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This work demonstrates the use of cluster analysis in detecting fair and unbiased novel
discoveries. Given a sample population of elective spinal fusion patients, we identify two
overarching subgroups driven by insurance type. The Medicare group, associated with lower
socioeconomic status, exhibited an over-representation of negative risk factors. The findings
provide a compelling depiction of the interwoven socioeconomic and racial disparities present
within the healthcare system, highlighting their consequential effects on health inequalities.
The results are intended to guide design of fair and precise machine learning models based
on intentional integration of population stratification.
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1. Introduction

Advances in machine learning (ML) technologies paralleled with increased clinically relevant
data availability have led to major progress in precision medicine over the past decade.1

Data-driven solutions, particularly ML methods, are becoming integral to personalized predic-
tive medicine as they can inform clinical decision support systems, generate accurate patient
risk stratification models, and contribute to intelligent guideline development using high-
dimensional complex medical data.2 Indeed, ML-based approaches have generated robust pre-
dictive models in the diagnoses of several diseases such as cardiovascular diseases,3 type II
diabetes,4 and early-stage Alzheimer’s disease5 and for post-surgical outcomes and treatment
response in several procedures including cardiac surgery6 and spinal surgeries.2,7,8 Thus, clin-
icians can utilize this information to evaluate risk of poor diagnoses and adverse outcomes,
assisting clinical decision making by providing personalized assessments of the benefits and
consequences related to undergoing or delaying invasive procedures.

The rates of spine surgery, an invasive procedure, have been steadily increasing over the
past few decades.9 With the proportion of the elderly population projected to dramatically
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increase in the coming years, utilization of spinal procedures is expected to follow as degen-
erative spine conditions become more prevalent.10 Spinal fusions generally require extensive
muscle dissection and reconstruction of the spinal column, which typically necessitates signif-
icant post-operative opioid consumption and comes with considerable post-operative risks.11

With the potential for long recovery periods and the risk of the development of opioid depen-
dency as a result of these surgeries, outcome prediction in spinal fusion surgeries has become
an important area of research. To accurately predict outcomes, it is crucial to consider patient
diversity, which stems from various sources, including but not limited to biological, societal,
environmental, and psychosocial factors.12 These sources of diversity can result in significantly
different outcomes, ultimately affecting a patient’s long-term quality of life after surgery.

For data-driven predictive models to become widely and safely adopted in clinical set-
tings, key research challenges still remain to be resolved. These include assessing clinical
heterogeneity and avoiding bias in decision-making. Complex ML algorithms have an inherent
tendency for biased decisions that disproportionately impact underrepresented demographic
groups leading to possible discriminatory outcomes.13 This concern is frequently overlooked
in study design, resulting in unequal treatment of minority individuals.14 We seek to examine
the intricate heterogeneity in clinical data to identify any differential patient subgroups, if
present. This will enable us to mitigate bias in the ML decision-making for clinical systems.

Cluster analysis has been applied in a wide range of applications as an exploratory tool
to enhance knowledge discovery.15–17 It can help by identifying more homogeneous subgroups
for effective ML models. The goal is to detect and characterize novel sub-types that exhibit
differing clinical patterns and/or outcome trajectories that may benefit from different treat-
ment options. Ultimately, the validity of any sub-grouping paradigm depends on whether the
resulting sub-groups uncover/expose some biologic or genetic variation, which can be used to
predict prognoses, recurrent risks, or treatment responses. However, most of the approaches
employ a single clustering algorithm with limited explainability.15–17 To overcome these lim-
itations, we introduce a novel clustering framework to examine and characterize a cohort of
patients that have undergone elective spinal fusion surgery at Cedars-Sinai Medical Center.

2. Data

The dataset consists of electronic health records (EHR) of 5,214 elective spinal fusion (ESF)
surgery procedures derived from 4,930 patients (ages 18-85) at the authors’ single institution
from 2013 to 2022. Only patients who survived after surgery, with two or fewer procedures
are included. If the second procedure was conducted within seven days of the first, the most
recent is retained. Patients with a second procedure conducted after seven days but less than a
year apart are excluded. Forty-five features from the patient’s health records were selected and
integrated in the cluster analysis. These features span baseline characteristics/demographics,
pre-surgery clinical labs, vitals, medication lists, past medical history, post-operative care, and
social status, as guided by domain expert (C.T.W.).

The race feature consolidates both self-reported race and ethnicity information. Self-
reported ethnicity of “Hispanic”, regardless of race, is represented as “Hispanic”. Race
designation of “Asian” or “Native Hawaiian or other Pacific Islander” are categorized as
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“Asian/Pacific Islander”. “Native American or Alaska Native”, “Other”, “Patient declined”,
“Unknown”, or missing are all consolidated as “Other”. Social status features include insurance
type, marital status, smoking, and alcohol use. Patients with commercial or private insurance
are grouped as “commercial” while Medicare, California’s Medicaid program (Medi-Cal), or
all other government insurance are categorized as “medicare”. Vitals features include systolic
blood pressure (SBP), body mass index (BMI) and pain score. We include the most frequently
used lab value results from the EHR that had less than 50% of missing data (11: hemoglobin,
white blood cell (WBC) count, red blood cell (RBC) count, platelet count, potassium, sodium,
chloride, blood urea nitrogen (BUN), creatinine, calcium, and blood type) . Selected post-
operative care features are discharge disposition, length of stay, and readmission status. Past
medical history (PMH) features (yes/no) are derived by aggregating the ICD codes relevant
to specific conditions of interest (metabolic, anxiety, chronic pain, mood, headache, nicotine,
other psychiatric, opioid substance use disorder (SUD), alcohol SUD, cannabis SUD, and other
SUD). Medication list features are derived based on usage of medications under 7 broad cate-
gories, as defined by the domain expert. These include muscle relaxers, non-opioid analgesic,
psychiatric, sleep, medication-assisted treatment, gabapentinoids, and “other”.

The summary of the baseline characteristics is presented in Table 1. For a complete list
of the medications that map to each medication feature as well as the ICD codes that map
to each PMH feature, see supplementary file a. Data request approved by the Cedars-Sinai
Honest Enterprise Research Brokers (HERB) committee. This research study was carried out
under the guidelines and approval of the Cedars-Sinai Institutional Review Board.

Table 1. Demographic summary of elective spinal fusion surgery patient sample (n = 5,214).

Characteristic Distribution

Age median: 67 range: 18 - 85; 65+: 57.59%
Gender Male: 46.47% Female: 53.53%
Race White: 75.66%, Hispanic: 10.32%, Black/African-American: 6.75%, Asian: 3.55%, Other: 3.72%

Insurance type
Medicare: 45.09% (65+: 88.74%) (Medicare: 96.85%, Medi-Cal: 0.02%, Other government: 0.01%)
Commercial: 53.93% (65+: 31.80%), No Insurance: 0.98%

Marital status
Single: 17.97%, Married: 63.57%, Divorced: 9.51%, Widowed: 6.23%,
Significant other: 2.51%, Unknown: 0.21%

3. Methods

To ensure a fair and unbiased model, we propose a robust automated system that integrates
multiple clustering algorithms, ensemble internal validation metrics, automated ML (autoML)-
driven explainability, and post-hoc univariate statistical analysis.

The data curation steps involve the detection of erroneous, non-biologically plausible val-
ues, and/or outliers. Domain expert guidance in conjunction with outlier analyses are applied
to ensure mitigation of potential bias and possible human data entry errors. These values are
dropped and imputed, rather than dropping the entire sample. Missing values are imputed
using the multivariate feature imputation (IterativeImputer method in Python).18 All 45 fea-

aSupplementary information is available at: https://github.com/EpistasisLab/PSB2024 spine/
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tures are not highly intercorrelated as evident from passing the correlation filter analysis using
the Pearson and Spearman rank correlations (≤ 0.85).

We perform an automated clustering method that incorporates hyperparameter sampling
across various algorithms that permutes the distance type (Euclidean, Manhattan), and num-
ber of clusters (k=[2:10]), when applicable. It exploits five individual algorithms (Spectral,
Agglomerative, k-means, Birch, and Gaussian mixture).19 We also conduct an ensemble clus-
tering model that leverages these individual methods using the mixture model consensus
metric in OpenEnsemble.20,21 Our model includes TooManyCells (TMC) spectral hierarchical
clustering method,22 for a total of seven methods with 68 permutations. To integrate TMC
into the automated clustering pipeline, we implement an extension that aggregates cluster
labels with multiple terminal cluster nodes starting at the root node. The depth of the tree
partition serves as a TMC hyper-parameter. The optimal clustering output is determined us-
ing the ensemble internal validation metric model introduced by Nguyen et al..23 The model
assigns a final score based on a consensus of five metrics (Calinski-Harabasz, Davies-Bouldin,
Silhouette score, I, and Xie-Benie).24 Each metric ranks its top 15 results and sets the remain-
der to zero. The ensemble model assigns a final overall rank score to each clustering outcome
based on the weighted sum of the individual ranking assignment of each metric.

Key novelty of our clustering framework is that we utilize a model-agnostic approach to
evaluate the feature importance and assess which key discriminant features are driving cluster
separation with an autoML tool, TPOT.25 TPOT evaluates the informative contributions of
features to clustering results by predicting cluster labels with each feature independently. In
contrast to the current state-of-the-art methods for evaluating feature importance (such as
SHapley Additive exPlanation,26 Permutation feature importance, Gini impurity in Random
Forest27), TPOT overcomes the single model limitation as it searches and optimizes across mul-
tiple ML algorithms. For each feature, we run the TPOT optimization (across 13 different clas-
sifiers configuration), and extract the best-performing model performance as the feature impor-
tance metric. This provides insight into the key discriminant input features and guides the next
steps of analysis. Visualization of results is performed using ISOMAP28 and TMC dendograms.
Code for all the methods are available at (https://github.com/EpistasisLab/PSB2024 spine).

Univariate global statistical tests are conducted, as post-hoc analyses, to assess which
features exhibit differences among the cluster groups. The method of analysis differs depending
on the measurement scale of the feature. Features with significant test results suggest utility
in clustering. For continuous features, we test for normality using Shapiro-Wilk tests. All
features are non-normally distributed. Thus, we employ non-parametric Mann-Whitney tests
(or Kruskal-Wallis tests in case of multiple groups). For categorical and binomial features, we
use Chi-square tests of independence. The resulting p-values of these tests are corrected for
multiple testing using the Benjamini-Hochberg procedure.

4. Results

4.1. Entire ESF sample is stratified by socioeconomic factor of insurance.

Upon evaluating ensemble clustering on the overall cohort of 5,214 surgeries, Table 2A shows
k-means with two clusters consistently outperforms other methods across internal validation
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Table 2. Top ranked results for 1st and 2nd order clustering based ensemble validation rank scores.

Output [Cluster sizes] CH (rank) Db (rank) I (rank) Sil (rank) Xb (rank)
Overall
Rank

A. Clustering on entire cohort
kmeans-2 [2852, 2362] 550.01 (15) 3.03 (14) 0.619 (15) 0.098 (15) 2.348 (15) 74
GaussianMixture-2 [2732, 2482] 549.56 (14) 3.03 (15) 0.619 (14) 0.097 (14) 2.348 (14) 71
Spectral (euclidean)-2 [2863, 2351] 533.62 (13) 3.08 (11) 0.597 (13) 0.095 (13) 2.436 (13) 63
B. 2nd order clustering on C1 group

kmeans-2 [1872, 980] 202.13 (15) 3.57 (0) 0.398 (15) 0.089 (14) 3.180 (3) 47
Spectral (manhattan)-2 [1931, 921] 168.17 (13) 3.86 (0) 0.341 (14) 0.081 (13) 3.705 (0) 40
Mixture model-2 [1638, 1214] 168.23 (14) 4.06 (0) 0.305 (13) 0.074 (12) 4.142 (0) 39
C. 2nd order clustering on C2 group

kmeans-2 [1476, 886] 204.92 (15) 3.27 (11) 0.503 (15) 0.094 (15) 2.700 (15) 69
GaussianMixture-2 [1474, 888] 204.88 (14) 3.27 (10) 0.503 (14) 0.094 (14) 2.702 (14) 64
Mixture model-2 [1473, 889] 195.48 (13) 3.36 (1) 0.480 (13) 0.094 (13) 2.834 (13) 54

metrics. Top ranking methods (k-means, Gaussian Mixture, spectral, TooManyCells) return
similar 2-cluster partitions and display high consistency as top performers across all five met-
rics. Subsequent analyses are conducted on the k-means-2 result (C1 and C2). The visualiza-
tion of the subgroups is shown using both ISOMAP (Figure 1(a)) and TMC (Figure 1(b)).
Note: TMC performs its embedded technique (spectral hierarchical clustering) prior to visu-
alization, hence, not representing C1 and C2 separation exactly. TPOT feature importance
analysis reveals that insurance type, a potential socioeconomic factor, is most important to
cluster separation explainability (100% balanced accuracy (B-Acc.)). Age, discharge disposi-
tion, and PMH metabolic are of less importance (79.1%, 64.2%, 62.7% B-Acc. respectively).
Mapping the insurance type label with TMC dendrograms confirms this as well (Figure 1).
Cluster C1 consists of all patients with “commercial insurance” and 40 of “no insurance” while
C2 has all patients on “medicare insurance” and 11 with “no insurance”.

C1
C2

(a) ISOMAP representation

C1
C2

(b) C1 & C2 using TMC

Commercial
Medicare
No Insurance

(c) TMC with insurance

Fig. 1. Visualization of k-means-2 results on entire cohort.

Age is a determinant for medicare eligibility (65+) in the USA. Thus, we conduct univariate
statistical analyses between C1 and C2 (insurance-driven clusters) as well as between and
within age-stratified subgroups. Figure 2 illustrates the experimental design of these analyses.
The pairwise comparisons are conducted as follows: Exp 1: C1 vs. C2; Exp 2: 65+ subgroups
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of C1 and C2 i.e., C1 ≥ 65 vs. C2 ≥ 65; Exp 3: 65- subgroups of C1 and C2 i.e., C1 < 65 vs.
C2 < 65; Exp 4: within C1: C1 ≥ 65 vs. C1 < 65; Exp 5: within C2: C2 ≥ 65 vs. C2 < 65.

4.1.1. Univariate analysis reveals health disparities associated with insurance types.

Figure 3 summarizes the key features that differ significantly at the entire cohort level between
C1 and C2 and when age-stratified (Exp 1, 2, and 3). Nine features display age-independence
as they are statistically different across all three comparisons (Figure 3a). These are race,
marital status, discharge disposition, hemoglobin, platelet count, RBC count, potassium, and
two PMH features (metabolic and anxiety). We also observe that there are some features that
are not different between C1 and C2 (Exp 1), but do exhibit significant differences within
the 65- comparisons (Exp 3) (Figure 3b). These features (PMH features of pain score, other
psychiatric disorders, nicotine use, headache, other SUDs, and use of non-opioid analgesics)
imply some possible health disparities between the two socioeconomic driven groups after
accounting for the age factor. (Note, an additional significant feature, PMH of other SUD,
isn’t shown in the figure, as it affects less than 5% of the overall population.) There are no
features that are significant only between 65+ subgroups (Exp 2) and not at the entire cohort
level (Exp 1). See Supplementary file b for complete details of all the pairwise comparisons.

C1:c2C1:c1 C2:c2C2:c1

1st order
clustering

2nd order
clustering

Dataset

C1

C1 < 65C1 >= 65

C2

C2 < 65C2 >= 65

Exp 6

Exp 1

Exp 7

Exp 2 Exp 3

Exp 4 Exp 5
Age
Stratification

Fig. 2. Experimental design of cluster analyses
and pairwise comparisons.

The analysis also reveals some features
that are significant across all three compar-
isons (Exp 1, 2 and 3), which are also sig-
nificant within C1 and C2 when stratified
by age (Exp 4 and 5). These include race,
platelet count, RBC count, marital status,
discharge disposition, and PMH features
of metabolic and anxiety (see Supplemen-
tary fileb). Features such as hemoglobin
are significant within C1 (Exp 4) but not
C2 (Exp 5). All PMH features are signif-
icantly different within C2 age-stratified
groups. Overall, negative health factors,
such as lower hemoglobin, RBC, platelet
count, potassium levels, and higher inci-
dence of metabolic disease and anxiety are
associated with C2, indicating socioeco-
nomic health disparities.

4.1.2. Adverse outcomes are disproportionately observed in minority racial groups.

From the pairwise comparisons (Exps 1-5), race is consistently significant. The 65- population
in C2 had a larger proportion of non-white patients (60% compared to 73% in C1), with
the disparity being most prominent in the Black/African-American demographic with a wide

bSupplementary information is available at: https://github.com/EpistasisLab/PSB2024 spine/
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Fig. 3. Pairwise comparison results of selected features for Exp 1, 2, & 3 (C1 vs. C2; C1 ≥ 65 vs.
C2 ≥ 65; C1 < 65 vs. C2 < 65) significant across all in (A), and only for Exp 3 in (B).

percentage gap of 16% vs 5.7% (Figure 3). Given a predominantly White cohort, it is im-
portant to highlight that complex ML models may inadvertently neglect pattern associations
within minority classes. We recognize the importance of deeper exploration into race since our
clustering model could potentially marginalize significant patterns linked to minority groups.
This section further examines race-related differentiation at both cohort and cluster levels.

We observe significant differences for post-operative care outcomes (discharge disposition,
length of hospital stay (LOS), and readmission rate) between race groups in multiple com-
parisons (Figure 4). At the entire cohort level, Blacks exhibit a higher proportion of adverse
outcomes in all scenarios (see Figure 4). The “Other” group (Native American or Alaskan
Native, Other, patient declined, and unknown) also demonstrates increased rates of adverse
outcomes for discharge disposition and LOS. We subsequently examine the cluster and age-
stratified groups to identify whether the adverse outcome over-representation in Blacks and
“Other” remain independent of insurance and age. Likewise, for readmission rate and dis-
charge disposition, the higher adverse outcome effect remains significant in C2, specifically in
the 65+ subgroup. However, LOS is independent of race in C2 as adverse outcomes become
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Fig. 4. Pairwise comparisons of clinical outcomes across subgroups by race.

more prominent for all groups, likely denoting a combined effect of socioeconomic disparities
and advanced age. Race appears to also be an important factor in C1 with Blacks and “Other”
having higher LOS (> 7 days) and discharges to other than home compared to other groups.
These results, although limited due to small non-white sample sizes, indicate that race is an
important discriminant of health outcomes for ESF surgery.

4.2. Second-order clustering reveals clinical and demographic heterogeneity

Given the overwhelmingly distinct clusters driven by socioeconomic factors, we reiterate the
automated clustering on C1 and C2 separately to further examine the insurance-associated
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heterogeneity. This is denoted as second-order clustering (Exp 6 and 7) in Figure 2.
The top-ranking clustering results for both experiments are illustrated in Table 2B and

C. We observe that in both instances, the k-means-2 result is the most optimal method. For
C2, all the high-ranking algorithms unanimously identified 2-cluster solutions with minor size
distribution differences. In contrast for C1, though the 2-cluster solution is the best method
overall, there is more variance among the metrics. Visual inspection of ISOMAP decomposition
and TMC dendrograms with cluster labels confirm that C2 clusters (C2:c1 and C2:c2) display
more separation compared to C1 (C1:c1 and C1:c2) (Figures 5 and 6).

C1:c1
C1:c2

(a) ISOMAP representation

C1:c1
C1:c2

(b) TMC with kmeans-2

Single
Unknown
Widowed

Divorced
Married
Sig. Other

(c) Marital status TMC

Fig. 5. Optimal clustering result on C1 subgroup:kmeans-2 optimal result.

C2:c1
C2:c2

(a) ISOMAP representation

C2:c1
C2:c2

(b) TMC with kmeans-2

Rehab
Home
SNF

(c) Discharge TMC

Fig. 6. Optimal clustering result on C2 subgroup: kmeans-2 optimal result.

TPOT feature importance analysis identifies marital status as highly discriminant for
C1:c1 and C1:c2 groups, and discharge disposition for C2:c1 and C2:c2, both with 100% B-
Acc. For C1, Age trails with 57.4% B-Acc. For C2, LOS, hemoglobin, and readmit predicts
label with 64.2%, 61.8%, and 60.9% B-Acc. respectively. This is illustrated using the TMC
dendrograms overlaid with the discriminant features in Figures 5(c) and 6(c). C1:c2 consists
entirely of all married patients while C1:c1 contains all others. In C2, the two clusters (C2:c1
and C2:c2) are stratified primarily by discharge disposition. C2:c1 (n = 886) consists mainly
of patients discharged to rehab and skilled-nursing facilities (SNF) while C2:c2 (n = 1,476) is
comprised of almost all home discharge patients (99.86%). We also observe that the second-
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Fig. 7. Selected significant features from univariate analysis of pairwise comparisons on second-order
clustering on (A) cluster C1 (Exp 6) and (B) cluster C2 (Exp 7).

order clustering yields subgroups of disproportionate sizes (large vs. small) compared to the
first-order clustering.

From univariate analysis results (Figure 7), statistically significant differences are observed
for both comparisons (Exp 6 and 7) for age, race, gender, discharge disposition, readmission,
LOS, platelet count, RBC count, hemoglobin, BUN, creatinine, chloride, calcium, sodium, and
PMH features of anxiety and mood of which selected features are illustrated in 7. Overall, we
observe that C2 displays a higher level of complexity and divergence. The features that drive
the C2:c1 vs. C2:c2 divergence are LOS > 7 days (44% vs 13% ), readmission rate ( 29% vs
11% ), and lower median hemoglobin values (11.4 vs. 12.3) (Figure 7B).

5. Discussion

In this study, we elaborate our commitment towards constructing equitable and unbiased ML
models. Our initial intention was the development of a predictive model specific to elective
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spine fusion surgery, however, during the course of our investigation, we identified the ne-
cessity for deeper understanding of potential disparities present within our dataset to more
accurately address clinical inquiries. The manifestation of bias within ML algorithms through
data sources has been substantially highlighted in prior literature.13,29,30 To combat this, we
employ a robust automated multiple clustering approach to scrutinize our dataset for poten-
tial bias factors, prior to developing an ML model. Investigation of subpopulation structure
in clinical cohorts is an important area of research and has significant implications for pa-
tient care and treatment. However, the methodologies used in most studies15–17 are limited
in that they usually implement a single clustering technique without conducting exploratory
investigations of their results, potentially overlooking components driving heterogeneity. Our
framework addresses these shortcomings by employing automated cluster analysis with hy-
perparameter tuning and a multi-metric performance score. The framework, enhanced by
autoML-driven feature importance estimation along with univariate analysis, allowed us to
uncover and explain drivers of population divergence. We demonstrate its capabilities in un-
covering inherent patterns of heterogeneity in patients undergoing ESF, an invasive medical
procedure that is associated with risks of many adverse outcomes.11

The cluster analysis uncovers two diverse subgroups (C1 and C2), each exhibiting unique
characteristics, driven mainly by socioeconomic factors (insurance type and race). It is impor-
tant to note that the entire ESF sample is almost evenly split between insurance types (54%
commercial insurance). This indicates increasing equity of access as patients with medicare
coverage have historically experienced limited access to certain medical procedures, including
elective spinal fusion.10 However, disheartening but not surprising, is the observed significant
health disparities in the cohort driven by socioeconomic factors. Similarly, there are several
recent studies31,32 highlighting that racial minorities, and those with lower socioeconomic sta-
tus, are at higher risk of adverse outcomes. The C2 subgroup contains all medicare insurance
patients and is characterized by an increased proportion of minority groups compared to C1,
though the overall sample is primarily White (Table 1). C2 patients have higher occurrences
of non-home discharge dispositions, clinically remarkable past medical histories, especially
with respect to metabolic-related diseases and anxiety, as well as clinical lab values associated
with poor prognoses (Figure 3). In particular, the under 65 C2 patients (266) have signifi-
cantly higher pain scores and a higher prevalence of nicotine substance abuse, headaches, other
psychiatric disorders, and conditions already noted (metabolic and anxiety). These character-
istics are not surprising, however, what is notable is that the socioeconomic factor of insurance
overwhelms the clustering results, compelling us to adjust for it prior to characterizing the
underlying heterogeneity with second-order clustering on C1 and C2 separately.

Both C1 and C2 contain one of two sub-clusters that are smaller and associated with poor
health outcomes (C1:c1 and C2:c1). Interestingly, C1 is stratified by marital status with C1:c2
consisting of all married patients while C1:c1, its adverse outcome subcluster, is made up of all
other marital status groups (Figure 5(c)). C2 is stratified by discharge disposition. C2:c1, its
adverse outcome group, consists of almost all non-home discharged patients (99.86%) (Figure
6(c)). Despite the unique characteristics that differentiate the adverse outcome subclusters
(C1:c1 and C2:c1), they share striking similarities as both are comprised of patients presenting
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suboptimal values of numerous labs, PMH of mood disorder, poor outcomes (LOS, discharge,
and readmission), and higher proportions of minority patients (Figure 7). Though similarities
exist, the proportions of patients with negative indicators of health (and their magnitudes)
are greater in C2:c1 compared to C1:c1 (Figure 7). This is also true for race as C2:c1 has a
higher proportion of minority patients. This aligns with the validation metrics analysis (Table
2) which indicates more separation in C2 compared to C1. In addition, C2:c1 has significantly
suboptimal WBC count, PMH of metabolic and chronic pain, and use of gabapentin while
C1:c1 has more prominence of PMH of anxiety, alcohol, other psychiatric disorders, nicotine
use, and other SUDs (Figure 7). We acknowledge that these characteristics are probably due to
a combination of social, environmental, and biological factors. However, interestingly, overall
better prognoses are strongly associated with “married” status (Figure 7A).

The conspicuous racial partitioning observed at both levels of clustering highlights the
importance of conducting thorough exploratory analysis and incorporation of fair algorithms
in ML. The race-stratified analysis further validates findings on existing socioeconomic dis-
parities within the ESF sample, especially for post-surgery event outcomes (Figure 4). All
relatively poor outcome subgroups (C2 as a whole, under 65 age-stratified cohort in C2,
C1:c1, and C2:c1) have significantly more minority patients (Figures 3,7). Interestingly, the
over-representation of Blacks and “Other” are similar in both C1:c1 and C2:c1 (Blacks: ≈10%
and “Other”: ≈4.5% (which includes Native Americans)). This is concerning given the overall
low percentage of Blacks (6.75%) and “Other” (3.72%) in the entire sample. Note that “Other”
also includes self-reported race entries of “Other”, “patient declined”, and “Unknown”, which
are often associated with privacy, self-identity/profiling, and trust concerns.33 Constructing
“Other” with Native-Americans, Alaskan Natives, and individuals with no reported race is not
optimal and was done due to small sample sizes. Nevertheless, identifying higher proportions
of these individuals in the adverse risk clusters is likely driven by cumulative disparity factors
associated with these groups. These implications are important as identifying patients with
needs for specialized care could lead to substantial improvements in clinical outcomes.

Complex pattern recognition models can sometimes overlook minority groups due to im-
balanced data, potentially leading to biased results and unfair outcomes.13 Here, we showcase
a framework that mitigates these issues by incorporating information about heterogeneous
subgroups into the clinical risk score model. With thorough evaluation and validation, our
discovery from clustering results has the potential to be actionable in clinical settings, allow-
ing diverse groups of patients and clinicians to receive more precise estimates of treatment
success and risk of developing adverse effects. This approach can be transferred to other do-
mains that require clinical decision support. Moreover, as we observe racial and socioeconomic
indicators playing key roles in explaining disproportional adverse effect distribution, it is im-
portant to continue advocating for more fair healthcare policies, especially for preventative
care access. By identifying socioeconomic status and race as significant determinants of health
outcomes, our two-tier approach averts a potential scenario of introducing health disparities
due to algorithmic bias. We are enthusiastic about the development and deployment of our
methodology in predictive modeling in clinical settings to assist surgeons and patients in real-
time decision-making regarding the most efficacious ESF surgery options. These clusters could
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be utilized in a sampling scheme to mitigate bias in ML models aimed at predicting outcomes,
by incorporating feature engineering based on the cluster labels into the model as well as
exploring risk score ML models with discovered population stratification. This study presents
a compelling illustration of the heterogeneity within the healthcare system and underscores
the need for personalized medicine as a strategic approach to enhance healthcare and reduce
health disparities. Therefore, we strongly advocate for others to employ a similar rigorous
approach to data integration in order to better comprehend potential biases.
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Guimarães, L. L. d. Santos, M. M. Araujo, M. Cruz, E. L. S. de Oliveira et al., Bias and unfairness
in machine learning models: a systematic literature review, arXiv preprint arXiv:2202.08176
(2022).

14. Z. Obermeyer, B. Powers, C. Vogeli and S. Mullainathan, Dissecting racial bias in an algorithm
used to manage the health of populations, Science 366, 447 (Oct 2019).

Pacific Symposium on Biocomputing 2024

371



Pacific Symposium on Biocomputing 2024

372

15. T. Ahmad, M. J. Pencina, P. J. Schulte, E. O’Brien, D. J. Whellan, I. L. a, D. W. Kitzman, K. L.
Lee, C. M. O’Connor and G. M. Felker, Clinical implications of chronic heart failure phenotypes
defined by cluster analysis, J Am Coll Cardiol 64, 1765 (Oct 2014).

16. L. Marisa, A. s, A. Duval, J. Selves, M. P. Gaub, L. Vescovo, M. C. Etienne-Grimaldi, R. Schi-
appa, D. Guenot, M. Ayadi, S. Kirzin, M. Chazal, J. F. jou, D. Benchimol, A. Berger, A. La-
garde, E. Pencreach, F. Piard, D. Elias, Y. Parc, S. Olschwang, G. Milano, P. Laurent-Puig and
V. Boige, Gene expression classification of colon cancer into molecular subtypes: characterization,
validation, and prognostic value, PLoS Med 10, p. e1001453 (2013).

17. K. A. e. a. Hoadley, Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000
Tumors from 33 Types of Cancer, Cell 173, 291 (Apr 2018).

18. S. van Buuren and K. Groothuis-Oudshoorn, mice: Multivariate imputation by chained equations
in R, Journal of Statistical Software 45, 1 (2011).

19. K. Al-Jabery, T. Obafemi-Ajayi, G. Olbricht and D. Wunsch, ”Computational Learning Ap-
proaches to Data Analytics in Biomedical Applications” (Academic Press, 2019).

20. T. Ronan, S. Anastasio, Z. Qi, R. Sloutsky, K. M. Naegle and P. H. S. V. Tavares, Openensembles:
a python resource for ensemble clustering, The Journal of Machine Learning Research 19, 956
(2018).

21. D. Yeboah, L. Steinmeister, D. B. Hier, B. Hadi, D. C. Wunsch, G. R. Olbricht and T. Obafemi-
Ajayi, An explainable and statistically validated ensemble clustering model applied to the iden-
tification of traumatic brain injury subgroups, IEEE Access 8, 180690 (2020).

22. G. W. Schwartz, Y. Zhou, J. Petrovic, M. Fasolino, L. Xu, S. M. Shaffer, W. S. Pear, G. Vahedi
and R. B. Faryabi, TooManyCells identifies and visualizes relationships of single-cell clades, Nat
Methods 17, 405 (Apr 2020).

23. T. en, K. Nowell, K. E. Bodner and T. Obafemi-Ajayi, Ensemble validation paradigm for intel-
ligent data analysis in autism spectrum disorders, in 2018 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB), 2018.

24. Y. Liu, Z. Li, H. Xiong, X. Gao and J. Wu, Understanding of internal clustering validation
measures, in 2010 IEEE international conference on data mining , 2010.

25. R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C. Kidd and J. H. Moore,
Automating biomedical data science through tree-based pipeline optimization, in Applications of
Evolutionary Computation, eds. G. Squillero and P. Burelli (Springer International Publishing,
Cham, 2016).

26. S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,
N. Bansal and S.-I. Lee, From local explanations to global understanding with explainable ai for
trees, Nature Machine Intelligence 2, 2522 (2020).

27. L. Breiman, Random forests, Machine learning 45, 5 (2001).
28. J. B. Tenenbaum, V. de Silva and J. C. Langford, A global geometric framework for nonlinear

dimensionality reduction, Science 290, 2319 (Dec 2000).
29. W. Sun, O. Nasraoui and P. Shafto, Evolution and impact of bias in human and machine learning

algorithm interaction, Plos one 15, p. e0235502 (2020).
30. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman and A. Galstyan, A survey on bias and fairness

in machine learning, ACM computing surveys (CSUR) 54, 1 (2021).
31. L. Wang, N. A. Berger, D. C. Kaelber, P. B. Davis, N. D. Volkow and R. Xu, Covid infection rates,

clinical outcomes, and racial/ethnic and gender disparities before and after omicron emerged in
the us, medRxiv (2022).

32. D. Quan, L. Luna Wong, A. Shallal, R. Madan, A. Hamdan, H. Ahdi, A. Daneshvar, M. Mahajan,
M. Nasereldin, M. Van Harn et al., Impact of race and socioeconomic status on outcomes in
patients hospitalized with covid-19, Journal of general internal medicine 36, 1302 (2021).



Pacific Symposium on Biocomputing 2024

373

and consent preferences for biobanks, Health communication 35, 1219 (2020).
33. S. J. Hong, B. Drake, M. Goodman and K. A. Kaphingst, Race, trust in doctors, privacy concerns,




