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Protein kinases are a primary focus in targeted therapy development for cancer, owing to their role 
as regulators in nearly all areas of cell life. Recent strategies targeting the kinome with combination 
therapies have shown promise, such as trametinib and dabrafenib in advanced melanoma, but 
empirical design for less characterized pathways remains a challenge. Computational combination 
screening is an attractive alternative, allowing in-silico filtering prior to experimental testing of 
drastically fewer leads, increasing efficiency and effectiveness of drug development pipelines. In 
this work, we generated combined kinome inhibition states of 40,000 kinase inhibitor combinations 
from kinobeads-based kinome profiling across 64 doses. We then integrated these with 
transcriptomics from CCLE to build machine learning models with elastic-net feature selection to 
predict cell line sensitivity across nine cancer types, with accuracy R2 ~ 0.75-0.9. We then 
validated the model by using a PDX-derived TNBC cell line and saw good global accuracy (R2 ~ 
0.7) as well as high accuracy in predicting synergy using four popular metrics (R2 ~ 0.9). 
Additionally, the model was able to predict a highly synergistic combination of trametinib and 
omipalisib for TNBC treatment, which incidentally was recently in phase I clinical trials. Our 
choice of tree-based models for greater interpretability allowed interrogation of highly predictive 
kinases in each cancer type, such as the MAPK, CDK, and STK kinases. Overall, these results 
suggest that kinome inhibition states of kinase inhibitor combinations are strongly predictive of cell 
line responses and have great potential for integration into computational drug screening pipelines. 
This approach may facilitate the identification of effective kinase inhibitor combinations and 
accelerate the development of novel cancer therapies, ultimately improving patient outcomes.  
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1. Introduction

Protein kinases, which serve as the primary conduits for information transfer within cells, are often 
implicated as key drivers in cancer development and have become a cornerstone in current targeted 
therapies [1]. The rapid expansion of kinase inhibitor therapies as an oncology drug class is 
exemplified by the FDA's approval of nearly 60 such therapies over the past 20 years [2]. Despite 
their initial promise, kinase-targeting monotherapies frequently give rise to resistance [3], in part 
due to the dynamic nature of the kinase network, i.e., the “kinome,” which has been shown to 
reprogram and respond to the inhibition of single kinases by upregulating expression of partner 
pathways [4–6]. This necessitates the development of novel strategies to effectively target the 
kinome and harness the vast array of potential drug targets it offers. 
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One emerging strategy to counteract resistance involves the design of combination therapies, 
which perturb multiple targets with two or more drugs. These targets may be either known 
compensatory pathway partners, referred to as "horizontal pathway inhibition," or multiple targets 
within the same pathway, known as "vertical pathway inhibition" [7]. This approach has recently 
gained traction with the FDA approval of the combination of trametinib and dabrafenib for treating 
advanced melanoma [8]. This combination therapy "vertically" targets both BRAF and MEK within 
the RAF-MEK-ERK (MAPK) pathway, demonstrating the potential effectiveness of this strategy. 
However, this method of empirical design of combination therapies is not feasible for less 
characterized kinase pathways, and the sheer number of possible combinations of potential kinase 
targets (2500) prevents brute-force screening or drug design.  

To circumvent this issue, computational screening offers an appealing alternative, enabling the 
prediction of effective drug combinations in-silico prior to testing a reduced pool of potential 
combinations in-vitro. This method streamlines the drug development process, and when combined 
with patient-specific genomic profiling, can also enable personalized drug combination selection to 
potentially achieve resistance-proof responses in patients. 

In recent years, a variety of computational approaches have been developed to predict 
combination therapy responses for cancer drug screening [9,10]. Most of these methods primarily 
rely on drug structure characteristics and cancer-specific baseline genomic profiling to predict 
effective drug combinations, spurred by advancements in the high-throughput acquisition of these 
data types. For example, a high-dimensional tensor-based modeling strategy used similar data and 
achieved impressive accuracy (Overall R2 ~ 0.8) in predicting response to combination therapies, 
validated experimentally [11]. This approach and others employ intricate neural network 
architectures that, while capable of producing high performing models, can be challenging to 
interpret, posing a barrier to the broader understanding of their underlying mechanisms. Tree-based 
machine learning models on the other hand, although simpler and sometimes less powerful, are 
generally considered interpretable depending on the type of data fed to them [12]. Notably, drug-
protein interactions, which are intuitively central to the process of phenotype reversal, have been 
relatively underexplored in these computational approaches. In part, the minimal amount of drug-
target information leveraged in current response prediction efforts is because of the sheer amount 
of data generated by genomics and molecular fingerprinting, generating thousands of features for 
each measurement, while drug target data has been generally sparse with only a few annotated 
targets per drug. However, recent advances in technology to profile the interactions of clinical drugs 
with all the members of the kinome represent an unprecedented ability to measure drug-target 
information across ~500 proteins simultaneously in a quantitative manner [13,14]. The breadth, 
density, and ease of acquisition of this data, often measured at multiple dose points, is ideal for 
integration into machine learning models that can leverage diverse data types for drug response 
prediction.  

Specifically, recent advances in proteomics techniques have facilitated the large-scale 
characterization of drug-kinase interactions, providing valuable information on the extent to which 
the entire kinome is inhibited by specific drugs or drug combinations. A landmark paper in 2017 
used a mass spectrometry-based assay that used promiscuous kinase-binding compounds 
immobilized on beads to measure the binding competition between any given inhibitor and any 

Pacific Symposium on Biocomputing 2024

277



 
 

 

 

given kinase (henceforth called the “kinobeads” assay) [15]. Using this assay, the kinome-wide 
binding profiles for ~230 clinical kinase inhibitors at eight doses each were elucidated using cancer 
cell lysates, forming the largest in-cell drug-target binding database publicly available at this time. 
The data generated from these assays allow interrogation of how clinical and investigational drugs 
interact with the entire kinome on an unprecedented scale. By analyzing the degree of inhibition of 
all kinases simultaneously for a given inhibitor, we can treat this as characterizing the degree of 
departure from the “baseline kinome state”, thus moving through drug-induced alteration of multiple 
kinase activities to a new “kinome inhibition state”. Given the degree to which modulation of the 
kinome alters cellular state and downstream behavior, these baseline kinome states and kinome 
inhibition states can be directly connected to various measured cellular phenotypes. We have 
recently demonstrated this idea by showing that kinome inhibition state is significantly predictive 
of cancer cell responses to kinase inhibitor monotherapies when integrated with cancer-specific 
information, such as baseline transcriptomics, using tree-based machine learning models [16].  

In this work, we show that by combining the inhibition states of two kinase inhibitors, we can 
generate a hypothetical “combined” inhibition state for an untested inhibitor combination. In this 
manner, we can rationally use all combinatorial kinome inhibition states to sample all possible 
kinase target combinations, hypothetically including all pathway partners. By integrating these 
inhibition states with cancer-specific baseline transcriptomics, we demonstrate that the combined 
inhibition state can predict the sensitivity of cancer cell lines to inhibitor combination treatments 
from the NCI-ALMANAC dataset using interpretable machine learning models. We further validate 
these models experimentally by examining novel inhibitor combinations in a PDX-derived triple-
negative breast cancer (TNBC) cell line. By focusing on dual-inhibitor drug-kinase interactions 
combined with cancer-specific baseline genomic profiling, we can enhance computation 
combination drug screening pipelines with combinatorial kinase targeting. Furthermore, this 
approach lays the foundation for the rational design and a priori prediction of combination kinase 
inhibitor treatments for patients with the potential to ultimately reduce single kinase inhibitor 
resistance acquisition by prior rational targeting of partner pathways and associated kinases. 

2.  Results 

2.1.  Creating a Set of Combined Kinome Inhibition States Representing Current and 
Potential Kinase Inhibitor Combination Therapies 

In this work, we have focused on a specific set of 200 kinase inhibitors characterized using the 
kinobeads assay [15]. These inhibitors were profiled in-cell for their interactions with ~500 kinases 
and kinase-interacting proteins, across eight doses. From this data, as described previously (insert 
citation), we extracted monotherapy “kinome inhibition states”, denoting the degree to which they 
inhibit each kinase in the kinome at eight doses on a scale of 0-1 (0 is complete inhibition and 1 is 
no inhibition of a given kinase). We next tested different methods to approximate the kinome 
inhibition state of a kinase inhibitor combination. Intuitively, this can be thought of as simply 
superimposing two individual monotherapy inhibition states, but for the few cases where different 
inhibitors target the same kinase, we found ways to accurately reflect the resulting effect on the 
kinome. Here, we tested combining monotherapy kinome inhibition state vectors through addition, 
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multiplication, truncated multiplication (excluding kinase inhibition values >1). All three methods 
were compared for downstream model performance.  

Figure 1. Kinome inhibition State Combination Modeling and Data Overview. (a) Schematic 
of modeling pipeline. (b) Heatmap showing the inhibition state of individual kinase inhibitors (row 
1 and 2), and the hypothetical “combined” inhibition state for the two inhibitors (row 3) (c) Bar 
plot showing number of cell lines tested per cancer type in training data set (d) Bar plot showing 
number of unique combinations tested per cell line for the breast cancer subset of the training data 
set (e) Ridge plots showing cell viability (x-axis) variation for a random subset of different kinase 
inhibitor combinations (y-axis) in the NCI-ALMANAC data for breast cancer cell lines. Different 
breast cancer subtypes are represented with differing colors. 

After combining the individual inhibition states, we were left with a dataset describing all 
possible pairwise combinations of ~220 kinase inhibitors. These ~45,000 combinations represent 
the kinome inhibition states of existing clinical therapies (example), therapies currently in clinical 
trials (example), as well as potential therapies. Together, they interrogate a search space that 
includes nearly every known kinase on the phylogenetic tree (Fig S1). 
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2.2.  Connecting Inhibited Kinome States with Cancer Cell Line Combination Sensitivities 

Next, we linked the data set describing kinase inhibitor combinations to their cell sensitivity 
phenotypes in the large-scale ALMANAC drug combination screen. The ALMANAC screen 
contains cell sensitivity data for 53 kinase inhibitor combinations, over ~200 unique dose 
combinations for 45 cell lines across 9 cancer types. Additionally, previous high-throughput 
combination screens conducted in our lab in breast cancer offered data for 56 inhibitor combinations 
in four cell lines. Ideally, we would like exact matches between the dose at which kinome inhibition 
state is profiled and the dose at which cell sensitivity was measured. However, there are very few 
exact matches between the datasets. To overcome this, we found the nearest dose (6 exact matches, 
14 nearest matches at maximum differing by 1uM) at which kinome inhibition was profiled for each 
cell sensitivity measurement and connected the two datasets using these dose matches. 
 

  
 

Figure 2. Feature Selection using an Elastic-net Regression Model against Cancer Cell Line 
Sensitivity. (a) Ridge plot showing the distribution of LASSO coefficient sizes as a metric for 
feature importance, for each feature type (b) Horizontal bar plot showing kinases with the largest 
elastic-net coefficient values, coloured by whether they are defined as “understudied” (Dark) or 
“well-characterized” (Light).  

 
Additionally, we added cell line specific information to the dataset to complement the drug-

specific kinome inhibition states. The CCLE database contains baseline transcriptomics data for 
~1500 cancer cell lines, and almost all of the cell lines included in our data set were represented. 
Using this, we further added baseline gene expression into the dataset, now containing kinase 
inhibitor combinations, their inhibition state of the kinome, the cell line sensitivity to their treatment, 
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as well as that cell line’s baseline gene expression. In this way, the dataset connects the kinome 
inhibition states of inhibitor combinations to their cell sensitivity phenotypes.  

The collected dataset represents a total of eight major cancer types, with the majority having ~7 
cell lines represented each, while breast cancer had the most representation (11 cell lines). To ensure 
that the machine learning model downstream could find cancer-specific linkages between the 
kinome and cell sensitivity, we split the dataset into eight individual cancer type datasets and 
conducted all modeling on each data split in parallel. 

2.3.  Elastic-Net Feature Selection Reveals Kinome Inhibition States to be Most Informative 

In our collected dataset, kinome inhibition states and baseline gene expression together represent 
~20,000 variables or “features” that could affect the phenotype of cell sensitivity to kinase inhibitors. 
It is both practically prohibitive and ineffective to build models using all available features, and so 
keeping in mind computational efficiency we sought to filter down the dataset to include only the 
most informative features.  To accomplish this “feature selection”, we built our machine learning 
pipeline starting with an elastic-net regression [17] model built against the outcome of cell 
sensitivity. This generated coefficients for each feature, with the absolute value of the feature 
coefficient directly proportional to its predictive value for the outcome. We ensured non-informative 
features were not included in modeling by only considering features with non-zero coefficients. We 
fit the model on the entire dataset to visualize a snapshot of the feature coefficients globally. This 
revealed overwhelmingly larger coefficients for kinome inhibition states compared to baseline gene 
expression (Fig 2a), thus indicating that kinome inhibition states were globally more informative 
for cell sensitivity prediction compared to baseline gene expression.  

For downstream model building, the data set was split into a training and testing set five times 
(five-fold cross validation). For the training set data to not have any influence on the test set (to 
prevent data leakage), the elastic net model is fit on only the training data, and features are selected 
within each fold. Parameters for the elastic net model and hyperparameters for the tested model 
types were also tuned this way.  

2.4.  Machine Learning Models Can Predict Cancer Cell Line Sensitivity to Combination 
Therapies by Integrating Kinome Inhibition States and Baseline Transcriptomics 

After data set preparation and feature selection, we built machine learning models that can predict 
cell sensitivity to kinase inhibitor combinations. For each cancer type, three machine learning model 
types were tested: random forest, boosted trees (xgboost) and deep neural networks. Xgboost 
performed the best for all cancer types, with type-specific performance largely dependent on 
abundance of data in the training set (Fig 3b). The most abundant cancer type (breast) had the best 
performing model with an R2 score of 0.93 (Fig 3b) while the lowest performing model was prostate 
cancer with R2 = 0.73. Given our previous lab experience with breast cancer, we chose the breast 
cancer model for downstream experiments and validation. 
 

Additionally, since the best-performing model was tree-based gradient boosting, we were able 
to further analyze the model using computed feature importance to find the most informative 
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features in the data set based on the feature importance metric. Similar to the feature selection output, 
we saw much higher feature importance scores overall for kinome inhibition states when compared 
to baseline gene expression, and several kinases implicated in breast cancer dysfunction had high 
importance scores, such as MAP2K1/2 and EGFR(Fig. 3c). 

  

 
 

Figure 3.  Development of Models to Predict Cancer Cell Line Sensitivities to Kinase 
Inhibitor Combination Therapies from Kinome Inhibition States. (a) Model performance 
metrics (R-squared) for Random Forest (dots) and XGBoost (triangles). (b) Scatter Plot of 
predicted sensitivity values from the best-performing model vs actual sensitivity values. The red 
line indicates a smooth fit through the data points. (c) Horizontal bar plot showing model 
importance of individual kinase inhibition states by importance values. (d) Horizontal bar plot 
showing model importance of individual baseline gene expression by importance values.   

2.5.  Experimental Validation of Model Predictions in a PDX-Derived Triple Negative 
Breast Cancer Cell Line was Successful.  

We demonstrated that machine learning models using the kinome inhibition states of combination 
therapies along with cell-specific baseline gene expression could robustly predict cell sensitivity in 
multiple cancer types. However, to see if these predictive models could extend to real-world 
experiments, we experimentally validated 35 kinase inhibitor combinations in a PDX-tumor derived 
cell line(Fig 4A).  
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Figure 4. Experimental Validation of Model through a Trametinib Combination Screen in 
the WHIM12 Patient-Derived TNBC Cell Line. (a) Schematic showing experimental validation 
pipeline for the WHIM12 PDX-derived cell line. (b) Kinome phylogenetic map showing diversity 
of kinome targeted (red = inhibited by a validated kinase inhibitor combination). (c) Grid of scatter 
plots showing accuracy of top nine tested combinations. For all scatter plots, the dashed line 
indicates where perfect predictions would lie and the red line shows a linear fit through the data. 
Quantitative accuracy is represented by the R-squared score. (d) Scatter plot showing the global 
accuracy of model. (e) Grid of scatter plots showing accuracy of model predicted synergy scores 
compared to experimentally measured synergy scores across two metric types (ZIP, Bliss). (f) Grid 
of heatmap plots showing comparison of predicted vs experimentally measured sensitivity and 
synergy for the highly synergistic trametinib / omipalisib combination.  

 
High-throughput cell line drug screens have been widely documented to suffer from a lack of 

reproducibility and poor translation to more complex samples like patient tumors. We sought to test 
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whether our model of cell sensitivity in breast cancer, trained on 11 well-characterized immortalized 
cell lines, could effectively predict cell sensitivity in a PDX (Patient-Derived Xenograft) derived 
cell line. We chose the WHIM12 PDX-derived cell line, which was generated from a highly chemo-
resistant TNBC tumor [18]. Previous experiments in the lab had conducted a drug combination 
screen in the WHIM12 cell line, out of which 35 kinase inhibitors were tested in combination with 
trametinib. Complementary baseline gene expression data was also generated through RNAseq. 
Using these in-house data, we were able to input the unseen WHIM12 gene expression into the 
trained model and predict the cell sensitivity outcomes of the conducted drug combination screen. 
We achieved robust prediction accuracy (Global R2 = 0.74 / RMSE = 0.14) in predicting exact cell 
viability in response to treatment with 35 kinase inhibitor combinations, across 64 dose 
combinations (Fig 4c, d). 

2.6.  Model Predictions Reveal Known Synergy in trametinib/omipalisib Combination 

The model predictions in the WHIM12 cell line were further interrogated for potential synergy. 
We generated synergy scores for all 35 combinations at each of the 64 dose points using the R 
package SynergyFinder [19] based on four different metrics: Zero-Interaction Potency [10] (ZIP), 
Bliss Independence [20], Highest Single-Agent (HSA), and Loewe Additivity [21].  Additionally, 
we generated similar synergy scores using the actual experimental data generated for validation as 
a comparison. We found a high degree of similarity (Global R2 ~ 0.94/ RMSE ~ 0.5) between 
predicted and actual synergy, with trametinib + omipalisib as our most synergistic predicted 
combination, with a ZIP score of ~8 at certain dose combinations (Fig 4e, f). This is significant as 
the model predictions were in a TNBC PDX-derived line, and the trametinib/omipalisib 
combination represents the popular strategy of simultaneously targeting the MAPK and PI3K 
pathways[ 22]. 

3.  Methods 

Data Sources. The kinome profiling data set from the kinobeads assay was downloaded from the 
supplementary materials of Klaeger et al. 2017  [15]. For cancer cell line sensitivity to kinase 
inhibitor combinations, data was downloaded from (1) NCI-ALMANAC: cell sensitivity data was 
downloaded from the NCI wiki database (https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-
ALMANAC) and (2) Supplementary materials of previous lab combination screens published in 
Beville et al. 2019 [28] and Stuhlmiller et al. 2015 [29].  The CCLE gene expression set 
(“CCLE_expression.csv”) was downloaded from the DepMap portal 
(https://depmap.org/portal/download/all/) to create the set of cancer cell lines and their gene 
expression characteristics. In-house baseline gene expression data for the PDX-derived WHIM12 
line was downloaded from the GEO repository for the Zawitowski et al. paper[26] (GSE87424). 
 
Data Preprocessing. The scripts implementing these descriptions are all available through github. 

Klaeger et al. Kinobead Kinase Inhibition Profiles: As previously described [16], we read the 
values from the supplemental data table into R and produced a filtered list of kinase and kinase 
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interactor relative intensity values. We imputed missing values with the default “no interaction” 
value of 1 and truncated likely outlier values to the 99.99 percentile (3.43). 

Creating the Combination Inhibition State Data Set: To create a “combined” inhibition state of 
a given kinase inhibitor combination, we sought to superimpose the inhibition states of two 
individual states at specific doses. There were eight doses measured for each individual inhibitor, 
thus there were 64 possible combinations for each combination. We took the monotherapy kinome 
inhibition states from the Klaeger et al. set and computed a “combined” inhibition state for each 
kinase, based on three different combination schemes: 
1. Simple Multiplicative: The simple conditional probability rule assumes two independent events 

(A and B in Eq. 1). Since the default “no interaction” inhibition value is 1, for kinases that are 
not targeted by both inhibitors simultaneously, the “combined” inhibition state (𝐶′) value is 
simply either one in monotherapy.  

2. Truncated Multiplicative: A minority of measured kinase inhibition states (~1%) have values > 
1 in the Klaeger et al. dataset, a possible artifact from the mass spectrometry measuring process. 
To avoid inflating those values, all >1 values were truncated at 1 and simple multiplication was 
performed as described above (Eq. 2). 

3. Addition: All kinase inhibition states were inverted into “Percent Inhibition” values (𝐴! and 𝐵′), 
where 0 denotes no inhibition and 100 denotes complete inhibition. Then, when two inhibition 
states were combined, they were added together and truncated at a max value of 100 (Eq. 3). 

𝐸𝑞. 1.																𝐶! = 𝐴 ∗ 𝐵 
𝐸𝑞. 2.																𝐶! = min(1, 𝐴) ∗ min	(1, 𝐵)	 
𝐸𝑞. 3.																𝐶! = min	(100, 𝐴! + 𝐵!) 

All three methods were tested in downstream modeling, resulting in minor variation. Truncated 
multiplied vectors were slightly more predictive (R2 score of ~0.01 greater) so we used that scheme 
for all downstream modeling. In this way, we were able to compute hypothetical “combined” 
inhibition states for all possible combinations of ~220 inhibitors, altogether comprising ~2,000,000 
combined inhibition states. 

Dataset of Cancer Cell Line Sensitivity to Kinase Inhibitor Combinations: The cell sensitivity 
dataset from NCI-ALMANAC and previous lab publications were filtered to contain only kinase 
inhibitor small molecules, then summarized over replicates and converted to cell viability (1 = fully 
viable cell and 0 = full cell death). Relevant cancer types were annotated and individual cancer type 
datasets were subsetted for downstream cancer type-specific modeling.   

Matching of Kinase Inhibitors between Inhibition State Dataset and Cell Line Sensitivity 
Dataset: The drug names from each dataset were read into R, and the package Webchem [30] was 
used to retrieve PubChem compound IDs (cid’s). The two sets of drug names were then matched 
based on these reference IDs, with a total of ~100 matches between the two sets.  

Baseline Gene Expression from CCLE: Data was preprocessed as described before [31] from 
the “CCLE_expression.csv” file. Cell line names were matched manually between CCLE and the 
NCI naming scheme. All cell lines represented in NCI-ALMANAC had a match in the CCLE 
database. 

  String: The STRING database [32] was processed as described previously [31] to annotate 
kinases and kinase interacting genes. 
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Modeling Techniques: To assess our models we used a random 5-fold cross validation strategy. 
We implemented Elastic-net regression using the glmnet engine [33] for the feature selection 
scheme [17], We compared the performance of three model types using this strategy: random forest 
using the ranger engine [34] and gradient boosting using the XGBoost engine [35]. Model 
performance was assessed by the R-squared value between predicted and actual outcome within the 
cross-validation scheme. For each model type and for the feature selection model, we tuned sets of 
20 hyperparameters to find the best possible performer as follows: (a) Elastic-net: Penalty (0 - 0.1), 
Regularization (0.1-1) (b) Random Forest: Trees (100 - 2000) (c)  XGBoost: Trees (100 - 1000), 
Tree Depth (4 - 30). After final model selection, we fit the model on the entire dataset and then made 
predictions on the experimental validation data.  

All of the data and code written to support this paper is available through github 
(https://github.com/gomezlab/kinotype_combination_prediction). 

Experimental Validation. 6x6 dose combination screens were performed in the WHIM12 cell 
line as described in Beville et al. 2019 [28]. Briefly, cells were seeded in 384-well plates and dosed 
with drug after 24h. The screening library was tested for growth inhibition alone or in combination 
with Trametinib across 6 doses: 10 nmol/L, 100 nmol/L, 300 nmol/L, 1 μmol/L, 3 μmol/L, and 10 
μmol/L. 0.1% DMSO was included as the control for growth inhibition on each plate. Plates were 
incubated at 37°C for 96 hours and lysed using CellTiter-Glo Reagent (Promega, catalog. no. 
G7570). Luminescence was measured using a PHERAstar FS instrument and growth inhibition was 
calculated relative to DMSO-treated wells. 

4.  Discussion 

Kinase inhibitors are one of the fastest growing drug classes for cancer therapy, with ~62 FDA 
approved in total against neoplasms [2]. With 500 potential druggable targets, there is significant 
interest in streamlining the kinase inhibitor screening process. We have previously introduced 
[16,23,24] the idea that the full spectrum of a given inhibitor’s effect on the kinome as measured by 
recent advances in kinobead-competition/MS technology [15] can be represented as a “kinome 
inhibition state”, i.e. a vector representing the effect of a given inhibitor on the kinome as a whole.  

In this work, we have extended this idea to represent the kinome inhibition state of a combination 
of inhibitors, using a multiplicative probability model to “combine” the inhibition states of two given 
kinase inhibitors. By generating these “combined” inhibition states, we can vastly expand the search 
space targeted by inhibitor monotherapies, sampling all possible combinations of currently available 
therapies. To accomplish this, we used publicly available drug-kinome interaction data to generate 
snapshots of the combined effect of a combination therapy on the protein kinome. We then linked 
these kinome inhibition states of inhibitor combinations to cancer cell sensitivity phenotypes to 
combination treatment, creating a framework for predicting the efficacy of combination therapies in 
different cancer types.  

We fit tree-based machine learning models on this linked data set to robustly predict precise 
cancer cell line sensitivity and synergy for untested kinase inhibitor combinations therapies and 
validate those predictions in complex patient derived samples. gradient-boosted tree models were 
highly accurate across cancer types (R2 0.75-0.93), comparable to two recent neural-network driven 
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attempts to predict cell line response to drug combinations [9,11]. We chose to validate our model 
predictions in the PDX-dervied WHIM12 line, reasoning that PDX-derived cell lines retain many 
of the molecular and genetic features of the xenografted original tumors. We were able to show that 
the models performed robustly on novel gene expression data (R2 ~0.74) , representing its ability to 
extend to complex and clinical-adjacent samples compared to well-characterized cell line data. 

One of the strengths of tree-based models is that they are considered to be interpretable through 
feature importance computation [12,25]. Using this, we were able to investigate the “black box” and 
query which specific kinase inhibition states and baseline genes were most predictive of cell 
sensitivity. We found that for the breast cancer model, the inhibition of the kinases MAP2K1/2 were 
the most informative by far. This is intuitive considering the most abundant kinase inhibitor in the 
dataset is the allosteric MEK inhibitor trametinib, but it must be noted that MEK inhibition is always 
only just one half of the kinome targeting in the combination. There has been increasing clinical 
interest recently in targeting the PI3K and MAPK pathways [22], and our lab has shown before that 
MEK1/2 inhibition in TNBC by trametinib induces widespread transcriptional adaptation, and that 
there is potential for clinical efficacy in complementary kinome targeting with trametinib [26]. Since 
our model’s sensitivity predictions can effectively simultaneously predict synergy, our top synergy 
prediction for breast cancer according to the ZIP metric was trametinib and omipalisib, which we 
were able to validate experimentally in the WHIM12 line. This indicates that from the breast cancer 
screening data, the model was able to learn that targeting the complementary PI3K and MAPK 
pathways is effective and synergistic in TNBC.  

Interestingly, the predicted high-synergy combination of trametinib/omipalisib was recently in 
phase I clinical trials for advanced solid tumors but failed due to patient intolerability [27]. This 
highlights some limitations of our modeling approach. Ideally, kinome inhibition state would be one 
of many different drug modalities included for response prediction, and we plan to further expand 
these models in the future by considering toxicity, drug structure and cancer-describing multi-omic 
data types not limited to baseline gene expression. Additionally, in this proof-of-concept study we 
utilized multiplicative probability models to generate the “combined” inhibition state of two 
inhibitors on the kinome, by assuming that the inhibition of a given kinase is mutually exclusive 
from that of other kinases. We know that kinases function physiologically as part of complex 
signaling networks, and their inhibition may have downstream effects on other kinases and signaling 
pathways. To address this limitation, future models will incorporate more biologically 
representative schemes to hypothesize combined kinome inhibition states. 

In summary, through this work we demonstrate the development of a framework for predicting 
the efficacy of combination therapies in different cancer types using just kinome-drug interactions 
and baseline gene expression. We generated the combined "kinome inhibition state" and linked these 
states to cancer cell sensitivity phenotypes. First, we were able to show that a given combination 
therapy’s cancer-agnostic interaction with the kinome was far more informative than baseline 
genomics in predicting downstream response. This is intuitive fundamentally, as drug-protein 
interactions are the primary means of drug effect on physiology, but this type of data is still 
underutilized in computational screening approaches. We then used machine learning models to 
predict cell line sensitivity and synergy for untested kinase inhibitor combination therapies and 
validated those predictions experimentally in complex patient derived samples.  

Pacific Symposium on Biocomputing 2024

287



 
 

 

 

Acknowledgements  

We would like to thank UNC Research Computing for access to the computational resources 
necessary for this work. We would like to thank Michael P. East for his help with data compilation. 
This work was supported by grants through the National Institutes of Health (Grant #s CA274298, 
CA233811, CA238475, DK116204) 

This is a preprint of an article submitted for consideration in Pacific Symposium on 
Biocomputing © 2024 [copyright World Scientific Publishing Company] [psb.stanford.edu] 

References 
1.  Kothari V, Wei I, Shankar S, Kalyana-Sundaram S, Wang L, Ma LW, et al. Outlier kinase 

expression by RNA sequencing as targets for precision therapy. Cancer Discov. 2013;3: 280–
293. 

2.  Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 
update. Pharmacol Res. 2023;187: 106552. 

3.  Jiang L, Li L, Liu Y, Lu L, Zhan M, Yuan S, et al. Drug resistance mechanism of kinase 
inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol. 2023;14: 1097277. 

4.  Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, et al. Dynamic 
reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast 
cancer. Cell. 2012;149: 307–321. 

5.  Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET 
amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. 
Science. 2007;316: 1039–1043. 

6.  Chandarlapaty S. Negative feedback and adaptive resistance to the targeted therapy of cancer. 
Cancer Discov. 2012;2: 311–319. 

7.  Yesilkanal AE, Johnson GL, Ramos AF, Rosner MR. New strategies for targeting kinase 
networks in cancer. J Biol Chem. 2021;297: 101128. 

8.  Atkinson V, Sandhu S, Hospers G, Long GV, Aglietta M, Ferrucci PF, et al. Dabrafenib plus 
trametinib is effective in the treatment of BRAF V600-mutated metastatic melanoma patients: 
analysis of patients from the dabrafenib plus trametinib Named Patient Program (DESCRIBE 
II). Melanoma Res. 2020;30: 261–267. 

9.  Kuenzi BM, Park J, Fong SH, Sanchez KS, Lee J, Kreisberg JF, et al. Predicting Drug Response 
and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell. 2020;38: 672-
684.e6. 

10.  Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for Drug Synergy in Complex Dose-
Response Landscapes Using an Interaction Potency Model. Comput Struct Biotechnol J. 
2015;13: 504–513. 

Pacific Symposium on Biocomputing 2024

288



 
 

 

11.  Julkunen H, Cichonska A, Gautam P, Szedmak S, Douat J, Pahikkala T, et al. Leveraging multi-
way interactions for systematic prediction of pre-clinical drug combination effects. Nat 
Commun. 2020;11: 1–11. 

12.  Izza Y, Ignatiev A, Marques-Silva J. On Tackling Explanation Redundancy in Decision Trees. 
jair. 2022;75: 261–321bussy. 

13.  Cann ML, McDonald IM, East MP, Johnson GL, Graves LM. Measuring Kinase Activity-A 
Global Challenge. J Cell Biochem. 2017;118: 3595–3606. 

14.  Koleti A, Terryn R, Stathias V, Chung C, Cooper DJ, Turner JP, et al. Data Portal for the 
Library of Integrated Network-based Cellular Signatures (LINCS) program: integrated access 
to diverse large-scale cellular perturbation response data. Nucleic Acids Res. 2018;46: D558–
D566. 

15.  Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig P-A, et al. The target landscape 
of clinical kinase drugs. Science. 2017;358. doi:10.1126/science.aan4368 

16.  Berginski ME, Joisa CU, Golitz BT, Gomez SM. Kinome inhibition states and multiomics data 
enable prediction of cell viability in diverse cancer types. PLoS Comput Biol. 2023;19: 
e1010888. 

17.  Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. J R Stat Soc Series 
B Stat Methodol. 2005;67: 301–320. 

18.  Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 
variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 
2013;4: 1116–1130. 

19.  Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug 
combination synergies. Nucleic Acids Res. 2020;48: W488–W493. 

20.  Bliss CI. THE TOXICITY OF POISONS APPLIED JOINTLY1. Ann Appl Biol. 1939;26: 
585–615. 

21.  Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of 
multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22: 27–55. 

22.  Lee J, Liu H, Pearson T, Iwase T, Fuson J, Lalani AS, et al. PI3K and MAPK Pathways as 
Targets for Combination with the Pan-HER Irreversible Inhibitor Neratinib in HER2-Positive 
Breast Cancer and TNBC by Kinome RNAi Screening. Biomedicines. 2021;9. 
doi:10.3390/biomedicines9070740 

23.  Berginski ME, Jenner MR, Joisa CU, Herrera Loeza SG, Golitz BT, Lipner MB, et al. Kinome 
state is predictive of cell viability in pancreatic cancer tumor and stroma cell lines. bioRxiv. 
2021. p. 2021.07.21.451515. doi:10.1101/2021.07.21.451515 

Pacific Symposium on Biocomputing 2024

289



 
 

 

 

24.  Joisa CU, Chen KA, Berginski ME, Golitz BT, Jenner MR, Herrera Loeza SG, et al. Integrated 
Single-Dose Kinome Profiling Data is Predictive of Cancer Cell Line Sensitivity to Kinase 
Inhibitors. bioRxiv. 2022. p. 2022.12.06.519165. doi:10.1101/2022.12.06.519165 

25.  Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. Explainable AI for 
Trees: From Local Explanations to Global Understanding. arXiv [cs.LG]. 2019. Available: 
http://arxiv.org/abs/1905.04610 

26.  Zawistowski JS, Bevill SM, Goulet DR, Stuhlmiller TJ, Beltran AS, Olivares-Quintero JF, et 
al. Enhancer Remodeling during Adaptive Bypass to MEK Inhibition Is Attenuated by 
Pharmacologic Targeting of the P-TEFb Complex. Cancer Discov. 2017;7: 302–321. 

27.  Grilley-Olson JE, Bedard PL, Fasolo A, Cornfeld M, Cartee L, Razak ARA, et al. A phase Ib 
dose-escalation study of the MEK inhibitor trametinib in combination with the PI3K/mTOR 
inhibitor GSK2126458 in patients with advanced solid tumors. Invest New Drugs. 2016;34: 
740–749. 

28.  Bevill SM, Olivares-Quintero JF, Sciaky N, Golitz BT, Singh D, Beltran AS, et al. GSK2801, 
a BAZ2/BRD9 Bromodomain Inhibitor, Synergizes with BET Inhibitors to Induce Apoptosis 
in Triple-Negative Breast Cancer. Mol Cancer Res. 2019;17: 1503–1518. 

29.  Stuhlmiller TJ, Miller SM, Zawistowski JS, Nakamura K, Beltran AS, Duncan JS, et al. 
Inhibition of Lapatinib-Induced Kinome Reprogramming in ERBB2-Positive Breast Cancer by 
Targeting BET Family Bromodomains. Cell Rep. 2015;11: 390–404. 

30.  Szöcs E, Stirling T, Scott ER, Scharmüller A, Schäfer RB. webchem: An R Package to Retrieve 
Chemical Information from the Web. J Stat Softw. 2020;93: 1–17. 

31.  Berginski ME, Joisa CU, Golitz BT, Gomez SM. Kinome Inhibition States and Multiomics 
Data Enable Prediction of Cell Viability in Diverse Cancer Types. bioRxiv. 2022. p. 
2022.04.08.487646. doi:10.1101/2022.04.08.487646 

32.  Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING 
database in 2021: customizable protein-protein networks, and functional characterization of 
user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49: D605–D612. 

33.  Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via 
Coordinate Descent. J Stat Softw. 2010;33: 1–22. 

34.  Wright MN, Ziegler A. ranger: A Fast Implementation of Random Forests for High 
Dimensional Data in C++ and R. J Stat Softw. 2017;77: 1–17. 

35.   Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. arXiv [cs.LG]. 2016. 
Available: http://arxiv.org/abs/1603.02754 

Pacific Symposium on Biocomputing 2024

290




