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Abstract

Assembling an “integrated structural map of the human cell”1 at atomic resolution will require
a complete set of all human protein structures available for interaction with other biomolecules
- the human protein structure targetome - and a pipeline of automated tools that allow quan-
titative analysis of millions of protein-ligand interactions. Toward this goal, we here describe
the creation of a curated database of experimentally determined human protein structures.
Starting with the sequences of 20,422 human proteins, we selected the most representative
structure for each protein (if available) from the protein database (PDB), ranking structures
by coverage of sequence by structure, depth (the difference between the final and initial residue
number of each chain), resolution, and experimental method used to determine the structure.
To enable expansion into an entire human targetome, we docked small molecule ligands to our
curated set of protein structures. Using design constraints derived from comparing structure
assembly and ligand docking results obtained with challenging protein examples, we here pro-
pose to combine this curated database of experimental structures with AlphaFold predictions2

and multi-domain assembly using DEMO23 in the future. To demonstrate the utility of our
curated database in identification of the human protein structure targetome, we used docking
with AutoDock Vina4 and created tools for automated analysis of affinity and binding site
locations of the thousands of protein-ligand prediction results. The resulting human targe-
tome, which can be updated and expanded with an evolving curated database and increasing
numbers of ligands, is a valuable addition to the growing toolkit of structural bioinformatics.
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1. Introduction

The structures of proteins determine their ability to interact with other biomolecules, which is
often at the heart of cellular functions and dysfunctions. Massive structural proteomics efforts
have made large numbers of protein structures available in the protein databank.5 While the
coverage still falls short of completeness for any single organism, including human and other
model organisms, let alone non-model organisms, the recent advent of molecular modeling
approaches that rival experimental structure determination in accuracy in some cases,2 now
allows us to start imagining complete datasets of the entire structural proteome of an organ-
ism. Such datasets would allow us to start looking at the effects of natural and chemically
synthesized small molecules in the context of all possible interactions. The availability of data
and computing resources as well as development of new computational approaches are revolu-
tionizing the field of drug discovery.6 It is becoming increasingly clear that the traditional view
of one drug-one protein target is too reductionist: Many successful drugs have multiple targets
(for example, the popular anti-diabetic drug, metformin), and many metabolites do not only
interact with the enzymes that use them to carry out chemical reactions but often thousands
of other proteins.7 Thus, target discovery is becoming increasingly important also for drug
discovery, and reverse docking (i.e. binding of a given ligand to many proteins, as opposed to
docking many ligands to one protein target) plays a major role in this field.8 Looking at the
entire set of human proteins that a ligand can potentially interact with - the human targe-
tome - would allow us to answer fundamental questions about the functioning of cells while
also improving drug discovery, drug repurposing and predictions of drug targets and toxicity.
Finally, we may begin looking at complex mixtures of ligands with biological efficacy, such as
natural extracts with positive health effects like lemon juice9 and environmental pollutants
such as asphalt,10 comprised of thousands of individual compounds.11

Currently, docking and even reverse docking is carried out largely with limited subsets of
protein structures12,.13 To enable future systematic analysis of any biomolecular ligand with
an organism’s complete set of proteins, we describe an approach to create a database that
contains a single representative of the optimal structure for each human protein. Our initial
strategy is centered around devising a biologically pertinent methodology to rank experimen-
tally derived protein structures as outlined in Figure 1a. We use the UniProt database14 as
our reference for all human protein sequences and retrieve the list of structure files from the
protein databank.5 To select the most representative structure, we adopted three key param-
eters for evaluation: coverage, depth, and resolution of the structures. “Coverage” refers to
the count of residues in the protein’s structure, indicating the structure’s completeness. We
prioritized this parameter due to its importance in understanding the overall integrity of a
protein. Nevertheless, we encountered situations where a protein’s structure, despite having
less coverage, offered more meaningful insights due to its residue information being spread
over a larger range of amino acids. To account for this, we introduced a novel metric, “depth”,
which calculates the discrepancy between the maximum and minimum residue numbers. After
finally ranking by resolution, we obtained a list of 7606 unique human protein structure files,
available on our GitHub page Here.

In the long term, we want to create a complete database to predict where and with what
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affinity different ligands bind to the human targetome. This will require automated tools to
analyze the results obtained from docking ligands to human protein structures. It will also
require supplementing experimentally determined structures with predicted structures. We
here outline such methods and highlight design considerations using comparisons of known and
predicted structures in general, and a specific challenging protein example, the insulin receptor
(IR), in the context of structure assembly and ligand docking results. Based on this analysis,
we here propose a pipeline that incorporates experimental structures, AlphaFold predictions,2

multi-domain assembly using DEMO2,3 docking with AutoDock Vina4 and automated analysis
of affinity and binding site location using the center of mass comparisons as well as Silhouette
Score clustering optimization of predicted ligand volume overlap to classify binding pocket
numbers and locations for a given protein-ligand pair, and across many proteins and many
ligands. Our targetome-oriented, synergistic pipeline will augment protein structure and ligand
interaction prediction practices. The current stage of implementation of this pipeline is the
curated database of experimentally determined human protein structures, as well as the code
used to create the database and to analyze the docking results, available here.

2. Materials and data sources

An initial naive download sourcing a spreadsheet listing experimental structures ignored spe-
cific chains and automatically chose the first in lists of multiple PDB codes for a given protein.
This led to over 10% of the downloads being multiples of the same structures. In addition,
these files would often have multiple models or chains, which either crashed the pre-processing
codes due to inappropriate bounding box sizes or yielded huge search spaces that crashed the
docking runs. The careful revision of the table –described in the following section– addressed
most of these cases. Table 1 reflects the impact of these revisions, comparing the results of
docking the ligand kaempferol against the full suite of downloaded structures. Out-of-memory
and very large positive “overflow” affinity outputs indicated the two modes of run failure
described above.

Table 1: Comparison of ligand kaempferol docking results from original naive scrape and then
after table revision with specified chains following protocol shown in Figure 1a.

Statistic Original dataset Improved dataset

PDBs 6865 7529
Out of memory errors 288 0
Overflow affinities 399 244
Avg bounding box size 557279 212550
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3. Methods

3.1. Database Creation

An overview of the database creation is shown in Figure 1a. First, we downloaded a compre-
hensive database comprising all 20,422 human protein sequences from the UniProt database.14

In the current implementation, we retained only those UniProt IDs with at least one ex-
perimental structure associated with it and a file deposited in the Protein Database (PDB).5

This filtering criterion excluded 12,606 proteins, leaving 7,816 unique UniProt IDs in this sub-
set, many of which were associated with multiple PDB files. To select the best representative
structure, we defined several ranking criteria. Sometimes structures miss portions of the se-
quence, even if they were present during crystallization, often due to flexibility. This can be in
loop regions, or at the ends. Often, specific domains have been chosen to represent a portion
of the sequence. Because the structures of missing loop regions are typically ill defined, there
is a benefit in having a larger stretch of the sequence covered, even if the total coverage is
reduced by these missing loop regions. We wanted to have measures that capture both scenar-
ios. Coverage refers to the total number of residues of a sequence that are associated with xyz
coordinates in a sequence, while depth refers to the difference between the beginning and end
of the structure, regardless of how many residues are missing in between. Moreover, for each
PDB file corresponding to a UniProt ID, the scraper retrieved the resolution, the experimental
method used (Electron Microscopy, X-ray crystallography, and NMR), and the chains of each
PDB file. The latter was essential as a single PDB file can encapsulate multiple proteins. Thus,
to compile the required information for this ranking, we designed a web scraper to extract
content from the UniProt database.14 Each DataFrame encompassed specific information for
each protein structure, including:

(1) PDB ID
(2) Resolution
(3) Chains and their associated locations
(4) Experimental method used for structure determination
(5) Whether alpha carbons were the only present atom in the PDB file

While resolution and chain information was sourced directly from the UniProt database, cov-
erage and depth information for each PDB file necessitated the scraping and local downloading
of all PDB structures related to our 7,816 unique proteins from the RCSB PDB database.5 210
UniProt IDs lacked any PDB formatted structure available within the RCSB PDB5 database,
thereby reducing our working dataset to 7,606 unique proteins. Computing coverage involved
iterating through the PDB file and enumerating the unique residues for each chain corre-
sponding to the UniProt ID. Meanwhile, the depth metric was derived by calculating the
difference between the final residue number and initial residue number of each chain within
the associated PDB file. For example, if a PDB file started at residue 42 and ended at residue
200 the depth would be 158. In instances where multiple experimental methods for structure
determination were utilized, we excluded NMR structures for a given UniProt ID because in
protein NMR, there is no parameter identical to resolution,15 complicating comparison with
X-ray and cryo-EM structures. Ranking involved the following steps:
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(1) Organize the DataFrame in a hierarchical manner based on the coverage, depth, and
resolution of each PDB file.

(2) Purge structures that consist solely of alpha carbons provided that other structures are
present.

(3) Implement the following decision-making rules iteratively until the top four structures
remain unchanged:

(a) If the coverage difference between a higher-ranked PDB file and a lower-ranked one falls
within a +/- 20 amino acid range, assess the depth of the structures and adjust the
ranking accordingly, favoring the structure with greater depth. This allows structures
with missing residues in loop regions to be ranked highly.

(b) In the case where the resolution of a higher-ranked PDB exceeds 4, rearrange the rows
to rank the structures according to their resolutions in descending order. This rule
balances coverage and resolution.

Upon securing a ranked list of PDB files for each UniProt ID, we extracted the highest-
ranked PDB file for each respective UniProt ID and its associated chain/location information.
For every top-rated PDB structure, all missing residues were obtained using the PDBParser
package from the Biopython library.16 Two UniProt IDs presented missing chain information
and were subsequently excluded from our dataset, rendering us with 7,604 unique proteins as
visualized in Figure 1a.

To obtain the AlphaFold complement of the experimentally known structures, we lever-
aged AlphaFold’s API2 to extract all associated AlphaFold models corresponding to the 7,604
UniProt IDs in our curated dataset. Using our top-ranked PDB file and the data of missing
residue numbers for a specific UniProt ID, we computed AlphaFold’s predicted confidence
scores for both missing and present residues. Subsequently, we documented the AlphaFold
residue confidence score for every residue, irrespective of its status (missing or present), in the
highest-ranked PDB structure. We further computed the average AlphaFold confidence score
for both missing and present residues in the top-ranked PDB structure for each UniProt ID
as shown in Figure 1a.

3.2. Multidomain Structure Prediction With DEMO2

A protein structure dataset based on experimental structures is only limited by the availabil-
ity of structural information for some parts of the sequence. Towards the aim of a complete
human protein structure dataset, we will need to combine experimental data available for
different parts of the sequence and/or integrate predictions of the missing parts. We evalu-
ated the feasibility of using protein-protein docking to combine structural information from
different sources into a complete model for a given UniProt sequence. We used DEMO2 soft-
ware.3 Neighboring domains were sequentially submitted to DEMO2 as pairwise structure
files. For instance, in the case of the insulin receptor (IR), described in the results, the L1
and CR domains were initially introduced into DEMO2, followed by the insertion of CR and
L2 domains. The output generated from both inputs was then transported into PyMol, where
the structures were aligned based on the “common” domain – in this case, the CR domain.
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20,422 Unique Human Proteins with
Alpha Fold Predic�ons

12,606 UniProt IDs were
filtered out that did not have
any experimental structures

7,816 Unique Human Proteins that
have experimentally derived
structures210 Proteins were filtered out

that did not have at least one
PDB formatted file

2 proteins filtered out that did
not include chain/location
information

7,604 Unique Human Proteins that
have experimentally derived PDB
structures and loca�on informa�on

(a) Dataset Filtration

UniProt ID Length PDB Files UniProt DB
Order

P06213 1382 1GAG;1I44; 1IR3; 1IRK….

PDB ID Resolu�o
n

Loca�ons Chai
n

PDB Sequence
Length

Method Coverage Depth AlphaCarbo
n

6PXV 3.2 A/C = 28-
1382

A 1355 EM 822 909 False

7YQ3 3.6 E/F=28-946 E 919 EM 829 906 False

UniProt ID Length PDB Files Ranked Best Ranked Chain Missing Residues

P06213 1382 6PXV, 7YQ3… 6PXV A/C = 28-1382 [[163,164,165, 166…]

Alpha Fold residue
confidence scores
were stored
depending on if
they were present
in the top ranked
structure

ID Length PDB Files
Ranked

Best
Ranked

Chain Missing
Residues

Confidence of
missing
residues

Avg Score
Missing

Confidence
of present
residues

Avg
Score

Present

Coverage Percent
Covered

PDB Length
Calculated

P06213 1382 6PXV,
7YQ3…

6PXV A/C =
28-1382

[[163,164,1
65, 166…]

{163:94.71,
164:89.8…}

70.33 {1:36.28,
2:37.43…

79.07 823 59.55 1355

For each UniProt ID a ranked
data frame of their respective
PDB files was created

Final Dataset Produced

(b) Sequential steps undertaken to derive the final dataset

Fig. 1: Assembly and Composition of the Dataset.

This methodology was pursued iteratively until all desired domains were incorporated into
the aligned structure.

3.3. Analysis of Small Molecule Docking Positions

3.3.1. Prediction of Small Molecule Ligand Binding Sites with AutoDock Vina

To identify putative ligand docking positions and quantify their relations to highly dense
protein pocket regions, we utilized ligand-protein docking coordinates obtained from AutoDock
Vina.4 The table of structures was parsed for PDB code and specific chains. The PDB code
was used to scrape from rcsb.org. The chain was subsequently used to excise the section of the
PDB to use in the docking. To coordinate large-scale runs, individual AutoDock Vina scripts
were automatically constructed, which employed PyMOL to determine the center of mass and
bounding box for each protein, with these values stored in a configuration file. reduce and
prepare scripts on protein and ligand pdbs preceded the docking run in the pipeline. These
were sourced from the ADFR Suite of tools, although an updated, more robust, reduce script
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was later sourced from another repo (https://github.com/rlabduke/reduce).17

The AutoDock Vina code was run in batch mode using job array submissions to the
SLURM scheduler on Arizona State University’s Agave and Sol clusters.18 Most jobs were
completed using a single CPU and 4GB of RAM. Figure 2 presents a logarithmic plot of
runtimes (in seconds) versus ligand size (in atoms). The mean runtimes of these were strongly
correlated (α = 0.746) to number of atoms. As ligand size increases, the greater variation
in runtime may be attributable to the number of flexible bonds or the total volume. To
contrast, protein size in atoms and mean runtimes were uncorrelated. Cumulative runtime for
a ligand across 7, 527 proteins could take from hundreds to thousands of hours, but distribution
across the 18, 000 available cores on Sol dramatically reduced wall time. Outputs were stored
in a directory structure with ligands at the top tier, each having several thousand protein
directories containing affinity and output structure files for the top tier ligand.

10 20 30 40 50 60 70 80 90 100
# atoms

101

102

103

104

ru
nt

im
e(

s)

Fig. 2: Log plot of mean runtimes (in seconds) across 7, 527 proteins versus ligand size (total
atoms) While there was large variation in runtimes, indicated by error bars, the means were
strongly correlated to ligand size.

3.3.2. Point Cloud Clustering & Visualizations Created Using Delaunay Triangulation

We analyzed the overlap of ligand docking positions using collections of three-dimensional
point clouds that we rendered as surfaces by applying Delaunay triangulation. Delaunay tri-
angulation is a useful method for plotting an arbitrary collection of coordinates as volumetric
bodies. To further examine the spatial overlap of ligand-protein docking models for individual
ligand-protein pairs, as well as the spatial overlap of docking positions for potentially com-
peting ligands and their respective proteins, we deployed K-means clustering optimized using
silhouette analysis. Silhouette analysis evaluates the density and separation between clusters,
calculating a score by averaging the silhouette coefficient for each sample, which is computed as
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the difference between the mean intra-cluster distance and the mean nearest-cluster distance
for each sample, normalized by the maximum value. The scores range between −1 and +1,
where +1 indicates high separation of clusters and −1 indicates that the coordinates may have
been assigned to the wrong cluster. By taking the highest-scoring configuration of clusters,
we grouped ligand docking models into “locations” or “pockets.”

As a metric for percent overlap of the volumetric surfaces rendered from the docking
coordinates, we used Equation 1, where m is the number of models contained in an AutoDock
Vina output file for a ligand-protein pair and k is the optimal number of clusters determined
by the K-means algorithm. Fewer clusters result in a greater percent overlap, and in cases
where the ratio of clusters to models is 1, the percent overlap is 0.

Percent Overlap(m, k) = (1− k − 1

m− 1
) ∗ 100 (1)

3.3.3. Center of Mass

PyMOL routines were employed for the center of mass calculations, which were used to prepare
AutoDock Vina configuration scripts and in the post-processing of ligands for analysis.

4. Results and Discussion

4.1. Human Protein Structure Database Creation

There are 20,422 unique human protein sequences in UniProt,14 out of which 7,816 have at
least one PDB file associated with it.5 A protein structure dataset based on experimental
structures only is limited by the availability of structural information for some parts of the se-
quence. However, this number overestimates the availability of structural information because
often only a single domain of a given human protein has been crystallized. The scale of this
problem is highlighted in Figure 3, which compares the entire sequence lengths of the 20,422
human proteins to the coverage of sequences retrieved from the PDB. We can see that there
is a drastic shift to a smaller number of amino acids covered in experimentally determined
protein structures. Towards the aim of a complete human protein structure dataset, we will
need to combine experimental data available for different parts of the sequence and/or inte-
grate predictions of the missing parts. AlphaFold2 provides a rich source of protein structure
predictions that could be used, but we can see from Figure 3 that the portions of sequences
missing in existing protein structures are also the ones that it has least confidence in.

4.2. Database Expansion Based on Multidomain Protein Interactions

Ultimately, we wish to create a database of structures that covers the entire human proteome,
and this will require inclusion of predictions. To illustrate the challenges and feasibility of
expanding our dataset with AlphaFold predictions and/or by piecemealing domains of a given
single UniProt ID for which domain structures have been determined independently in differ-
ent experiments, we utilized the insulin receptor (IR) as a representative example. The IR is
an important protein given its role in diabetes and the regulation of many cellular pathways,
but it is also an experimentally challenging protein because it is a large, multimeric, multido-
main, flexible membrane receptor. Thus, to this date, a full-length structure covering the entire
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(b)(a)

Fig. 3: (a) Distribution of protein length in UniProt in blue and the manually calculated
coverage in green in the PDB. (b) AlphaFold’s prediction confidence for amino acid residues,
with missing residues represented in blue and present residues in red, in the context of the
highest-ranked structure from the Protein Data Bank (PDB) taken from our dataset

UniProt sequence P06213 has yet to exist despite many efforts. Details of the different PDB
files providing structural information and coverage for extracellular insulin binding domains,
i.e., transmembrane and cytoplasmic kinase domains, have been reviewed.19,20 6PXV provides
the most extensive coverage21 representing the cryo-EM structure of the IR in complex with
four insulin molecules. Although the full-length sequence was subjected to experimental analy-
sis, structural data was only obtained for the extracellular domain.21 Because the IR is a dimer,
chains A and C in 6PXV are identical. Therefore, we focused our analysis solely on chain A.
Initial steps involved utilizing PyMOL to visualize the distinctions between the experimen-
tally derived structure of the IR and its predicted AlphaFold counterpart (AF-IR), depicted
in Figure 4. Subsequently, we dissected both structures into their constituent domains: the
leucine-rich repeat domains (L1-L2), a cysteine-rich region (CR), fibronectin type-III domains
(FNIII-1-3), and the transmembrane domain (TM). Neighboring domains were sequentially
inputted into DEMO2 (see Methods). For instance, the L1 and CR domains were initially
introduced into DEMO2, followed by the insertion of CR and L2 domains. The output gen-
erated from both inputs was then transported into PyMol, where the structures were aligned
based on the “common” domain - in this case, the CR domain. This methodology was pur-
sued iteratively until all desired domains were incorporated into the aligned structure. We can
see from Figure 4 that DEMO2 not only reproduces the experimental cryo-EM structure as
expected but also improves upon the initial AlphaFold prediction obtained when using the
entire sequence. The integrated AlphaFold-IR structure portrayed in Figure 4 is noticeably
improved compared to AlphaFold’s initial prediction. A significant portion of the error in both
DEMO2 predicted structures Figure 4 6PXV and AF-IR structures can be attributed to an
unconnected alpha helix from the FN3-2 domain.

4.3. Database Expansion Based on Protein-Ligand Interactions

Because our long-term goal is to view the human structure proteome as the targetome for
small molecule ligands (and ultimately other biomolecules, but for now, we focus on small
molecules), we used our protein structure datasets for docking more than 50 different ligands
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L1: 28 -157 CR: 158 – 251 L2: 252 – 471 FN3-1: 472 – 620 FN3-2: 621 – 794 FN3-3: 795 – 896 TM: 897 – 937

Residue Location/Color Key:

PDB 6PXV Chain A

Not Present in 6PXV

Alpha Fold Predicted IR Chain A Integrated 6PXV using DEMO2 Integrated AF-IR using DEMO2

Fig. 4: Experimentally determined and predicted structures of IR.

of different sizes and physicochemical properties. We used AutoDock Vina (see Methods) and
encountered a number of errors for the structures in our dataset, enumerated in Table 1.

4.4. Automated Analysis of Ligand Prediction Results

Even when looking at a single ligand, we now have thousands of AutoDock Vina prediction
results. In the future, we plan to look at complex mixtures of ligands, which will result in
even larger ligand docking datasets. Each AutoDock Vina result is a list of up to 9 docking
poses for a given ligand-protein pair,4 which vary by the details of the pose of the ligand based
on bond rotations and interactions with different parts of the protein, resulting in different
predicted locations and/or affinities. We know from many examples, that taking the best
affinity prediction may miss biologically meaningful ligand binding pockets, which could in
fact be representing allosteric and orthosteric pocket(s).22,23,24 Furthermore, bond rotations
in the ligand can result in drastic changes in predicted affinity, while the overall location of
the binding pocket remains similar. To capture these insights on a large scale, we propose two
approaches to automated analysis of the AutoDock Vina prediction based on the volume and
center of mass of the ligands, respectively.

4.4.1. Ligand-volume based binding pocket location analysis

The development of a method to analyze AutoDock Vina prediction results by ligand volume
overlap is shown in Figure 5. Volumetric analysis of four different ligand-protein pairs is shown
to exemplify different common scenarios observed in AutoDock Vina predictions. An example
of a low percent overlap in the volumetric surface plot for ligand 0A1 obtained from protein
structure 3qtc, when docked to 1l9h (bovine rhodopsin, a G protein-coupled receptor), is shown
in (a). We can see that the 9 predicted docking poses cluster into 5 easily distinguishable
binding pockets. The opposite extreme is shown in (b), for ligand 00A obtained from PDB
file 3cw8, docked to the same structure as in (a), 1l9h. All 9 docking poses are found in the
same location, with 100 percent overlap. Other ligand-protein pairs show less clear results,
for example, Benzo(a)pyrene (BaP), a hydrophobic ring structure ligand (c) and apigenin,
a flavonoid ligand also with hydrophobic ring structures but with several oxygen-containing
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groups (d), when docked to the same protein (1ksg). Both ligands are of comparable size but
different physicochemical properties, and both show overlap that is not easily distinguishable
with this approach.

(a)

(c)

(b)

(d)

Fig. 5: Volumetric surface plots for different ligands or from original protein:docked protein
pairs: (a) 0A1 3qtc:1l9h, (b) 00A 3cw8:1l9h, (c) Benzo(a)pyrene:1ksg, (d) apigenin:1ksg.

We clustered the volumetric overlap results using an optimized KMeans clustering algo-
rithm (see Methods). The result is shown for the interaction of BaP with 1ksg in Figure 6a,b.
We can see that we now obtain clear separation into two clusters, representing two distinct
pockets in well-separated domains of the 1ksg protein structure, shown in Figure 6c.

(b)(a) (c)

Fig. 6: Optimized Clustering Algorithm Deployed on BaP Ligand. (a) Number of Clusters =
2. Optimized using Silhouette Score. (b) BaP Models Percent Overlap = 87.5%. (c) Pymol
representation of BaP, apigenin, and GTP in 1ksg structure.
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4.4.2. Ligand-center of mass based binding pocket location analysis

A complementary approach to the volumetric overlap analysis is to reduce the complexity of
ligand description to represent each pose by its center of mass. The result of this analysis
for the same ligand:protein pair BaP:1ksg and apigenin:1ksg is shown in Figure 7. We can
see that even in the lowest resolution representation of the ligand, where the coordinates of
each atom in the molecule were collectively replaced with a single coordinate for the center of
mass, the separation between pockets is not entirely clear. Furthermore, we can see that the
known ligand binding pocket for the ligand that’s actually bound to 1ksg, GTP, is located in
the pocket on the top, which carries an overall lower predicted affinity than the regions on
the right-hand side of the protein. To see how the pockets observed with these three ligands
compare to a larger set of 50 ligands, we clustered the results using DBSCAN. They formed
eight distinct clusters, with clear preferences for 4 of these pockets. The DBSCAN analysis
was run over the entire set of proteins to create a distribution of cluster counts. From the left,
this distribution sharply peaked at 7 clusters with a slowly decreasing long tail to the right.

Fig. 7: Center of mass for apigenin ligand (a) and natural ligand BaP (b) docked to 1ksg. In
(c), center of mass for 50 ligands are clustered with DBSCAN. Structure as in Figure 6c.

5. Conclusions and Future Work

In an era where assembling an “integrated structural map of the human cell”1 at atomic
resolution is no longer out of reach, cell structural bioinformatics will need to reconcile two
extreme views of biomolecules inside cells: “selective” interaction of high-affinity ligands with
single protein targets versus “everything binds to everything” the deciphering of which requires
quantification of ligand and protein concentrations to determine chemical equilibria of binding.
Our long-term goal is to assist this task and ongoing cell structural bioinformatics efforts by
developing a human protein structure targetome database and a pipeline of automated tools
that allow quantitative analysis of millions of protein-ligand interactions. Towards this goal,
we present the docking of our current version of the human protein targetome to ligands using
AutoDock Vina. We developed two complementary, automated analyses of affinity and binding
site location using the center of mass comparisons, which can identify clusters at a coarse-
grained level but ignores the size and shape of the ligands, as well as Silhouette Score clustering
optimization of predicted ligand volume overlap, suitable for detailed analysis of ligand overlap
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when this level of detail is needed. In the future, we plan to use the human targetome and its
ligand binding information to make predictions on the competition of ligands with different
affinities to gain insights into challenging problems such as regulation of metabolic pathways,
interactions with complex mixtures of nutrients and pollutants, and predicting off-target effects
of drugs. With millions of known small molecules from natural sources and large numbers of
ligands that can be synthesized in the laboratory, this pipeline will complement projects where
experiments alone cannot reach the scale needed to gain biological insights.

Each iteration of the set of the structures comes with limitations. Our current dataset
has the major limitation that it only represents a fraction (7606 of 20422 = 37%) of all hu-
man proteins. Currently, all structures are experimentally determined, while future iterations
will also include predictions. To illustrate how predictions can be incorporated, we used an
example, the insulin receptor, with sequential assembly of domains from N to C terminus.
These strategies can be improved, for example, a sensitivity analysis for the sequence with
which domains are assembled can be carried out. Other structure prediction and assembly
strategies can be used that are specialized for the type of protein or domain or structural
element, such as transmembrane helices. Users of the current and future protein structure
datasets can further filter them if more uniform data are required or if the focus is on a given
location, such as extracellular or a given subcellular compartment. Other limitations include
the differences in quality of different structures, the lack of water molecules, ions and other
solvents such as lipids, all known to be important contributors to ligand binding. This dataset
can be subjected to future improvements in methods or filters as needed for a given use case.

The focus (and implementation status) of the current paper is the development of the
curated database and tools for its analysis if it is used in target identification using tools such as
AutoDock Vina.4 The need to chose a method for docking of ligands presents another inherent
limitation in this work. Autodock Vina,4 for example, is very widely used and compares well
with other methods,25 but reverse docking in general suffers from large false positive rates
due to limitations in scoring functions.26 However, in most cases, a proper gold standard for
target discovery is absent as it is typically unknown which proteins are true negatives (i.e.,
are not targets). The explosion in new computational methods using machine learning and
artificial intelligence6 can be used to replace or complement the reverse docking approach
using Autodock Vina or related methods for example with state-of-the-art deep learning tools
for ligand binding pocket predictions. The goal of the curated protein structure database
described here was to improve coverage of the human structural proteome, while keeping the
quality of the dataset as high as possible with state-of-the-art in data and tool availability to
enable applications in cell structural bioinformatics.

6. Acknowledgment

S.K.S. was supported by the National Institute of General Medical Sciences of the National
Institutes of Health under award number R01GM145210.

Pacific Symposium on Biocomputing 2024

303



References

1. E. Lundberg, T. Ideker and A. Sali, Tools for assembling the cell: Towards the era of cell structural
bioinformatics, https://psb.stanford.edu/workshop/tools/ (2023).

2. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
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