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The drug development pipeline for a new compound can last 10-20 years and cost over $10
billion. Drug repurposing offers a more time- and cost-effective alternative. Computational
approaches based on network graph representations, comprising a mixture of disease nodes
and their interactions, have recently yielded new drug repurposing hypotheses, including
suitable candidates for COVID-19. However, these interactomes remain aggregate by design
and often lack disease specificity. This dilution of information may affect the relevance of
drug node embeddings to a particular disease, the resulting drug-disease and drug-drug
similarity scores, and therefore our ability to identify new targets or drug synergies. To
address this problem, we propose constructing and learning disease-specific hypergraphs
in which hyperedges encode biological pathways of various lengths. We use a modified
node2vec algorithm to generate pathway embeddings. We evaluate our hypergraph’s ability
to find repurposing targets for an incurable but prevalent disease, Alzheimer’s disease (AD),
and compare our ranked-ordered recommendations to those derived from a state-of-the-art
knowledge graph, the multiscale interactome. Using our method, we successfully identified 7
promising repurposing candidates for AD that were ranked as unlikely repurposing targets
by the multiscale interactome but for which the existing literature provides supporting
evidence. Additionally, our drug repositioning suggestions are accompanied by explanations,
eliciting plausible biological pathways. In the future, we plan on scaling our proposed method
to 800+ diseases, combining single-disease hypergraphs into multi-disease hypergraphs to
account for subpopulations with risk factors or encode a given patient’s comorbidities to
formulate personalized repurposing recommendations.

Supplementary materials and code: https://github.com/ayujain04/psb_supplement
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1. Introduction

The development of new drugs can take more than 15 years, from the discovery and pre-clinical
phase to review by regulatory agencies.1 Hence, repurposing drugs previously approved by the
Food and Drug Administration or European Medicines Agency serves as a convenient al-
ternative since they are already known to be safe in human populations. From a research
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and development perspective, drug repurposing is a less risky enterprise. Indeed, following
compound identification, repositioned drugs would generally hit the market in less than 10
years. Beyond time savings, this strategy brings significant cost savings, potentially reduc-
ing the average pharmaceutical pipeline’s budget by over $5 billion compared to traditional
drug development. To date, drug repurposing encompasses three main approaches: computa-
tional biomedicine,2 biological experimentation, and their combination, e.g., through systems
pharmacology.3

Computational approaches are both more time-effective and cost-effective than in vitro
or in vivo biological experiments, which involve high-throughput screening or phenotypic
screening based on animal and human models, respectively. Examples of available strategies
include signature matching, genome-wide association studies, and the retrospective analysis
of real-world clinical information.4 Their use has been unlocked by the concurrent emergence
of technical advances such as biological microarrays and the increase in data accessibility, as
illustrated by the rapid growth of electronic health records and biobanks.5

Simultaneously, massive genomic databases and cell lines have yielded 20+ high-quality
biological and biomedical knowledge graphs (KG) such as SPOKE6 and PrimeKG7 and ag-
gregating platforms such as the KG-Hub8 to ensure that the former can be shared and made
interoperable for downstream graph machine learning tasks. Network-based methods for drug
repurposing rely on the encoding of interactions between entities (i.e., drugs, diseases, proteins,
biological functions) that can be heterogeneous (i.e., inhibition, binding). These representa-
tions can help address both predictive (e.g., polypharmacy side effects) and inferential (e.g.,
reasoning over causal pathways) questions. Prior graph representations such as the multi-scale
interactome (MSI)9 have proved useful in identifying agents that were previously repurposed
and in formulating new potential drug repurposing candidates.

However, drug repurposing hypotheses output by algorithms or deep learning models de-
ployed on KGs may appear as “black boxes.” Yet structural and/or functional explanations
are often desirable and necessary to understand the possible mechanisms of action underlying
a predicted relationship between an existing drug and a disease – be it beneficial or detri-
mental. Further, KGs integrating various data sources are rarely disease-specific. Thus, they
may result in overall drug similarities that do not hold for the pathology of interest or in
spurious correlations. This concern is especially relevant for neurodegenerative diseases such
as AD, given the presence of the blood-brain barrier10 and differential gene expression levels
and patterns in the brain – relative to other tissues – and across brain regions themselves.

Contributions. Hypergraphs have seen success in uncovering relationships in areas like mar-
keting,11 finance,12 and computer vision.13 Building upon this precedent in other disciplines,
we propose disease-specific hypergraphs as the basis for data-driven drug repurposing. Im-
portantly, hypergraphs allow encoding relationships among groups of nodes (i.e., hyperedges)
rather than pairwise relationships (i.e., edges) only. In our study, hyperedges capture known
biological pathways. First, we show that the properties of hypergraphs reflect relative disease
complexity. Second, we transform disease-specific hypergraphs into weighted graphs where
nodes encode biological pathways and weighted edges relate to the number of entities that
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they have in common (e.g., the number of shared genes or proteins). With the intent of en-
compassing disease specificity, we focus on pathways that start with a drug entity and end
with the disease entity of interest, irrespective of their length. Using a modified node2vec14

algorithm, we learn the disease-specific embeddings of each hyperedge. In particular, we use
these low-dimensional representations to find original biological pathways that are highly
similar to those whose starting entity is a drug currently prescribed to treat the disease or
mitigate its progression. Then, we pool the top k or k% candidate biological pathways for
various values of k and analyze the distributions of starting drug entities and middle gene
entities. Such prevalences help gain a mechanistic understanding of promising drug classes
and targets for repurposing. We illustrate our proposed method in the context of Alzheimer’s
disease (AD), a multi-factorial disease of aging that still has no cure despite recent progress.15

We demonstrate that our proposed method outputs candidate biological pathways that are
topologically non-obvious, i.e., they do not have any entities in common with the reference
pathways involving currently prescribed drugs, besides the end disease entity. To assess the
utility and complementary of learning disease-specific pathway embeddings, we contrast these
non-obvious suggestions with those of the MSI, compare the corresponding rank orderings,
and validate our findings by mining the biomedical literature to find supporting evidence.
Our comparative analysis and publication search reveals that certain candidates that were
highly ranked (i.e., in the top 10%) by our hypergraph-based learning approach for AD drug
repurposing and had supporting evidence in the literature were missed by the MSI (i.e., in the
bottom 33% across all drugs). Going forward, our proposed framework can be scaled to derive
novel drug repurposing hypotheses for each of the 800+ major diseases currently registered
on the KG-Hub8 (i.e., excluding rare and orphan diseases).

2. Methods

In this section, we describe our proposed approach, which encompasses three main parts:
hypergraph construction, pathway/hyperedge representation learning, comparative analysis
with the MSI,9 and mining of the biomedical literature to find supporting evidence.

2.1. Hypergraph Construction

We built disease-specific hypergraphs by querying the Hetionet16 knowledge graph, which
comprises 1,522 drugs, 5,734 side effects, and 137 diseases, to extract significanta biological
pathways connecting each drug present in the KG to the disease of interest. Hetionet is an
existing state-of-the-art knowledge graph that incorporates 11 node types (e.g., gene, symp-
tom), allowing for vast heterogeneity in the node composition of “metapaths” going from a
compound to a disease, which we sample from to create disease-specific hypergraphs (Figure
1a). We query the Hetionet to retrieve all paths starting at one of the 1,522 drugs and end-
ing at a disease of choice. These paths are further grouped into metapath categories based
on the type and order of nodes present within the path. For example, a metapath category
could be “drug-gene1-gene2-targetDisease” or “drug-gene2-similarDisease-targetDisease.” We

aA more detailed definition of significance follows.
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use the direct weighted path count and adjusted p-value defined by the Hetionet to quantify
the significance of a path, relative to others within its metapath category. We include the
top 10% most significant paths within each category to create our induced disease-specific
subgraph. We reasoned that selecting only the most significant pathways would help miti-
gate the resulting number of false positives among drug repurposing candidates. The largest
connected component is treated as the subgraph of interest (Figure 1b); other components,
generally much smaller in size, are ignored. All existing biological pathways in the resulting
subgraph are explicitly unified as hyperedges, creating a disease-specific hypergraph (Figure
1c). Lastly, we transformed our disease-specific hypergraph into a disease-specific graph where
the nodes now correspond to the biological pathway hyperedges that originally constituted
the hypergraph. Two biological pathway nodes are connected if they share another element
in their path besides the start entity (drug) and the end entity (disease). The edge weight
is defined by the number of shared elements w, normalized between 0 and 1 using min-max
scaling (Figure 1d) to enable comparisons of graph structures across diseases.

2.2. Biological Pathway Hyperedge Representation Learning

Given a specific disease of interest, our study aimed to identify biological pathways analogous
– in a learned distinct dimensional subspace – to those associated with drugs currently used
to treat it. In particular, we conducted a case study on Alzheimer’s disease and considered
medications prescribed to alleviate the associated symptoms and behavioral complications. We
focused primarily on three compounds: donepezil, galantamine, and memantine,17–19 approved
by the FDA in 1996, 2001, and 2003, respectively. Our approach is disease-agnostic and can be
readily extended to other diseases than AD, upon the supply of a list of compounds currently
used in clinical practice or previously suggested as repurposing candidates and provided access
to adequate computing resources.

Our methodology involved initiating a random walk of fixed length L on the transformed,
weighted graph Gw delineated in Figure 1 (d), commencing from any of the biological pathway
nodes whose first path element was one of the drugs currently prescribed against the disease
of interest. We accounted for the presence of weighted edges by sampling neighboring nodes
proportionally to the strength of the connection. The random walker began at a selected node,
then proceeded iteratively to an adjacent node chosen uniformly at random among possibly
duplicated neighbors, and repeated this process for a predetermined number of steps. For each
eligible starting node in our weighted graph Gw, a random walk was initiated, with a fixed
length set at L=80. Each start node-specific random walk was replicated R=10 times, in light
of the vast heterogeneity of node types and the resulting variation in feasible trajectories.

We denote by vi the position of the random walker at iteration i = 1. At each iteration i

of the random walk, the probability of transitioning from biological pathway x to biological
pathway y is expressed as:

P (vi = y|vi−1 = x) =
weight of edge between x and y

sum of weights of all edges leaving x
(1)
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Fig. 1: Pipeline to derive disease-specific hypergraphs from existing KGs and learn contextual
embeddings of biological pathways. (a) Full Hetionet graph with nodes of 11 types, includ-
ing 1,522 drugs, 5,734 side effects, and 137 diseases. (b) Disease-specific subgraph, selecting
only the biological pathways whose end node is the disease of interest. Of note, only the top
10% most significant pathways within each metapath category (as defined by their length and
structure, e.g., drug-gene1-gene2-disease) are retained, based on a path importance score as-
signed by Hetionet.16 (c) Disease-specific hypergraph unifying significant paths or hyperedges
into a single structure. (d) Disease-specific weighted graph resulting from the transformation
of the hypergraph described in (c). Each hyperedge in (c) becomes a node in (d) and nodes
in (d) are connected if their corresponding biological pathways in (c) have at least another
element in common, beyond the disease node. Each edge is assigned a weight w, corresponding
to the number of elements common to the two biological pathways. Note that the weight does
not include the disease node, which all pathways present in a given disease-specific hypergraph
intersect at, by design; similarly, the compound node at the start of each reference biological
pathway does not contribute to the weight either, continuing our focus on learning biological
similarities between the drugs).

2.2.1. Skip-Gram Model

We interpreted the resulting random walks as sentences, utilizing the Word2Vec Skip-Gram
model provided by gensim to develop node embeddings for each biological pathway.14 This
model predicts context words (nodes within the same walk) given a target word (a node).
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Applied to the context of our disease-specific weighted graph, the embeddings of biological
pathways learned through this process encapsulate the local neighborhood structure of the
nodes and are subsequently used for our pathway similarity search.

The Skip-Gram model’s objective is to devise word representations that effectively predict
surrounding words in a sentence or document.20 Formally stated, given a sequence of training
words w1, w2, ..., wT , the model aims to maximize the average log probability obtained via the
chain rule:

1

T

T∑
t=1

∑
−k≤j≤k,j ̸=0

logP (wt+j |wt) (2)

where k denotes the size of the training context and T denotes the total number of training
words. In linguistics, k often represents the typical length of a sentence; by analogy, in biology,
it could encode the number of reactions occurring in cascade. Similarly, in linguistics, T
often represents the size of the vocabulary, which can be language-specific; in biology, the
total number of biological pathways involved is disease-specific. To alleviate the fact that
pathway length can greatly vary, we guided the model to learn embeddings of fixed dimension
p = 64 dimensions. We subsequently used cosine similarity as the metric to quantify similarity
between any two biological pathways.

Our decision to utilize the Skip-Gram algorithm for learning embeddings was driven by our
intent to infer semantic contextual relationships among biological pathways, given a specific
disease. To learn the embeddings, we chose the random walk and skip-gram based approach
to derive a first proof of concept of using a hypergraph structure and explicitly restricting it
to a given disease.

2.3. Methods for Evaluation

Our approach to proposing repurposing hypotheses for a given disease of interest relies on
identifying the top 10% of biological pathway embeddings having the highest cosine simi-
larity with pathways initiating from any of the drugs known to mitigate or prevent disease
progression and ending at the disease node. While pathways can include a variety of interme-
diary nodes (e.g., symptom, anatomical object, etc.), we selected exclusively those pathways
with one or more gene intermediary nodes linking one of the 1,522 drug candidates to the
considered disease. We reasoned that this feature would help focus our hypotheses on biolog-
ically plausible pathways and thus facilitate the interpretation of drug repurposing candidate
rankings.

The data and methods of the multiscale interactome (MSI) were used as a baseline for
comparative analysis. The MSI consists in a large biological KG with 1,566 drugs and 841
diseases and leverages a random walk approach to formulate repurposing hypotheses.

From our weighted graphs, we quantified the rank of each biological pathway in terms
of its cosine similarity to a selected relevant pathway. We considered relevant pathways to
be those whose starting drug entity was a drug currently indicated against the disease of
interest. To obtain a single metric per drug, we either aggregated the cosine similarity scores
of the pathways in which it was involved into an median value or used the pathway with
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the maximum similarity. Then, we used this summary metric to rank all considered drugs
and contrast our own repurposing suggestions with those of the MSI. We used these metrics
and the relative rankings of psychoanaleptics in the MSI vs. our hypergraph to compare their
AUC.

From the MSI, we derived rankings of the most similar drug pairs based on the rankings
of the drugs most similar to disease-specific drugs, based on the cosine similarity of their 64-
dimensional embeddings. We also established a rank-ordered list of drugs most similar to the
disease of interest (e.g., AD), given the cosine similarity between drug and disease embeddings.
Notably, while the rank of a drug as derived from the MSI is the output of either a single
similarity score (with the disease’s embedding) or a couple of scores only (with the embeddings
of known drugs against this disease), its rank as derived from our hypergraph-based approach
is the output of a much larger double-averaging operation, across all pathways starting at the
drug of interest and those starting at a drug already known to target this disease.

We aimed at uncovering any potential blind spots in the MSI that our methodology might
successfully uncover. To this end, for drugs that our approach ranked among the top 10%, we
retrieved the corresponding MSI-derived rankings for comparison. For each pair, we computed
the absolute difference in rank. In addition, we computed an aggregate similarity metric be-
tween the MSI and our approach, defined as the size of the overlap between the sets of drugs
appearing in the top 10% under each.

To further validate our methodology and the relevance of the resulting pathway embed-
dings, we undertook a deeper analysis of the drug repurposing suggestions that most differed
between the MSI and our proposed method, based on the difference in ranks. In particular,
we searched the biomedical literature for biological and/or clinical evidence about drug re-
purposing suggestions that fell within the bottom third of the MSI’s rank-ordered list (i.e.,
compounds ranked 1,032 to 1,522) while being in the top 10% of ours.

3. Results

We conducted several experiments on our disease-specific hypergraph, using a sample of 18
prevalent and/or incurable diseases. First, we computed summary statistics about these 18
disease hypergraphs and formed clusters that reflect known disease complexity (Section 3.1)
Second, we learned disease-specific embeddings of biological pathways on these hypergraphs to
identify potential drug targets. To interpret our findings, we explored the distribution of genes
involved in the resulting pathways (Section 3.2 and Figure 3). Our intent was to confirm some
of the repurposing hypotheses that emerged from the MSI and to formulate new ones. Third,
we reviewed the literature to gather information about targets overlooked by the MSI but
documented in prior studies; we summarize our findings (Section 3.3). We also evaluated the
AUC differences between the MSI and our Alzheimer’s disease specific hypergraph (Appendix
B in our supplement)

3.1. Hypergraph Construction Underlines Known Disease Complexity

Utilizing our method, we constructed 18 disease-specific hypergraphs (Figure 2). For each,
we computed the number of hyperedges (biological pathways) and the number of weighted
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links among them; we mapped diseases on a scatterplot along these two dimensions. Using
the k-means clustering algorithm (k=4), we grouped the 18 hypergraphs into four clusters. In
addition to this visual representation, we quantified the number of protein nodes that each
disease connects with in the MSI – a proxy to characterize disease complexity. Generally, more
complex hypergraphs, with a larger number of hyperedges and links, were those of diseases
involving a larger number of proteins. This suggests that the network properties of disease-
specific hypergraphs could be leveraged to summarize their complexity and identify diseases
that may be proximal based on their higher-order structure.The richness of the embeddings
that we seek to learn will depend on the size of the underlying hypergraph; in particular,
smaller hypergraphs may yield sparser embeddings. For instance, Figure 2 highlights a clear
separation between chronic diseases such as Chronic Kidney Disease (CKD) and Coronary
Heart Disease (CHD) and more complex diseases such as Rheumatoid Arthritis (RA) and
Amyotrophic Lateral Sclerosis (ALS) involving auto-immune processes. Among the 18 hyper-
graphs, those of diseases in Cluster A boast more information to learn from and potentially
uncover peripheral biological pathways of importance; this configuration prompted us to select
one of the diseases in cluster A for our case study. Alzheimer’s Disease (AD) was chosen due
to its large and growing prevalence, as about 6.2 million Americans aged 65 and older are
currently affected – a number which could rise to 13.8 million by 2060.21

Fig. 2: The scatter plot represents four disease clusters, based on two structural attributes of
their respective disease-specific hypergraphs, constructed as outlined in sections 1(b-c). The
location of a given cluster indicates the complexity of the higher-order hypergraph structures
and often reflects disease complexity. Diseases known to be highly complex (e.g., AD) are
positioned in the top right corner; conversely, diseases deemed to be of lower complexity (e.g.,
renal failure) are situated in the bottom left corner. While disease complexity is primarily
defined by the number of currently known biological pathways involved, we also provide the
number of proteins to which each disease is directly connected (i.e., one-hop neighbors) in the
MSI.9
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3.2. Hypergraph Representation Learning Identifies Repurposing Targets
in Accordance with the MSI

Both the MSI and our AD specific hypergraph shared a 50% overlap in drug categories for their
repurposing suggestions: psycholeptics, psychoanaleptics, and drugs used in diabetes manage-
ment, all of which are supported to have repurposing targets to AD in the literature.22,23 The
MSI also brought attention to drugs acting on the renin-angiotensin system, sex hormones,
and other nervous system drugs, thereby grouping together common co-morbidity targets for
AD treatment.24–27 In contrast, our AD-specific hypergraph focused more on antineoplastic
agents, cardiac therapy, and ophthalmologicals, each of which has been associated with AD
in the literature, as well.28–30

Figure 3 shows how our hypergraphs can be used to add a layer of explainability to
existing knowledge graphs. The figure also compares the number of gene targets that each
of the suggestions from both our method and the MSI contained. After finding the top 10%
of drugs most similar to AD in the MSI, we found all gene intermediary nodes in the paths
starting at these drugs and ending at AD in our hypergraph. We then compared the makeup
of these pathways to the makeup of the top 10% most similar pathways to those of donepezil,
memantine, or galantamine (ranked by highest cosine similarity to any of the three drugs).

It is important to note the discrepancy in the number of paths considered when generating
Figure 3(a)-(g) and Figure 3(h)-(n). The former, involving 926 paths, includes all paths in the
AD hypergraph that start with a drug in the top 10% cosine similarity to AD in the MSI.
Conversely, the latter, with 574 paths, only encompasses the top 10% of pathways that exhibit
the highest cosine similarity to paths initiating from donepezil, memantine, or galantamine.

These findings underscore the efficacy of our disease-specific hypergraph approach in tar-
geting drugs with pathways highly similar to those of known pertinent drugs when identifying
potential candidates for repurposing. Moreover, these outcomes provide initial validation to
our hypergraph representation learning method, which will be further discussed in the follow-
ing subsection.

3.3. Hypergraph Representation Learning Identifies Drug Repurposing
Targets Discounted from the MSI but Present in Literature

Hypergraph representation learning suggested 7 drug repurposing targets out of its top 30
(23%) that the MSI discounted (rank of ≥ 1032 in either column (2) or (3) of Table 1 in
the supplement). The 7 drugs were eplerenone (diruetic), fosphenytoin (cardiac therapy), ex-
emestane (endocrine therapy), eperisone (muscle relaxants), protriptyline (psychoanaleptics),
ethotoin (antiepileptics), and pentamidine (antiprotozoals). 4 out of 7 (eplernone, pentami-
dine, exemestane, and protriptyline) of these have literature supporting their potential efficacy
against AD. For the remaining 3 out of 7 (eperisone, ethotoin, and fosphenytoin), we explored
tangential literature to evaluate the suggestion and/or looked upon the path that this druge
headed in hopes of understanding why the prediction was made. Refer to Table 1 in the
supplement for the exhaustive list of the top 30 repurposing suggestions based on pathway
similarity to donepezil, memantine, or galantamine in the AD hypergraph.
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Fig. 3: (a)-(g) illustrate the number of gene targets within the paths of our AD hypergraph,
originating from a drug node that ranks within the top 10% in terms of highest cosine similarity
to the AD node in the MSI. (h)-(n) depict the number of gene targets in paths within our AD
hypergraph that are within the top 10% in similarity to the pathways of donepezil, memantine,
and galantamine, only considering paths with gene intermediary nodes.(a) presents the six
categories with the most gene targets among the MSI’s top 10% suggestions. Conversely,
(h) displays the six categories with the most gene targets in the AD hypergraph’s top 10%
predictions based on similarity to donepezil, memantine, and galantamine. (b)-(g) further
break down these top six categories from (a), demonstrating the count of each gene in the top
10% of predicted paths. Similarly, (i)-(n) break down the top six categories from (h), showing
the count of each gene within the top 10% of paths similar to those of donepezil, memantine,
and galantamine, as determined by cosine similarity. In these graphics, ‘n’ represents the
number of unique drugs within this category, while ‘m’ signifies the number of unique gene
targets in (b)-(g) and (i)-(n).

3.3.1. Literature Review on 7 Targets Found by Hypegraph Representation Learning but
Missed by MSI

In this section, we delve into the literature that supports our hypotheses for drug repurposing.
These drugs were identified as potential repurposing candidates, yet were overlooked by the
MSI.

Eplernone has been observed to decrease brain damage, defined by cell death and cortical
thinning, in a rat model.31 Additionally, it is documented that eplernone enhances cognitive
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function in a mouse model of AD.32 Another study reinforces these findings, illustrating that
eplernone can mitigate cognitive deficits in the hippocampus of spontaneously hypertensive
rats.33 These outcomes coincide with the established correlation between hypertension and
dementia/AD.34 Lastly, an in silico pharmacological assessment of eplernone proposed that
the drug holds potential in treating AD.35

Exemestane exhibits efficacy when AD patients are concurrently dealing with cancer, sug-
gesting that women diagnosed with breast cancer who underwent treatment with tamoxifen
or exemestane exhibited fewer instances of AD.36 A subsequent study characterizes the rela-
tionship between AD and cancer, demonstrating that exemestane is proficient at managing
cancer when it co-occurs with AD.37 Additional research has suggested exemestane as a po-
tential therapeutic for Parkinson’s Disease (PD),38 a neurodegenerative disorder associated
with AD.39

Protriptyline was found to have the highest inhibitory activity among 140 FDA approved
nervous system drugs against the three primary AD targets: AChE, BACE-1, and Aβ aggre-
gation.40,41 A study using an AD rat model concluded that protriptyline reduces oxidative
damage and improves spatial memory in AD mice.42

Pentamidine, in a mouse model of AD, was found to inhibit Aβ-induced gliosis and neuroin-
flammation in AD mice.43 However, to our knowledge, this is the only publication endorsing
its use in alleviating AD, likely because pentamidine is unable to cross the blood-brain barrier.
However, recent developments in nose-to-brain methods could surmount this obstacle.10

Ethotoin (antiepileptic), to our knowledge, doesn’t have explicit literature connecting it
to AD. There is, however, a study that warns that antiepileptics could escalate stroke risk
in AD patients.44 This elucidates a current limitation of our approach: we currently do not
differentiate between positive and negative drug pathways to a disease.

Fosphenytoin’s affect on AD is not specifically discussed in the literature. However, it is a
prodrug of phenytoin,45 which inhibits hippocampal tissue degradation and consequently the
progression of AD.46

Eperisone lacks direct literature linking it to AD, to the best of our knowledge. When
examining the pathway, starting at eperisone and ending at AD that was suggested to have
a high similarity to galantamine (see Table 1. in the supplement) in our hypergraph, we find:
Eperisone-Triporlidine-CYP2D6-AD. This pathway shows that eperisone was connected to
AD by way of similarity to triporlidine. Triporlidine has been observed to enhance NREM
sleep in AD patients.47

4. Conclusion and Future Directions

Our disease-specific hypergraphs have proven useful for clustering diseases based on their
known complexity, identifying potential drug repurposing targets alongside existing methods,
and discovering promising repurposing targets overlooked by state-of-the-art methods. We
found that the disease hypergraphs formed four clear groups when comparing the number of
hyperedges to the number of links between these hyperedges (see Figure 2). Additionally, in
Figure 2, we see more complex hypergraphs correlated with more known disease complexity,
which we assessed by counting the protein-disease connections in the MSI.
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We also demonstrated the value of this method in generating drug repurposing suggestions
for Alzheimer’s disease (AD). We saw a significant overlap with the suggestions from the
MSI when looking at the top 10% of suggestions from both methods, especially among drug
categories with the highest number of gene targets in the pathways.

Among our top 30 repurposing suggestions for AD, ranked by pathway cosine similarity,
we focused on pathways with one or more protein/gene intermediary nodes, hoping to keep
our results grounded in biological relevance. Each suggestion comes with the drug pathway
that supports its potential use in treating AD (see Table 1 in the supplement for the full list).

Additionally, our method also identified promising repurposing pathways for AD that the
MSI overlooked. In fact, 7 out of our top 30 suggestions ranked in the lower third of the MSI’s
suggestions. We found supporting evidence for these suggestions in the scientific literature,
both from studies that directly tested the drugs and from related research.

Looking ahead, we plan to enhance this method in several ways. We aim to refine our
hypergraph construction by merging disease hypergraphs of co-occurring diseases such as AD,
Type 2 Diabetes, and Hypertension. We will explore ways to improve our pathway embeddings
and, crucially, we will look beyond the literature review to other forms of validation, including
evidence from electronic health records and experimental studies.

Future research will explore the use of power iteration, page rank, and page rank with
teleportation for learning additional sets of embeddings for each biological pathway-disease
pair. We aim to compare the resulting outputs to our current pathway embeddings pairwise
and to assess the sensitivity of the downstream similarity scores. To derive more robust drug
repurposing candidates for a specific disease, several embeddings of biological pathways could
be combined to minimize dependence on a particular algorithm or parameter set and instead
maximize confidence, across representation learning approaches. Further, we can experiment
with more specific designs of a true positive, perhaps using literature for or against a drug in
the context of a disease of interest.

Additionally, we plan on doing more sensitivity analyses upon the comparison metric and
learning method, editing parameters like the dimensions of the embedding vector (p), distance
of each random walk (L), and amount of random walks taken per each node (R). We also plan
on comparing our results to the hypergraphs encompassing more paths. Now that we have
outlined a proof-of-concept for this design on the top 10% of paths ending at a disease of
interest, we can explore how the suggestions compare to hypergraphs built with the top 20%,
25%, etc.
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