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This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus 

aureus (MRSA) infections by leveraging a novel artificial intelligence (AI) fairness algorithm, the 

Fairness-Aware Causal paThs (FACTS) decomposition, and applying it to real-world electronic 

health record (EHR) data. We spatiotemporally linked 9 years of EHRs from a large healthcare 

provider in Florida, USA, with contextual social determinants of health (SDoH). We first created a 

causal structure graph connecting SDoH with individual clinical measurements before/upon 

diagnosis of invasive MRSA infection, treatments, side effects, and outcomes; then, we applied 

FACTS to quantify outcome potential disparities of different causal pathways including SDoH, 

clinical and demographic variables. We found moderate disparity with respect to demographics and 

SDoH, and all the top ranked pathways that led to outcome disparities in age, gender, race, and 

income, included comorbidity. Prior kidney impairment, vancomycin use, and timing were 

associated with racial disparity, while income, rurality, and available healthcare facilities contributed 

to gender disparity. From an intervention standpoint, our results highlight the necessity of devising 

policies that consider both clinical factors and SDoH. In conclusion, this work demonstrates a 

practical utility of fairness AI methods in public health settings. 
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1. Introduction

Invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections pose a significant public 

health concern. According to the Centers for Disease Control and Prevention (CDC), MRSA 

infections account for a substantial proportion of healthcare-associated infections, affecting both 

inpatient and outpatient settings1. These infections, characterized by resistance to all beta-lactam 

antibiotics, have been associated with increased morbidity, mortality, and healthcare costs.  

It is widely recognized that socioeconomic and demographic factors influence transmission and 

care outcomes of infectious diseases, including MRSA. For example, See et al. (2017) shed light on 

the complex interplay between race, socioeconomic factors, and MRSA infections2. Gualandi et al. 
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(2018) analyzed surveillance data in the USA from nine US states (20+ million people) and found 

that the risk of MRSA infection in African Americans was double the risk in other racial/ethnic 

groups, even when rates were decreasing3. Nonetheless, Mohnasky et al. (2021) found that in a 

prospective cohort of individuals seen in a single, large US medical center for over 20 years, social 

disparity in MRSA outcomes was explained by differences in comorbidities between racial/ethnic 

groups4. Thus, contrasts among studies could be explained by population selection and modeling 

choices. Many studies on quantification of health outcome disparity within invasive MRSA 

infections have been associational in nature, and further research is necessary to deconstruct and 

understand the underlying causal mechanisms driving such disparity in order to identify potential 

avenues for intervention. Such advancement can help develop effective strategies to mitigate the 

impact of the disease which target not only the majority of the population, but also specific 

subpopulations that might be more vulnerable, e.g., the elderly or ethnic/racial minorities. 

To address the aforementioned challenges, we employ a recently developed artificial 

intelligence (AI) fairness algorithm, the Fairness-Aware Causal paThs (FACTS) decomposition5. 

FACTS is able to decompose disparity of an outcome measure with respect to a variable of interest 

into multiple causal pathways, and to quantify the relative contribution of each path. We apply 

FACTS on large real world electronic health record (EHR) data collated over 9 years from a large 

healthcare provider in Florida, USA, linked with contextual social determinants of health (SDoH). 

2.  Materials and Methods 

2.1.  Ethics Statement 

This study obtained approval from the Institutional Review Board (#IRB201900652) of the 

University of Florida (UF). The authors strictly adhere to the research integrity and ethical principles 

outlined in the Declaration of Helsinki. 

2.2.  Data Source 

We analyzed deidentified EHR data from the UF Health’s Integrated Data Repository (IDR, 

https://idr.ufhealth.org/), which includes two primary hospitals in Gainesville and Jacksonville, and 

several other outpatient clinics in Florida. The IDR-EHR data includes patients’ demographics, 

residence (here masked into 3-digit zip codes), laboratory tests (encoded with Logical Observation 

Identifiers Names and Codes, LOINC), drug prescriptions (RxNorm terminology), clinical 

procedures and diagnoses (International Classification of Disease, ICD 9th and 10th revision). In this 

study all ICD-10 codes were converted to ICD-9 format following General Equivalence Mappings 

guideline of Centers for Medicare & Medicaid Services6 since the sample predominantly consisted 

of ICD-9 codes. Data requests can be directed to IDR (https://idr.ufhealth.org/research-services/) in 

compliance with institutional, state and US Federal policies; authors are willing to share study 

procedures for reproducing results. 

We linked individual patient records to the county-level social determinants of health (SDoH) 

variables using multiple external sources. SDoH variables used in this work were: Median 

Household Income7; Rurality (urban or rural based on the Federal Bureau of Investigation  
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metropolitan criteria)8; Health Insurance Coverage (proportion of residents of uninsured 

populations)9, and Access to Healthcare Facilities (proximity and availability of healthcare facilities 

such as hospitals, clinics, and primary care providers in the area; number of hospital beds per 

100,000 population)10. 

2.3.  Study Design, Study Population, Variables 

We included adults aged 18 years and older at the time of diagnosis of invasive MRSA (ICD-9-CM: 

041.11) at UF Health between January 1, 2011, and July 1, 2019. To ensure comprehensive medical 

information availability, patients without complete sociodemographic information and without a 

prior medical record from at least one year before their first invasive MRSA diagnosis were 

excluded. Excluding these patients mitigated potential bias arising from missing comprehensive past 

medical information. To follow up comprehensive antibiotic treatment, we defined three time points 

for each patient’s antibiotic treatment. Time 1 was defined as the empiric treatment stage which the 

patient will receive without any test results confirmed when they got infected. Time 2 was defined 

as the time when their initial antibiotic susceptibility testing was revealed, and Time 3 was 7 days 

from time 2 (reflecting patient’s latest clinical progression). A detailed clinical justification of the 

choice of the three time points is given in a prior work 11. Individuals who were missing antibiotic 

treatment history for those three time points were dropped from the study. Fig. 1 provides an 

overview of the inclusion criteria cascade.  

The study’s index/baseline date was set corresponding to the first invasive MRSA diagnosis, 

and the outcome was 30-day mortality. The patients’ variables at index date included age, gender 

 
Fig. 1.  Flowchart of Study Population 
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(male vs. female), race (African American vs. White), Charlson’s comorbidity index (CCI), history 

of antibiotic usage, prior history of kidney impairment, types of infection (i.e., bloodstream infection 

or not), severity of infection (i.e., transfer to intensive care unit, ICU, or not), and the SDoH panel. 

Additional variables upon admission included the treatment course (i.e., whether they received 

vancomycin or not at each time point), and side effects (i.e., nephrotoxicity developed after the 

initial treatment). 

2.4.  Causal Assumptions and FACTS 

Using literature search and authors’ consensus, we created a partially directed acyclic graph (pDAG) 

connecting SDoH with individual clinical measurements before/upon diagnosis of invasive MRSA 

infection, treatments, side effects, and outcomes. Double-edged arrows might represent unmeasured 

confounding between two variables (e.g., income and rurality).  

Each arrow in the pDAG is supported by at least one finding from our literature search. Race 

was associated with previous vancomycin use12,13, types of infection14, severity of infection14, prior 

kidney impairment15, prior drug resistance2,16, income17, and chronic comorbidities18–23. Income and 

health insurance were linked24,25. Sex was associated with health insurance26, income27, and chronic 

comorbidities28–30. Income and rurality were linked31. Rurality was also associated with access to 

healthcare facilities32 , and healthcare facilities were associated with chronic comorbidities33–35 . 

Age was associated with health insurance coverage25 and chronic comorbidities21,36,37. Previous 

vancomycin use was associated with prior drug resistance38 and vancomycin at Time 139,40.  Type 

 
Fig. 2.  Partially directed acyclic graph representing the causal relationships among clinical, 

sociodemographic variables, and MRSA 30-day mortality (race is displayed as the exposure 

variable). 
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of infection41, severity of infection40,41 , chronic comorbidities39 , and prior drug resistance39 were 

also associated with vancomycin at Time 1. Vancomycin at T1 was associated with vancomycin at 

Time 2, and vancomycin at Time 2 was associated with vancomycin at Time 342. Chronic 

comorbidities and prior kidney impairment were associated with nephrotoxicity which developed 

after Time 143. Vancomycin at Time 2 and Vancomycin at Time 3 were also linked with 

nephrotoxicity which developed after Time 143–45. Vancomycin at Time 3 was associated with 

mortality46.     

The final pDAG is provided in Fig. 2. We selected race, income, gender, and age as exposure 

variables. The pDAG was used to calculate an adjustment set to identify the effect of the exposures 

with respect to MRSA outcome, quantifying the potential disparity in terms of odds ratios using a 

main-effects logistic regression. After this analysis, we applied the FACTS on our pDAG using the 

same exposures5. In detail, FACTS builds a prediction model of the outcome using all variables 

(through the XGBoost algorithm), then uses a given pDAG and a ‘sensitive’ attribute of interest 

(i.e., exposure, like gender or race) to calculate the contribution to outcome disparity for all paths 

involving such sensitive attribute. Finally, it ranks and outputs the most important paths. 

2.5.  Software 

We conducted our analyses in R (https://www.r-project.org/), using the libraries ‘tidyverse’47 and 

‘data.table’48 for data preprocessing, ‘comorbidity’49 for calculating Charlson’s comorbidity index 

(CCI), and ‘tidycensus’50 for extracting the US Census Bureau’s data APIs. The DAG and the 

adjustment sets were done with dagitty (https://www.dagitty.net/). For the FACTS analysis, we 

applied Python based on the code available at: https://github.com/weishenpan15/FACTS. 

3.  Results 

3.1.  Characteristics of the Study Population 

We identified 1,433 individuals admitted to the hospital and diagnosed with an invasive MRSA 

infection between 2011 and 2019, based on the bio/tissue-sample source and the culture test (i.e., 

blood, fluid, bone, and other internal body site). After matching with socio-demographic 

information based on the three digits zip-code information of each patient, and after filtering based 

on all inclusion criteria as described in the methods, a total of 395 patients constituted the final study 

sample (Fig. 1).  

Table 1 describes the baseline characteristics of the sample. Patients were 55.2 years old on 

average. The percentage of females was 50.1%, and 39.0% of the population was African American. 

In terms of county-level SDoH, the average number of healthcare facilities was 189, 50.9% of 

individuals lived in urban areas, the median household income was $48,300, and 21.8% was the 

prevalence of being uninsured. The mean Charlson’s comorbidity index was 6.40. The prevalence 

of patients who were administered vancomycin before this invasive MRSA infection was 68.6%, 

and for 35.9% of patients, there was record of multiple drug resistance (MDR). Eighty percent of 

patients had a bloodstream infection, and 52.2% of patients were transferred to the ICU. The 

percentages of vancomycin usage at each time point were 97%, 79%, and 66.1% respectively. While 
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being treated, 10.1% of patients developed nephrotoxicity, and 53.4% had prior history of kidney 

impairment.

Table 1.  Variable Characteristics of the Study Population (N=395) 

Variables 
Measure;  

Mean (SD), Median [Min, Max] or N (%) 

Individual-level EHR variables 

Age 55.2 (16.4), 56 [19, 96] 

Age – 65+ years old 121 (30.6%) 

Gender – Female 198 (50.1%) 

Race – African American 154 (39.0%) 

Charlson’s comorbidity index (CCI) 6.40 (3.92), 6 [0,20] 

History of antibiotic usage (Vancomycin) 271 (68.6%) 

Prior history of kidney impairment 211 (53.4%) 

Types of Infection - Bloodstream 316 (80.0%) 

Severity of Infection – ICU stay 206 (52.2%) 

Prior Drug Resistance 142 (35.9%) 

Nephrotoxicity developed 40 (10.1%) 

Vancomycin use at Time1 383 (97.0%) 

Vancomycin use at Time2 312 (79.0%) 

Vancomycin use at Time3 261 (66.1%) 

County-level sociodemographic variables 

Number of Healthcare Facilities (number of 

beds/100,000) 

189 (30.3), 192 [107, 367] 

Area – Urban 201 (50.9%) 

Median household Income $48,300 (7,900), $44,700 [$39,500, $67,400] 

Insurance coverage (% of Uninsured) 21.8 (4.17), 21.9 [13.8, 35.7] 

Fig. 3. Annual trends in invasive MRSA cases, EHR patients, and local population 
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In Fig. 3, we described the annual trend of the number of patients with invasive MRSA 

infection in our study sample. Additionally, we depicted the number of bacterial infection patients 

registered in our EHR system and the population of two Florida counties where large hospitals of 

the UF Health Network are situated (i.e., Alachua county and Duval county). The combined 

population of both counties exhibited an increasing trend over the years, while the number of 

invasive MRSA cases fluctuated annually. For the invasive MRSA cases, the data only covers half 

of 2019, from January to July.  

3.2.  Quantification of Health Outcome Disparity 

We estimated the total and direct effects of age, race, income, and gender on the 30-day mortality 

outcome. For each of the exposure variables, we report the odds ratios (OR) and 95% confidence 

intervals (CI) obtained by fitting a logistic regression model with the adjustment set variables 

identified through the pDAG (Table 2). Income showed the strongest association with outcome 

disparity (total effect OR 0.44, 95% CI 0.17-0.99), followed by age, gender, and race. All effect 

estimates, except that of income, included OR=1 in the 95%CI. 

We then ran the FACTS algorithm on the same set of exposures (Table 3). Of note, FACTS 

needs all binary variables, so we split the numeric variables based on their median. Overall, all 

paths showed absolute low weights, close to zero, for both accuracy and disparity metrics. Results 

did not change when including only clinical variables or clinical and SDoH variables in the pDAG 

and associated paths. There were no relevant paths detected for income. Comorbidity was detected 

as a disparity path for age, race, and gender. Antibiotic use, timing, and renal toxicity were 

relevant with respect to race, while income, rurality and number of healthcare facilities were 

relevant for gender disparity. 
 

Table 2.  Total and direct effects of age, race, income, and gender on to risk of 30-day 

mortality in invasive MRSA Infection. 

Sensitive Variable Model 
Odds Ratio  

(95% CI) 

Age 

(65+ years old =1 vs. 

 younger=0) 

Outcome ~ Age 
2.11 

(0.98, 4.48) 

Outcome ~ Age + Chronic Comorbidity + Previous Vancomycin Use + 

Prior Drug Resistance + Severity of Infection + Types of Infection 

1.64 

(0.74, 3.60) 

Race 

(African American=1 

vs. 

 White=0) 

 

Outcome ~ Race 
0.77 

(0.34, 1.65)  

Outcome ~ Race + Types of Infection + Severity of Infection + Previous 

Vancomycin Use + Prior Drug Resistance + Chronic Comorbidity 

0.58 

(0.24, 1.30) 

Income 

(Below median=1 vs. 

 Upper=0) 

 

Outcome ~ Income 
0.44 

(0.17, 0.99) 

Outcome ~ Income + Chronic Comorbidity + Race + Rurality + Gender 
0.74 

(0.24, 2.14) 

Gender 

(Female=1 vs. 

 Male=1) 

Outcome ~ Gender  
1.15 

(0.54, 2.45) 

Outcome ~ Gender + Chronic Comorbidity + Previous Vancomycin Use + 

Prior Drug Resistance + Severity of Infection + Types of Infection 

1.24 

(0.57,2.72) 
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4.  Discussion 

We deconstructed sociodemographic disparity in 30-day mortality among invasive MRSA 

infections, using EHR data and fairness AI methods. Upon explicit expert-derived causal 

assumptions, we found moderates to strong effects of age, gender, race, and income on mortality, 

although the 95% CIs included no difference in risk among groups. Our fairness analysis, conducted 

using the FACTS algorithm, revealed that comorbidity status was the most significant contributor 

to outcome disparity across age, race, and gender, while no distinct paths could be found for income. 

For race, antibiotic usage, timing, and prior kidney impairment contributed to disparity, while SDoH 

contributed to outcome disparity among genders. Age and income are well-known risk factors for 

mortality, and confirming their effects was clearly expected. Prior kidney impairment, identified 

through pre-infection creatinine levels, could contribute to the observed differences in invasive 

MRSA mortality rates between racial groups. Kidney impairment significantly influences the 

clinical management of MRSA infections in hospitals. Beyond its effect on the immune response, 

Table 3.   FACTS decomposition of disparity in 30-day mortality from invasive 

MRSA infection, with respect to age, race, income, and gender  

Sensitive 

Variable  

Clinical-only Clinical + SDoH 

Disparity 

Path 
Disparity Accuracy 

Disparity 

Path 
Disparity Accuracy 

Age Comorbidity -0.01162 0.00840 - - - 

Race 

 

 

Comorbidity -0.05714 0.03361 Comorbidity -0.05428 0.02857 

Prior Kidney 

Impairment 
0.02571 -0.01512 

Prior 

Vancomycin 

Use 

-0.01142 -0.00672 

Nephrotoxici

ty developed 

after Time 1 

↔Vancomyc

in use at 

Time 2 ↔ 

Vancomycin 

use at Time 

3 

0.01428 -0.00840 
Prior Kidney 

Impairment 
0.00857 -0.00504 

Income - - - - - - 

Gender 

Comorbidity -0.05084 0.02521 Insurance -0.05101 0.02857 

- - - 
Income→ 

Rurality 
0.01333 -0.00672 

- - - 

Income→ 

Rurality → 

Facility 

0.00265 0.02857 

 

Pacific Symposium on Biocomputing 2024

426



 

 

 

renal impairment also complicates the choice and dosage of anti-MRSA antibiotics that can be safely 

administered. For instance, vancomycin, the most commonly used antibiotic agent for treating these 

infections and a known iatrogenic cause of acute kidney injury, necessitates close monitoring and 

dosage adjustments based on renal function42 . Further, while creatinine levels served as an indicator 

of renal function in our analysis, clinical teams during the study period were likely assessing for 

renal impairment using creatinine-based equations that vary by race, e.g., estimated glomerular 

filtration rate (eGFR), and changing accordingly the medical management of the patient. As a result, 

use of eGFR in clinical practice could have confounded the disparity paths that we decomposed51. 

Compared to other studies, our findings are consistent with recent literature that analyzed 

individuals diagnosed with S. aureus bacteremia, reporting no differences in mortality between 

racial groups4,52. However, it has to be noted that study populations are heterogeneous and 

demographic groups exhibit strong differences in risk factors. We found that variations in mortality 

rates are partially attributable to the burden of underlying comorbidities, therapeutic choices, and 

SDoH that differ among ages, incomes, genders, and races. Of note, our results align with another 

recent analysis of EHR in Florida that quantified the effect of demographics and SDoH on outcome 

disparity in urinary tract infections (UTIs), where comorbidity, number of healthcare facilities, 

income and insurance were also found to be involved in disparity paths with respect to race.11 

The decision to use FACTS for this study was driven by the algorithm’s emphasis on causal 

pathways which account for both directed and undirected arrows between variables in partially 

directed acyclic graphs (pDAGs). While statistical-based algorithms focus on assessing whether all 

groups have the same metric for outcomes, causal-based fairness is more concerned with analyzing 

the presence of causal effects of a sensitive attribute on outcomes, including path-specific fairness.53 

Although studies exist that focus on path-specific effects 54–57, the FACTS algorithm introduced a 

novel approach. The algorithm concentrates not only on causal paths but also on uncovering 

overlooked sources of disparity that may contribute to model disparity. The capability of the FACTS 

algorithm to consider undirected relationships among risk factors in pDAGs is pivotal, especially 

when relationships are unclear. Therefore, public health researchers could benefit directly from 

using advanced algorithm (i.e., FACTS) by quantifying the unknown weights of factors to the model 

disparity. 

Our study has several limitations. Firstly, our causal assumptions may be incorrect, and we did 

not account for unmeasured confounders in our models. Despite researcher’s best efforts to define 

a DAG, it remains a challenge in real-life situations to accurately represent all variable relationships. 

This brings up concerns of incorrect assumptions and the potential for reverse causality. However, 

both FACTS and the generalized adjustment criterion can work with partial DAGs, which can 

mitigate some of these issues. Another recommended approach is to estimate effects using multiple 

DAGs, each incorporating different assumptions. Secondly, due to our strict inclusion criteria, only 

one third of patients who potentially had an invasive MRSA infection were included, which likely 

introduced selection bias (i.e., exclusion bias). Exclusion bias arises when particular members of a 

population are excluded from a study due to criteria set by researchers. The patients who were not 

included in our study constituted about two-thirds of the patients with invasive MRSA; these 

patients were mainly excluded due to a lack of sequential antibiotic prescription records. The 

excluded patients might have exhibited different disparity pathways if sufficient information had 
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been available to conduct such disparity analyses. However, by starting from what is available to 

us, discovered pathways by FACTS could provide initial inferences about the invasive MRSA 

population. These inferences could be further refined as principles for secondary data collection 

become more standardized in research and therefore minimizing missing information. Therefore, 

despite the constraint of not encompassing every patient in our EHR, our study can still offer 

valuable and profound insights. We aimed to identify diverse causal pathways of disparity and by 

meticulously delineating our cohort definition in this preliminary analysis. This approach was 

intended to curtail information bias and mitigate the impact of missing data. By sharing our method 

transparently, we seek to contribute meaningful insights, informed by a clear and comprehensive 

understanding of the available data, that can elucidate the disparity pathways prevalent in the 

broader invasive MRSA population. Thirdly, given the sample size and observed effect sizes, type 

II errors were also likely. Fourthly, the current release of the FACTS algorithm is capable of 

handling only binary variables; it is anticipated that future versions of the algorithm will expand its 

capabilities. 

5.  Conclusion 

In conclusion, this work demonstrates the practical utility of fairness AI methods in public health 

settings. The FACTS framework can be useful to explore intervention strategies for optimizing 

health outcomes among different sociodemographic groups using actionable variables in the causal 

pathways, e.g., reducing rates of comorbidities in vulnerable populations, and equalizing SDoH. For 

future studies, it is paramount to relax the population selection constraints, and to explore multiple 

different causal assumptions to reduce residual bias. 
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