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The concept of a digital twin came from the engineering, industrial, and manufacturing domains to 

create virtual objects or machines that could inform the design and development of real objects. This 

idea is appealing for precision medicine where digital twins of patients could help inform healthcare 

decisions. We have developed a methodology for generating and using digital twins for clinical 

outcome prediction. We introduce a new approach that combines synthetic data and network science 

to create digital twins (i.e. SynTwin) for precision medicine. First, our approach starts by estimating 

the distance between all subjects based on their available features. Second, the distances are used to 

construct a network with subjects as nodes and edges defining distance less than the percolation 

threshold. Third, communities or cliques of subjects are defined. Fourth, a large population of 

synthetic patients are generated using a synthetic data generation algorithm that models the 

correlation structure of the data to generate new patients. Fifth, digital twins are selected from the 

synthetic patient population that are within a given distance defining a subject community in the 

network. Finally, we compare and contrast community-based prediction of clinical endpoints using 

real subjects, digital twins, or both within and outside of the community. Key to this approach are 

the digital twins defined using patient similarity that represent hypothetical unobserved patients with 

patterns similar to nearby real patients as defined by network distance and community structure. We 

apply our SynTwin approach to predicting mortality in a population-based cancer registry (n=87,674) 

from the Surveillance, Epidemiology, and End Results (SEER) program from the National Cancer 

Institute (USA). Our results demonstrate that nearest network neighbor prediction of mortality in this 

study is significantly improved with digital twins (AUROC=0.864, 95% CI=0.857-0.872) over just 

using real data alone (AUROC=0.791, 95% CI=0.781-0.800). These results suggest a network-based 

digital twin strategy using synthetic patients may add value to precision medicine efforts. 
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1. Introduction to Digital Twins

The concept of a digital twin came from the engineering, industrial, and manufacturing domains

and refers to the creation of virtual objects or machines that can inform the design and development 

of real objects (Grieves & Vickers 2017). The promise of this approach in manufacturing is to reduce 

costs, improve efficiency, reduce waste, and minimize variability among products (Attaran et al. 

2023). This is accomplished by enumerating and evaluating design parameters of the digital twin of 
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a physical product with some measurable outcome that can then be applied to manufacturing. Use 

cases in industry include product design, process design and optimization, supply chain 

management, preventive system maintenance, farm management, weather modeling, soil 

management, facility and operations design, construction, etc. (Attaran & Celik 2023). Consider the 

use case of monitoring weed pressure and crop growth (Verdouw et al. 2021). Data on crops, weeds, 

weather, and soil conditions are collected from crop sensors. These data are used to build a digital 

twin of the crops where parameters for a weeding machine can be enumerated and evaluated. 

Optimized parameters from the digital twin can then be put into practice for weed management with 

benefits including crop weight, size, and yield. 

The successful use of digital twins in industry has opened the door for their use in medicine and 

healthcare where they represent virtual or simulated patients that could be used to inform health 

outcomes or treatment decision for real patients (Acosta et al. 2022). This idea of using digital twins 

in precision medicine has been explored for asthma management (Drummond et al. 2023), the 

treatment of immune-mediated diseases (Benson 2023), and dementia care (Wickramasinghe et al. 

2022), for example. Despite the interest in this area, the development of computational methods and 

open-source software for creating and using digital twins has been slow to emerge. This is likely 

due to the industry focus on creating twins of mechanical objects using principles of physics and 

engineering that do not exist with enough detail to create simulated patients with molecular, cellular, 

physiological, and anatomical realness and appropriate environmental and societal context. Some 

of these challenges have been previously discussed (Benson 2023). 

The goal of the present study was to create a computational methodology for generating digital 

twins based on synthetic patients rather than biophysics. The generation of synthetic data is 

becoming a mature field (Gonzales et al. 2023) and lends itself well to the digital twin strategy. The 

working hypothesis is that the correlation structure of clinical variables among patients can inform 

the creation of digital twins that represent unobserved individuals. In other words, patient 

relationships might be able to serve as a surrogate for biophysical realizations. The advantage of 

this surrogate approach is that it can be implemented and evaluated today while we wait for better 

and more complete biophysical models that could take decades to develop and validate.  

We introduce here a new approach that combines synthetic data and network science to create 

digital twins (i.e. SynTwin) for precision medicine. Our approach starts by estimating the distance 

between all subjects based on their available features. We explore here several different distance 

metrics. Second, the distances are used to construct a network with subjects as nodes and edges 

defining distance less than the percolation threshold. Third, communities or cliques of subjects are 

identified using a Multilevel community detection algorithm. Fourth, a large population of synthetic 

patients or subjects are generated. Several synthetic data generators were evaluated. Fifth, digital 

twins are selected from the synthetic patient population that are within a given distance defining a 

subject community in the network. By design, the digital twins represent unobserved hypothetical 

patients with similar clinical profiles as their real patient counterparts. Finally, we compare and 

contrast community-based prediction of clinical endpoints using real subjects, digital twins, or both. 

This is compared to predictive performance using real patients outside the community as a baseline. 

We apply our synthetic digital twin (SynTwin) approach to predicting mortality in a population-

based cancer registry (n=87,674) from the Surveillance, Epidemiology, and End Results (SEER) 
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program from the National Cancer Institute (USA). Bootstrapping is used to assess the standard 

error of all performance metrics and to estimate 95% confidence intervals for hypothesis testing. 

Our results demonstrate that nearest network neighbor prediction of mortality in the SEER breast 

cancer data is significantly improved with digital twins. These results support a growing number of 

studies highlighting the benefit of synthetic data in other applications. 

2.  Methods 

We describe here the data used and the detailed methods for the SynTwin approach.  

2.1.  Cancer Registry Data 

We chose a population-based cancer registry from the Surveillance, Epidemiology, and End 

Results (SEER) program from the National Cancer Institute (USA) for this study due its large 

sample size and ease of access by simple registration with an email address to allow for 

reproducibility. We utilized SEER Stat Version 8.4.1 for data retrieval.  

To extract patient data specifically for breast cancer, we applied the following filters: 

 

Database name: Incidence - SEER Research Data, 17 Registries, Nov 2021 Sub (2000-2019) - 

Linked To County Attributes - Time Dependent (1990-2019) Income/Rurality, 1969-2020 Counties. 

 

Additional filter criteria included: 

 

Site recode ICD-O-3/WHO 2008 = ‘Breast’ AND Year of diagnosis = ‘2010’, ‘2011’, ‘2012’, 

‘2013’, ‘2014’, ‘2015’ AND {Vital status recode (study cutoff used) = ‘Alive’ OR {Vital status 

recode (study cutoff used) = ‘Dead’ AND SEER cause-specific death classification = ‘Dead 

{attributable to this cancer dx}’}}  

 

We chose to exclude data from the years 2015-2019 due to the significant imbalance observed 

within that period. Specifically, the data exhibited a notable disparity between the number of 

surviving patients and the number of deceased cases. More than 80% of the patients within that 

timeframe were still alive, rendering the dataset heavily skewed.  Our criteria yielded 324,117 

patient records. Removing redundant entries resulted in 231,930 records, consisting of 188,093 

Alive cases and 43,837 Dead cases. Subsequently, we conducted a stratified sampling based on vital 

status to create a balanced dataset for prediction purposes. We retained all Dead cases (n=43,837) 

and randomly undersampled the same number of Alive cases (n=43,837). This process yielded a 

total of 87,674 records for our final dataset. We partitioned this sample into a training dataset 

(n=57,674) and a validation dataset of approximately 1/3 of the sample (n=30,000) to assess internal 

validity of the results. The training data was used to generate the digital twins while the validation 

dataset was held out for making predictions using the real patient data and their network and 

communities. The data processing steps are outlined by the flowchart in Figure 1. 

Features included age, year of diagnosis, sex, race, ICDO3, tumor grade, laterality, primary site, 

survival in months, tumor sequence, diagnostic confirmation, ICCC site, combined summary stage, 

and vital status (Alive or Dead). The last feature was used as the clinical outcome of class variable 

for prediction. 
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2.2.  Bootstrapping 

A central goal of this study was to compare and contrast different methods for estimating patient 

distances, different methods for generating synthetic data, and different approaches to using digital 

twins to predict outcome. In order to generate a sampling distribution of all objective functions we 

carried out 1000-fold bootstrapping by sampling 90% of patients in the holdout or validation data 

with replacement in each community of size 10 or greater a total of 1000 times. Each performance 

measure was estimated using all 1000 replications to derive its empirical distribution. This allowed 

95% confidence intervals to be estimated for all performance metrics. These were used for 

uncertainty quantification, statistical comparisons, and hypothesis testing. 
 

 

Fig. 1.  Flowchart for data processing and analysis. 

2.3.  The SynTwin Algorithm for Network-Based Generation of Digital Twins from 

Synthetic Data 

We describe here our six-step algorithm for generating digital twins and using them for 

predicting mortality in the SEER data. This involves computing patient distances based on clinical 

features, constructing a network using distances based on the percolation threshold, identifying 

patient communities, generating synthetic patients, selection of digital twins, a nearest neighbor (i.e. 

within community) prediction of mortality. 

2.3.1.  Distance Measures 

The first step is to estimate the distances between patients. We evaluated four different distance 

metrics. These include Euclidian, Manhattan, Cosine (Lee et al. 2015), and Gower (Gower 1971). 

Each has different strengths and weaknesses. For example, Gower is appealing because it is scale-
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invariant and works well with both discrete and continuous data. Further, as shown in the results, 

this distance measure yielded the best results. 

2.3.2.  Network Construction 

The second step is to build a network with patients as nodes and edges with weights based on 

the estimated distances in the first step. To prevent an uninformative fully connected network, we 

used a percolation threshold equal to the first upward inflection point of the convex part of the 

sigmoid relationship between edge weight (X axis) and network size (Y axis) as an objective 

approach to filtering edges. 

2.3.3.  Community Detection 

The third step is to detect communities of patients (i.e. cliques or modules) in the network. There 

are many different community detection algorithms for large networks. We selected the Multilevel 

algorithm (Blondel et al. 2008) for this study. This algorithm uses a heuristic for modularity 

optimization and is designed specifically for large networks. The Multilevel algorithm was shown 

to outperform other community detection algorithms available at the time and with better time 

complexity (Blondel et al. 2008). Further, a more recent study compared this algorithm with seven 

others on several graph benchmarks and showed that the Multilevel algorithm was best for both 

accuracy and time complexity (Yang et al. 2016). In our study, we varied the resolution parameter 

settings to maximize the number of communities with at least 10 subjects. This yielded between 

11,000 and 19,000 communities across the four different distance metrics we investigated. 

2.3.4.  Synthetic Data Generation 

The fourth step is to generate synthetic patients to be used as the population to select digital 

twins from. We evaluated three synthetic data generation algorithms. The first, categorical latent 

Gaussian process (CLGP), uses continuous latent variables to represent categorical variables that 

can then be modeled using a Gaussian process (Gal et al. 2015). Here, synthetic data can be 

generated by sampling from the posterior distribution of the latent variables. The second, mixture 

of product of multinomials (MPoM), uses a probabilistic model to generate synthetic data with 

similar statistical properties to the original data (Dunson & Xing 2009). The third, multi-categorical 

extension of a medical generative adversarial network (MC-MedGAN), uses two adversarial neural 

networks to generate synthetic data (Choi et al. 2017). Here, The first network learns to generate 

realistic synthetic data, and the second one attempts to distinguish between real and synthetic data 

generated by the first network. Autoencoders are used to transform the multivariate categorical data 

to continuous values, which are then used by the GAN to generate synthetic data. 

All three of these methods were recently evaluated and compared (Goncalves et al. 2020). We 

used the following performance metrics highlighted in this study to evaluate each approach: 

pairwise correlation difference (PCD), log-cluster (LC), support coverage (SC), and cross-

classification (CrCl). The PCD metric is computed as the Frobenius norm difference between 

Pearson correlation matrices of real and synthetic datasets. It measures how well a method captures 

the correlation between variables. The LC metric assesses the similarity in latent structure between 

real and synthetic datasets using k-means clustering. The SC metric quantifies the extent to which 
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the variables support in real data is captured in synthetic data. It is calculated as the ratio of the 

cardinalities of number of levels (support) for each variable in real and synthetic data. CrCl assesses 

how accurately a synthetic dataset replicates the statistical dependence found in real data using a 

classifier.  

We used the best hyperparameters reported for “small-set” in the study (Goncalves et al. 2020) 

to set up our synthetic data generation algorithms considering the smaller number of variables in 

our dataset. For CLGP we used 100 inducing points and 5-dimensional latent space. For MPoM we 

set the number of clusters (k) to 30, concentration parameter () to 10, Gibbs sampling steps to 

10,000, and burn-in steps to 1,000. For MC-MedGAN we used a learning rate 1e-3 and batch size 

100 samples. We applied L-2 regularization on the weights of the neural network with =1e-3 and 

set temperature parameter for Gumbel-Softmax trick to =0.666. The autoencoder part was built 

with a code size 64, two encoder layers (hidden size – 256 and 128), and two decoder layers (hidden 

size – 256 and 128). The GAN part consisted of one generator step with two generator layers 

(hidden size – 64 and 64) and two discriminator steps each with two discriminator layers (hidden 

size – 256 and 128). The autoencoder and the GAN were trained for 100 and 500 epochs, 

respectively. 

2.3.5.  Selection of Digital Twins 

The fifth step is to select digital twins from a population of synthetic patients. For a synthetic 

twin to be a digital twin it must be within some distance of one or more real patients such that the 

clinical features can represent realistic unobserved measures and outcomes. For each community 

we selected those synthetic patients whose distances places them within that community. We refer 

to these virtual patients as digital twins of the real patients in the community. Only those digital 

twins in a community are used for prediction of mortality. 

2.3.6.  Prediction of Mortality 

The final step is to use features from real patients and/or digital twins to predict mortality (Alive 

or Dead) using a majority vote using the study design described in the next section (2.4). This 

prediction strategy resembles k-nearest neighbor classification. We estimated six different 

classification performance measures for predicting mortality across 1000 bootstrapped samples of 

the holdout data sampled with replacement from each community with at least 10 patients. These 

included accuracy, balanced accuracy area under the receiver operating characteristic curve 

(AUROC), precision, recall, and F1. The mean of each performance metric across the 1000 

bootstrapped datasets was reported along with the bootstrapped 95% confidence interval (CI). 

2.4.  Study Design and Analysis. 

A central goal of this study is to evaluate whether digital twins add any value to predicting 

mortality beyond that provided by data from the real patients. To answer this question, we 

developed the following study design (Figure 2). Here, we evaluated prediction of mortality in 

target patients (black circle) using real patients (A), digital twins (B), real patients and digital twins 

(C), the closest digital twins equal to the number of real patients in the community (D), real patients 

and closest digital twins (E), and real patients outside the community (F) as a control for the value 
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of considering communities. Here, each subject in a community alternate as the target patient in a 

leave-one-out style analysis. 

A total of one million synthetic patients were generated from the training data using the best 

synthetic data generation algorithm (MPoM). We predicted target patient mortality using the nearest 

neighbor majority vote classification method in the holdout or validation dataset. We estimated 95% 

confidence intervals for each of the classification performance metrics and statistically compared 

distance metrics, synthetic data generation algorithms, and study designs. 

Fig. 2.  Study design for comparing outcome prediction using real patients and/or digital twins. The large 

circles represent a community within the patient network. Prediction of the target patient is carried out 

using real patients (A), digital twins (B), real patients and digital twins (C), the closest digital twins (D), 

real patients and closest digital twins (E), and real patients outside the community (F). 

3.  Results 

Table 1 summarizes the performance metrics for the three synthetic data generators considered. 

Across all metrics, mixture of product of multinomials (MPoM) performed significantly better than 

the other two methods with nonoverlapping 95% confidence intervals. Consider for example that 

MPoM had a cross-classification (CrCl) of 0.982 indicating a very high degree of correlation 

between the same features in the real dataset and in the synthetic dataset. This was significantly 

higher than the CrCl for MC-MedGAN (0.759) and CLGP (0.645) with nonoverlapping confidence 

intervals when compared to MPoM. This was true for the other metrics. The only exception was the 

categorical latent Gaussian process (CLGP) for coverage which was comparable to MPoM. These 

results mirror a previous evaluation of these algorithms using the SEER data where MPoM 

outperformed the MC-MedGAN adversarial neural network approach (Goncalves et al. 2020). 

Therefore, we selected MPoM as our synthetic data generator and used it for the remainder of the 

study. 
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Table 1. Comparison of synthetic data algorithms (columns) for four performance metrics (rows). Bolded metric 

values are significantly better than the others. 

 CLGP MC-MedGAN MPoM 

Metric Mean 95% CI Mean 95% CI Mean 95% CI 

CrCl 0.645 0.533, 0.757 0.759 0.634, 0.884 0.982 0.941, 1.022 

LC  -1.545 -1.594, -1.496 -2.941 -4.211, -1.672 -5.191 -6.146, -4.236 

SC  1.000 0.999, 1.001 0.830 0.625, 1.036 0.989  0.978, 1.000 

PCD  1.723 1.453, 1.992 2.772 1.007, 4.538 1.012  0.720, 1.305 

 

 

Table 2. Comparison of study design performance as measured by AUROC for each distance measure. Bolded metric 

values are significantly better than the others. 

*Real patients (A), digital twins (B), real patients and digital twins (C), closest digital twins (D), real patients and closest 

digital twins (E), and real patients outside the community (F). 

 

Table 2 summarizes the AUROC for predicting mortality in the holdout or validation data for 

each of the four distance metrics and each of the six study designs (A-F, see Figure 1). Study designs 

D and E had significantly higher AUROCs than the others but were not significantly better than 

each other given overlapping confidence intervals. Unique to study designs D and E are the presence 

of digital twins selected to be close to the target patient being predicted. The performance of D and 

E was significantly higher for the Gower distance than Cosine, Euclidian, or Manhattan. Therefore, 

we are reporting the mean AUROCs for Gower distance. These patterns of significance were similar 

for accuracy, balanced accuracy, and the other performance metrics (tables not shown). For 

example, the Gower accuracies for D and E were 0.788 (95% CI=0.780-0.797) and 0.781 (95% 

CI=0.772-0.790), respectively. The Gower accuracy for just the real patients (A) in the community 

was 0.719 (95% CI=0.710-0728). The mean balanced accuracies were very similar for D (0.789), E 

(0.783), and A (0.721) suggesting that there were no biased accuracies due to imbalanced data. Thus, 

the accuracies associated with including close digital twins within communities was significantly 

higher than that for just real patients within communities. 

Interestingly, the performance of A (real patients only), B (digital twins only), and C (real 

patients and digital twins) were not significantly different from one another across the different 

distance metrics including Gower. It is important to note that F (real patients outside the community) 

had an AUROC of approximately 0.50 as might be expected by chance given these patients have a 

distance that exceeds the percolation threshold and places them outside the community. Thus, the 

distance from the target patient being considered for prediction plays an important role in predictive 

accuracy and is highly relevant for precision medicine where context is a key consideration. An 

example network of real patients for three communities is shown in Figure 3 along with the 

corresponding digital patients. 

 Cosine Euclidean Gower Manhattan 

Design* mean 95% CI mean 95% CI mean 95% CI mean 95% CI 

A 0.800 0.792, 0.808 0.807 0.800, 0.814 0.791 0.781, 0.800 0.800 0.792, 0.807 

B 0.793 0.785, 0.801 0.799 0.792, 0.806 0.784 0.774, 0.794 0.792 0.784, 0.800 

C 0.793 0.785, 0.801 0.798 0.791, 0.805 0.783 0.773, 0.793 0.791 0.783, 0.798 

D 0.840 0.833, 0.847 0.848 0.842, 0.854 0.864 0.857, 0.872 0.852 0.845, 0.858 

E 0.840 0.833, 0.847 0.845 0.839, 0.852 0.852 0.844, 0.860 0.846 0.839, 0.852 

F 0.510 0.500, 0.521 0.512 0.503, 0.522 0.494 0.482, 0.507 0.485 0.475, 0.495 
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4.  Discussion 

We have developed a new digital twin approach to improve the prediction of clinical endpoints. 

Our approach combines network science to model patient similarity and synthetic data generation 

to generate digital twins (SynTwin). Key to SynTwin is using patient similarity to synthesize nearby 

digital twins that represent hypothetical unobserved patients with clinical data correlations that are 

consistent with real patients. This distance-based approach is different than the digital twin 

approaches from industry that rely on well-known physical principles that govern a complex system 

(Attaran & Celik 2023; Attaran et al. 2023; Grieves & Vickers 2017). Biophysical properties 

governing health are not well known and are often only available for certain cellular or physiological 

processes. Indeed, simulating a single cell is quite challenging for a number of reasons including 

the lack of physics-based models (Thornburg et al. 2022). It is our working hypothesis that distance-

based digital twins will be useful for informing patient outcomes above and beyond that provided 

by the observed clinical data. Indeed, our results suggest that generating and selecting digital twins 

close to the target patient whose outcome is being predicted significantly improves predictive 

performance above and beyond the real patients in the community. Choosing real patients outside 

the community for predicting target patients inside a community was not better than flipping a coin. 

Fig. 3.  Section of the network showing three communities of real patients (orange, green, and blue circles). Also 

shown are the digital patients (small purple circles) and real patients outside the communities (grey circles). 
 

The generation and use of synthetic data for biomedical research is in and of itself not new. A 

recent review highlighted more than 70 published papers representing at least seven different use 

cases for synthetic data (Gonzales et al. 2023). Most of the use cases involve generating a synthetic 

dataset that can be used to avoid the privacy and security concerns of real data. For example, a 

synthetic dataset could be distributed to students to use for learning objectives without fear of 

identifying real patients. Other use cases involve using synthetic data to benchmark algorithms, 

evaluate information technology software, and public release of data. A very specific use case is to 

allow investigators to test a hypothesis without the need for Institutional Review Board (IRB) 

approval and the time it takes to retrieve data from an electronic health record which is a process 

that can take months depending on the complexity of the data and the wait time for available 
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qualified personnel. Any interesting patterns found in the easily available synthetic data could then 

justify the time and expense of retrieving real data to confirm the finding before publication as has 

been suggested (Foraker et al. 2018). This approach was recently evaluated by comparing statistical 

and machine learning results obtained from real patient data and a synthetic derivative generated 

using a commercially available platform (Foraker et al. 2020). Similar results were seen when using 

a large integrated data resource (Foraker et al. 2021). In each case, the authors were able to draw 

the same conclusions from the analytical results using both real and synthetic datasets. 

The use of synthetic data to generate digital twins was not mentioned in the review by Gonzales 

et al. (2023). However, using synthetic data to improve the sample size of a real dataset for 

improving predictive accuracy was specifically discussed. A study evaluating the addition of 

synthetic data to a real dataset showed that variance improved and five machine learning algorithms 

had improved prediction of heart disease (Aljaaf et al. 2016). The idea that synthetic data can 

improve machine learning performance has been observed in the image analysis domain. For 

example, a synthetic image generation approach using general adversarial networks (GANs) has 

been shown to improve image segmentation when the number of training examples is small 

(Thambawita et al. 2022). This approach may have clinical applications. For example, a recent study 

showed that synthetic colonoscopy images with polyps can improve the sensitivity of a deep 

learning neural network to detect polyps in real images (Adjei et al. 2022). This may be true in 

ophthalmology as well (You et al. 2022). Our observation that synthetic data may improve the 

performance of predictive accuracy is consistent with these studies. More studies are needed to 

validate this phenomenon. 

Most synthetic data generation studies have focused on generating and using an entire synthetic 

dataset and checking to make sure the patterns detected by a machine learning algorithm are similar 

(Gonzales et al. 2023). Our SynTwin digital twin approach is different in the sense that we are using 

patient similarity and network community structure to select synthetic patients (i.e. twins) that can 

inform clinical outcome prediction. This is a more targeted approach that is much more consistent 

with the goals of precision medicine where treatment decisions and clinical outcomes are assessed 

in patient subgroups with similar characteristics. As such, this represents a fundamental shift in how 

synthetic data are used and may be more informative for clinical decision support. 

Despite progress in this area, there are some possible limitations and challenges for moving 

forward. First, we applied our method to a dataset with a large sample size and a small number of 

features. On one hand, this was an ideal dataset to evaluate a new approach. Further, this dataset is 

publicly available, has been carefully curated, and has been well studied for understanding cancer 

risk and outcomes. However, the question remains of how the SynTwin approach will scale to 

hundreds or thousands of features or how it will behave when the synthetic data are generated from 

a dataset with small sample size. Further, the validation data was derived from the same cohort. 

Second, SynTwin is highly dependent on the community structure of the network. Not every patient 

is part of a community and prediction of outcomes in those patients may need to be performed using 

standard machine learning (ML) methods. Thus, a hybrid SynTwin-ML approach may need to be 

developed to make sure those patients are considered fully. Thirdly, it is of great interest to develop 

formal statistical inferential procedures to quantify the uncertainty of the subsequent analyses 

including estimation and prediction. Intuitively the generated digital twins should be weighted 

differently from the real patients in the precision of the downstream analyses. Finally, our 

implementation of SynTwin relied on bootstrapping to assign confidence intervals to performance 

metrics. This adds 1000-fold more computation time which might be prohibitive for larger datasets 
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with more features. Future studies will need to balance the need for statistical inference with 

computing resources that are available. This study benefited from access to a 2000-core high-

performance computing system to carry out all computations. 

Precision medicine relies heavily on artificial intelligence and machine learning methods to 

develop models for predicting disease risk and patient outcomes in a manner that takes into account 

the uniqueness of the patient in question and other patients with similar profiles (Rajpurkar et al. 

2022). The SynTwin digital twin strategy we presented here takes a step toward the use of synthetic 

data to augment the prediction of clinical outcomes by generating hypothetical unobserved patients 

to be used alongside real patients. The use of digital twins in medicine and biomedical research is 

in its infancy. We have a lot to learn from industrial uses of this approach and will need to develop 

new algorithms and software that consider the unique aspects of patients and their data. We agree 

with others who have speculated that digital twins will have a big impact on research and patient 

care but that new biophysical, computational, and statistical methods are needed (Acosta et al. 2022; 

Armeni et al. 2022; Attaran & Celik 2023; Attaran et al. 2023; Kamel Boulos & Zhang 2021). 
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