d
P for each consensus matrix Md

1,Md
2, ...,Md

P .
(3) Define the weighted consensus matrix Md

weight as Md
weight =

∑P
p=1w

d
p ×Md

p.
(4) Apply a clustering algorithm, e.g., PAM or hierarchical clustering, to each weighted con-

sensus matrix Md
weight.

Layer 2:

(1) For the weighted consensus matrix M1
weight,M2

weight, ...,MD
weight, compute the weights

W1,W2, ...,WD.
(2) Define the weighted of weighted consensus matrixMweight asMweight =

∑D
d=1Wd×Md

weight.
(3) Apply a clustering algorithm, e.g., PAM or hierarchical clustering, to Mweight to derive a

final clustering result.

We provide a flowchart in Figure 2 summarizing our proposed two layer weighted integra-
tive consensus clustering. Our method is implemented as a GitHub R package intCC available
at https://github.com/candsj/intCC.

3. Simulation studies

We conduct simulation studies to compare the performance of our proposed two layer weighted
integrative consensus clustering intCC against other integrative clustering methods which are
implemented for both Gaussian and non-Gaussian distributed datasets, namely KLIC6 and
iClusterPlus.3
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Dataset 1 Dataset 2 Dataset 3

Alg 1 Alg 2 Alg 3

Ensemble clustering with different clustering algorithms

Alg 1 Alg 2 Alg 1 Alg 2 Alg 3

Consensus matrix              M1
1                     M2

1                  M3
1

Level 1 weights                   w1
1                     w2

1                  w3
1

Weighted consensus matrix   M1
weight = M1

1w1
1+ M2

1w2
1 + M3

1w3
1

M1
3                     M2

3                  M3
3

            w1
3                     w2

3                  w3
3

M3
weight = M1

3w1
3+ M2

3w2
3 + M3

3w3
3

    

M1
2                     M2

2

    w1
2                     w2

2

M2
weight = M1

2w1
2+ M2

2w2
2

                 

Weighted of weighted consensus matrix                            Mweight = M1
weight

 W1 + M2
weight

 W2 + M3
weight

 W3 

Clustering

Final integrative cluster assignment to each 
sample

Level 2 weights         W1                W2               W3   
based on M1

weight, M2
weight, M3

weight

Clustering

Fig. 2. Flowchat describing our proposed algorithm.

3.1. Datasets

Unlike Cabassi and Kirk (2020)6 which only considered data simulated from Gaussian distri-
butions, we follow the strategy of Mo et al. (2013)3 where we generate datasets from different
distributions, including Gaussian (e.g., M-values from DNA methylation, microarray data
such as gene expression), binomial (e.g., somatic mutations), Poisson (e.g., count data from
sequencing technologies such as RNA-Seq data or copy number data represented as number
of copies gained or lost) and multinomial (e.g., copy number data states represented as gain,
normal or loss, or SNP data) distributions. This is to ensure that our proposed method is
applicable to integration of continuous, binary, count and categorical types of datasets. For
Settings 1-6, we set the sample size and the true number of clusters to be 60 and 3, respec-
tively in which each cluster consists of 20 samples. We vary the number of informative and
non-informative, i.e., noise features. The parameters used in our simulations for Settings 1-6
are provided in Supplementary Table 1. Settings 7-9 follow from the simulation setup of of
Cabassi and Kirk (2020).6 We consider several simulation settings, namely:

(1) Setting 1: 4 datasets following Gaussian, binomial, Poisson and multinomial distribution,
respectively. Each dataset has 30 features, in which 15 features are informative and the
rest are noise features.

(2) Setting 2: 4 datasets includes normal, binomial, Poisson and multinomial distribution,
respectively. Each dataset has 30 features, in which 15 features are informative and the
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rest are noise features. Informative features have slighly lower signal compared to the
Setting 1.

(3) Setting 3: 3 datasets following Gaussian, binomial and Poisson distribution, respectively.
Each dataset has 30 features, in which 15 features are informative and the rest are noise
features.

(4) Setting 4: 5 datasets following Gaussian, binomial, Poisson, multinomial and Gaussian
distribution, respectively. Each dataset has 30 features. For the first 4 datasets, 15 fea-
tures are informative and the rest are noise features. The 5th dataset follows a Gaussian
distribution in which all features are noise features.

(5) Setting 5: 4 datasets following Gaussian, binomial, Poisson and multinomial distribution,
respectively. Each dataset has 500 features, in which 100 features are informative and the
rest are noise features.

(6) Setting 6: 4 datasets following Gaussian, binomial, Poisson and multinomial distribution,
respectively. Each dataset has 500 features, in which 250 features are informative and the
rest are noise features.

(7) Setting 7: 4 datasets following Gaussian distribution with similar parameter setting. Each
dataset consists of 300 samples with 6 clusters of size 50 samples each. There are 2 features
with no noise feature. For cluster k, µ = k×(separation level−1)/2, σ = 1, k = 1, 2, 3, 4, 5, 6.
Separation level = 4 is used in this setting.

(8) Setting 8: 4 datasets following Gaussian distribution with different parameter setting. Each
dataset consists of 300 samples with 6 clusters of size 50 samples each. There are 2 features
with no noise feature. For cluster k, µ = k×(separation level−1)/2, σ = 1, k = 1, 2, 3, 4, 5, 6.
Varying separation levels = 1, 2, 3, 4 are used in this setting. Only 3 datasets are used as
input. We consider 4 dataset combinations, namely 123, 124, 134, 234. Here 123 implies
that the clustering algorithms are applied to only datasets 1, 2 and 3.

(9) Setting 9 (nested cluster structure): 2 datasets following Gaussian distribution, in which
each dataset consists of 300 samples. There are 2 features with no noise feature. Dataset
1 has 6 clusters of size 50 samples each. Dataset 2 has 3 clusters of size 100 samples each.
For cluster k, µ = k × (separation level − 1)/2, σ = 1, k = 1, 2, 3, 4, 5, 6 for dataset 1 and
k = 1, 2, 3 for dataset 2. Separation level = 4 is used in this setting.

Each setting is repeated 100 times. Additional simulation settings including multivariate Gaus-
sian distribution are provided in Supplementary Material.

3.2. Clustering algorithms

We apply several clustering strategies based on our proposed method intCC, KLIC6 and iClus-
terPlus.3 To evaluate the advantage of ensemble clustering, i.e., applying multiple clustering
algorithms to each dataset, we also include our proposed method which only runs a single clus-
tering algorithm to each dataset. We denote this as one layer weighted integrative consensus
clustering. We also compare application of PAM and hierarchical clustering to the weighted
consensus matrix in deriving a final clustering result. These methods are denoted as:

(1) iClusterPlus: applying iClusterPlus with the data type specified.
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(2) KLIC-k-means: KLIC by applying k-means to each dataset for generating the consensus
matrix.

(3) KLIC-Hclust: KLIC by applying hierarchical clustering to each dataset for generating the
consensus matrix.

(4) 1 layer intCC-k-means (PAM): One layer weighted integrative consensus clustering by
applying k-means to each dataset for generating the consensus matrix, followed by PAM
to derive a final clustering result.

(5) 1 layer intCC-Hclust (PAM): One layer weighted integrative consensus clustering by ap-
plying hierarchical clustering to each dataset for generating the consensus matrix, followed
by PAM to derive a final clustering result.

(6) 1 layer intCC-k-means (Hclust): One layer weighted integrative consensus clustering by
applying k-means to each dataset for generating the consensus matrix, followed by hier-
archical clustering to derive a final clustering result.

(7) 1 layer intCC-Hclust (Hclust): One layer weighted integrative consensus clustering by ap-
plying hierarchical clustering to each dataset for generating the consensus matrix, followed
by hierarchical clustering to derive a final clustering result.

To obtain an unbiased comparison to our two layer approach, we also apply KLIC with
multiple clustering algorithms. In other words, suppose there are 4 datasets and two clustering
algorithms are applied to each dataset, there will be a total of 8 consensus matrices, i.e., akin
to applying KLIC to 8 datasets. KLIC is applied using these 8 consensus matrices as input
in the multiple kernel integrative clustering. Additionally, to illustrate the advantage of two
layer approach, we also include another one layer approach in which we apply a single layer
weight estimation to the 8 consensus matrices. These methods are denoted as:

(8) 2 layer intCC-2 methods (PAM): Two layer weighted integrative consensus clustering
by applying both k-means and hierarchical clustering to each dataset for generating the
consensus matrices, followed by PAM to derive a final clustering result.

(9) 2 layer intCC-2 methods (Hclust): Two layer weighted integrative consensus clustering
by applying both k-means and hierarchical clustering to each dataset for generating the
consensus matrices, followed by hierarchical clustering to derive a final clustering result.

(10) KLIC-2-methods: KLIC by applying both k-means and hierarchical clustering to each
dataset for generating the consensus matrices.

(11) 1 layer intCC-2 methods (PAM): One layer weighted integrative consensus clustering
by applying both k-means and hierarchical clustering to each dataset for generating the
consensus matrices, followed by PAM to derive a final clustering result.

(12) 1 layer intCC-2 methods (Hclust): One layer weighted integrative consensus clustering
by applying both k-means and hierarchical clustering to each dataset for generating the
consensus matrices, followed by hierarchical clustering to derive a final clustering result.

For Settings 1-8, we apply each method by setting the number of clusters to be the true
number of clusters. In practice, one can tune the optimal number of clusters using criteria
such as the silhouette method,12 gap statistics,13 Dunn index14 or the delta K method.7 For
Setting 9, we consider (a) global clustering, where we set the number of clusters to be the
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same throughout for both individual dataset and final integrative clustering, i.e., either 3 or 6
throughout (we denote these strategies as “Global K=3” and “Global K=6”), and (b) separate
clustering, where we use the true number of clusters for individual dataset, i.e., 6 for dataset
1 and 3 for dataset 2, and consider both K = 3 and K = 6 in the final integrative clustering
(we denote these strategies as “Separate K=3” and “Separate K=6”). Additionally, due to the
poor performance of iClusterPlus and the long computational time, we omit iClusterPlus for
Settings 4-6. We compare the performance of the clustering methods via the average adjusted
rand index (ARI). We also report the weight estimation time of intCC and KLIC.

3.3. Results

We summarize the ARI for each simulation setting in Figure 3. Overall, results show that
our proposed methods, namely 2 layer intCC-2 methods (PAM) and 1 layer intCC-k-means
(PAM) perform well across all simulation settings. To explain this observation, without loss
of generality, we summarize the ARI within each simulated dataset of Setting 4 in Figures
4A and 4B. The ARI by applying k-means as the base algorithm in the consensus clustering
within each dataset is significantly better than hierarchical clustering in the simulated datasets
considered in this paper. Thus, it is not surprising that methods which use k-means as the
base clustering algorithm in the consensus clustering yield better performance. However, in
practice the best base clustering algorithm is sometimes unknown. Thus, the 2 layer intCC
which aggregates multiple base clustering algorithms can automatically assign higher weights
to the better algorithm as shown in our simulation studies, as evident from the estimated
weights in Figures 4C and 4D. It is also worth noting that our method assigns significantly
smaller weights to the 5th dataset in which all the features are noise features. Additionally,
using PAM to derive a final clustering result in general yields better performance compared
to hierarchical clustering. We also note that the performance of iClusterPlus is significantly
poorer compared to other methods, consistent with the findings of Cabassi and Kirk (2020).6

Moreover, extending KLIC to run multiple base clustering algorithms, i.e., KLIC-2-methods
has lower ARI compared to our proposed method, implying that the current KLIC framework
does not yield a straightforward extension to incorporate ensemble clustering.

Without loss of generality, we also report the weight calculation time for KLIC and our
proposed method intCC for Setting 1 (60 samples) and Setting 7 (300 samples) in Table 1,
which shows that our proposed weight calculation is computationally efficient and yields good
operating characteristics.

4. Case study

We illustrate our proposed method intCC on the TCGA pan cancer datasets.15 There are 5

datasets across 12 cancer types which represent different tissues of origin, including DNA copy
number, DNA methylation, mRNA expression, microRNA expression and protein expression
data. To minimize bias in the comparison, we use the same preprocessing pipeline as previously
described.6,15
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Setting 9: Global K=3L
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Setting 9: Separate K=3N
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Setting 9: Separate K=6O

Fig. 3. Distribution of ARI across all methods and simulation settings. Blue (red) boxplots are
methods which apply one (two) clustering algorithm(s) per dataset. A-G. Settings 1-7. H-K. Setting
8 with different dataset combinations as input. L-O. Setting 9 with different strategies for setting
number of clusters for individual dataset and final integrative clustering.
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Fig. 4. A-B. Distribution of ARI within each simulated dataset of Setting 4. C-D. Distribution of
estimated weights from intCC within each simulated dataset of Setting 4. Purple (green) boxplots
are results by applying k-means (hierarchical clustering) algorithm in the consensus clustering. A,
C. Using PAM to derive a final clustering result. B, D. Using hierarchical clustering to derive a final
clustering result.

Table 1. Weight calculation time comparison.

Method Setting 1 (seconds) Setting 7 (seconds)

KLIC-k-means 0.541 7.209
KLIC-Hclust 0.791 8.241
1 layer intCC-k-means (PAM) 0.000879 0.00330
1 layer intCC-Hclust (PAM) 0.000882 0.00335
1 layer intCC-k-means (Hclust) 0.000876 0.00333
1 layer intCC-Hclust (Hclust) 0.000909 0.00332
2 layer intCC-2 methods (PAM) 0.00273 0.0103
2 layer intCC-2 methods (Hclust) 0.00265 0.0102
KLIC-2-methods 2.428 27.592
1 layer intCC-2 methods (PAM) 0.00155 0.00673
1 layer intCC-2 methods (Hclust) 0.00152 0.00686

Cabassi and Kirk (2020)6 followed the same procedures described in Hoadley et al. (2014)15

in setting the number of clusters for each dataset, except for microRNA expression in which
the authors identified 8 as the number of clusters. We also set the number of clusters for each
dataset following Cabassi and Kirk (2020).6 Subsequently, we apply our proposed method
intCC to obtain an integrative clustering across these datasets using the PAM algorithm to
derive a final clustering result. Our method also selects 10 as the optimal number of clusters
based on the average silhouette criterion, similar to KLIC.6 Figure 5A compares the cluster
membership of our method intCC against the results of KLIC, with ARI 0.693, whereas
Figures 5B and 5C compare the cluster membership of intCC and KLIC against the 12 cancer
type annotation, respectively. The ARI between intCC and cancer type annotation associated
with tissues of origin is 0.754, whereas the ARI between KLIC and cancer type annotation is
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0.585, indicating that the cluster membership of intCC yields a higher consistency with tissues
of origin in the TCGA pan cancer datasets. Further investigation into the clusters obtained
by intCC versus KLIC among subset of breast invasive carcinoma (BRCA) indicates that
the results from intCC yield a higher consistency with the TCGA-BRCA molecular subtypes
compared to the results from KLIC (Supplementary Material).

The estimated weights of each dataset for intCC and KLIC are (DNA copy number, DNA
methylation, mRNA expression, miRNA expression, protein expression) =(0.073, 0.401,0.045,
0.272, 0.209) and (0.309, 0.192, 0.168, 0.183, 0.148), respectively. intCC assigns a higher weight
to DNA methylation data, whereas KLIC assigns a higher weight to the copy number data,
which could explain the differences observed in cluster memberships obtained by these two
methods. Finally, the weight calculation time for intCC is 0.43 second, whereas the weight
calculation time for KLIC via quadratic programming is > 10 hours on an Intel(R) Xeon(R)
CPU E5-1650 v3 @ 3.50GHz.
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Fig. 5. Heatmaps of coincidence matrices comparing A. intCC clusters to KLIC clusters, B. intCC
clusters to cancer type annotation, C. KLIC clusters to cancer type annotation. The ARI is reported
in the header of each plot.

5. Discussion

The rapid development of high throughput technologies has provided an avenue to scientists
to decipher the complex human diseases from a systems biology perspective via multiomics
profiling. Integrative clustering has become a powerful approach to dissect the heterogeneity
underpinning these diseases, e.g., to define new cancer subtypes which may help inform treat-
ment efforts. In this paper, we extend the framework of KLIC6 which recasts the integrative
clustering model into multiple kernel learning framework by utilizing the consensus matrices
estimated from consensus clustering as input. Specifically, our model further incorporates the
ensemble learning via an aggregation of multiple base clustering algorithms to enhance the
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robustness of multiple kernel integrative clustering model. This is to safeguard against ap-
plying a single base clustering algorithm that performs poorly on the dataset. Additionally,
we also propose an efficient weight estimation to combine the consensus matrices. Our simu-
lation studies show that the proposed two layer weighted integrative clustering yields better
performance overall.

Conceptually, the weight estimation is analogous to the heuristics of multiple kernel sup-
port vector machine (MKL-SVM) based on kernel-target alignment.16–18 Specifically, MKL-
SVM is developed for supervised learning and the kernel-target alignment depends on the true
binary class labels. For a fixed cluster membership, this is equivalent to multi-class classifi-
cation. One can extend the kernel-target alignment for multi-class classification by dividing
the problem into several binary classification subproblems (e.g., one-versus-all or all-pairs).
However, how to optimally combine the results across these binary subproblems is not trivial
and may require longer computational time compared to our proposed method.

Besides identifying appropriate and robust clustering algorithms, another important re-
search question in unsupervised learning is in tuning the optimal number of clusters. Several
metrics have been proposed for this task, including the silhouette method,12 gap statistics,13

Dunn index14 and the delta K method.7 An immediate extension to our intCC framework is
to aggregate the different metrics/criteria for selecting the optimal number of clusters.

Supplementary Material and Code

Supplementary Material is available online at
http://www.ams.sunysb.edu/~pfkuan/PDF/SM_PSB2024.pdf.
The R code implementing intCC is available online at https://github.com/candsj/intCC.
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