1. Introduction

Precision medicine involves tailoring medical decisions and treatments to individual patients in a data-driven manner. The accumulation of medically-relevant and, particularly, molecular data has uncovered the potential for mechanistic insight into disease processes facilitating clinical decision making. Advances in genomic techniques, e.g. spatial transcriptomics and single cell analysis, have further enabled identification of the genetic biomarkers of patient drug responses, susceptibility to diseases, and other medically-relevant outcomes. At the same time, the enormous scale of this data has stimulated use of novel computational methods, resulting in, e.g., the recent explosion in deep learning-based, biological and medical data analysis techniques.
While the concept of personalized medicine stretches back nearly two decades—just slightly longer than our PSB session—the implementation of precision medicine in practice (still) remains in its early stages. Novel technologies require new integrative approaches to advance the state of the art in this field. In our 2024 session we feature work from researchers across diverse domains, who integrate various omics data to provide valuable insights into disease mechanisms, diagnosis, and treatment. In this collection, we explore their cutting-edge advancements in more detail.

2. Session Contributions

2.1. Transcriptome and Histopathology Integration

A number of studies submitted to our session focused on integrating spatial transcriptomics and histopathology data and demonstrating the potential of this combination to enhance our understanding of tumor biology. Song et al. enriched their transcriptome-driven findings by incorporating morphological features extracted from histopathology images to enable a comprehensive analysis of tumor architecture via feature clustering. Azher et al. employed contrastive learning and Graph Convolutional Neural Networks (GCN) to predict disease stage, lymph node metastasis, and survival prognosis in cancer patients. Meanwhile, Srinivasan et al. developed a transformer-based model to shed light on the molecular pathways involved in skin aging due to light exposure. Their findings not only contribute to our understanding of their chosen conditions but also demonstrate the potential of their approaches for studying other diseases.

2.2. Spatial Proteomics: Revealing Tissue Microenvironments.

Wu et al. introduced innovative methods to analyze tissue microenvironments at high resolution using spatial proteomics. By measuring inferred protein polarity, they identified distinct subpopulations of immune cells within tumors, shedding light on potential markers of better prognosis. This approach holds promise for identifying patients who may respond favorably to specific treatments.


Sapoval et al. proposed a novel metagenomic analysis pipeline that bypasses the need for genome assembly, allowing for direct comparisons between patients and healthy controls. This reference-free approach is particularly valuable for studying conditions like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), where the gut microbiome plays a crucial role. Understanding dysbiosis at this level can help identify potential disease markers and therapeutic targets.

2.4. Polygenic Risk Scores: Bridging Genomics and Disease.

Cardone et al. examined the role of a lymphocyte count PRS (polygenic risk score) in predicting CD4 T-cell recovery in individuals with HIV undergoing anti-retroviral therapy. While their findings indicated limited PRS impact compared to clinical factors, they underscore the importance of considering multiple variables in precision medicine studies. Kember et al. focused on improving PRS accuracy for cardiometabolic traits; their findings emphasize the need for implementing separate scoring mechanisms for diverse ancestries.

2.5. Integrative Methods for Clustering, Meta-analysis, Deconvolution, and Network Rewiring.

Numerous contributions aimed at enhancing integrative methods for meta-analysis, subtype detection, cell type deconvolution, and network rewiring. Zhang et al. introduced nSEA, an algorithm for unsupervised clustering of low grade Gliomas, uncovering a novel subtype with clinical implications. Huang et al.
proposed a multi-modal clustering approach that combines various data types to cluster tumor samples across different cancer types, offering a more holistic perspective on cancer classification.

In the realm of meta-analysis, Fukutani et al overcame batch effects in gene expression data, highlighting the importance of robust analytical techniques in large-scale studies. Sufriyana et al employed data-driven ontology inference to uncover novel gene sets relevant to subtypes of preeclampsia, showcasing the power of meta-analysis in identifying novel biological processes.

Deconvolution, a vital tool for deciphering cellular composition from omics data, faced challenges in understanding nascent RNA. Maas et al introduced an adaptation for nascent RNA sequencing, addressing the nuances of this emerging field.

Finally, Dannenfelser et al explored how alternative splicing rewires protein interaction networks in cancer. Their Splitpea method provides insights into the complex interplay between alternative splicing and disease, offering a novel perspective on cancer biology.

References


