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We present a fully automated AI-based system for intensive monitoring of cognitive symp-
toms of neurotoxicity that frequently appear as a result of immunotherapy of hematologic
malignancies. Early manifestations of these symptoms are evident in the patient’s speech
in the form of mild aphasia and confusion and can be detected and effectively treated prior
to onset of more serious and potentially life-threatening impairment. We have developed
the Automated Neural Nursing Assistant (ANNA) system designed to conduct a brief cog-
nitive assessment several times per day over the telephone for 5-14 days following infusion
of the immunotherapy medication. ANNA uses a conversational agent based on a large
language model to elicit spontaneous speech in a semi-structured dialogue, followed by a
series of brief language-based neurocognitive tests. In this paper we share ANNA’s design
and implementation, results of a pilot functional evaluation study, and discuss technical
and logistic challenges facing the introduction of this type of technology in clinical practice.
A large-scale clinical evaluation of ANNA will be conducted in an observational study of
patients undergoing immunotherapy at the University of Minnesota Masonic Cancer Center
starting in the Fall 2023.

Keywords: Large language models, artificial intelligence, speech, language, immunotherapy,
Immune effector cell-associated neurotoxicity syndrome

1. Introduction

Immune effector cell-associated neurotoxicity syndrome (ICANS) represents a unique compli-
cation of immune effector therapy particularly in patients treated with chimeric antigen recep-
tor T-cell therapy (CAR-T) cells for hematologic malignancies. ICANS incidence varies from
40-60% depending on specific CAR-T product and grading using a 4-point scale, with 1 being
the mild manifestation and 4 the most severe. ICANS usually presents 3-5 days after CAR-T
infusion and about 20% of events present at grade 3 or higher. The clinical centers adminis-
tering approved CAR-T therapies have to comply with the Risk Evaluation and Mitigation
Strategeis (REMS) mandated by the Food and Drug Administration (FDA). These include
monitoring and prompt treatment of ICANS symptoms. The purpose of ICANS monitoring
and detection after the CAR-T infusion and prompt treatment is to halt ICANS progression
and minimize the risk of brain edema/herniation, the most feared sequelae of ICANS resulting
in severe cognitive impairment, coma, ICU stay, intubation, and, in rare cases, death.1–3
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Clinical manifestations of ICANS typically begin with word-finding difficulty, headaches,
confusion, dysphasia, aphasia, impaired fine motor skills resulting in agraphia, and somno-
lence4 and, if untreated, can progress to the more severe sequalae. Expressive aphasia has
been found to be the most specific symptom of ICANS. It starts as impaired ability to name
objects, paraphasia errors, hesitant speech, and verbal perseveration, which can then proceed
to global aphasia (inability to speak or respond to commands) with increasing ICANS sever-
ity.4 In fact, initial expressive aphasia is highly prevalent (86%) in patients that then go on
to develop severe neurotoxicity.5 Low-grade ICANS is managed predominantly by supportive
care or low dose dexamethasone, whereas severe ICANS is usually treated with high doses of
corticosteroids and anakinra which can partially block the cascade of inflammation leading to
pathology.6 Recently emerging clinical evidence suggests that early intervention with a short
course of corticosteroids such as dexamethasone in patients with low-grade ICANS can resolve
these symptoms completely and thereby prevent progression to more severe ICANS.7 However,
administration of corticosteroids as prophylaxis of ICANS in all patients undergoing CAR-T
therapy is not desirable as corticosteroids may have a negative impact on the effectiveness
of CAR-T therapy itself, have short and long-term side-effects, increase risk of infections and
therefore lower dose and short course is desirable.8

The existing methods for detecting neurotoxicity of immunotherapy (as described in the
National Comprehensive Cancer Network (NCCN) guidelines) consists of administering brief
cognitive assessment tools such as the Immune Effector Cell-Associated Encephalopathy (ICE)
Assessment Tool or the CAR-T Cell Toxicity Tool (CARTOX-10). Both are loosely based
on the Mini-Mental State Examination (MMSE) originally developed for the diagnosis of
dementia and include several brief cognitive instruments. The CARTOX-10 consists of the
following 4 categories: Orientation: orientation to year, month, city, hospital, president of
country of residence (5 pts); Naming: ability to name 3 objects (e.g., point to clock, pen,
button) (3 pts); Writing: ability to write a standard sentence (e.g., “Our national bird is the
bald eagle”) (1 pt); Attention: ability to count backwards from 100 by 10 (1 pt). ICE adds one
more category to the CARTOX-10 instrument: Following commands: ability to follow simple
commands (e.g., “Close your eyes and stick out your tongue”) (1 pt).

These tools are widely used for screening for ICANS, are brief and easy to use at bedside,
and are highly specific for ICANS but lack scientifically rigorous evaluation. These tools in-
herited low sensitivity from the MMSE on which they were based, as evidence from practice
suggests that patients in the early stages of ICANS may pass the ICE assessment (especially
if they are able to memorize it due to its frequent administration) while displaying some of
the more subtle ICANS symptoms.9 Another major drawback of the existing screening tools is
that while these paper-and-pencil tests are not particularly difficult to administer and score,
their administration requires a qualified healthcare provider and is time consuming. Since post
CAR-T therapy follow-up requires intensive daily monitoring usually for up to 14 days, that
introduces a significant burden on clinical personnel and healthcare resources. This routine
practice limits the frequency and depth to which patients can be feasibly monitored with ICE
and, consequently, may lead to missing the onset of early symptoms in between assessments.
Using technology to help in administering and facilitating more frequent follow-up of patients
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would be a significant advance in assuring safer CAR-T therapies by enabling earlier detection
of more subtle symptoms. There is also an increasing trend to administer CAR-T therapy in
the outpatient setting. At-home monitoring of ICANS symptoms is highly desirable as it of-
fers the potentially more timely intervention while providing patients with more comfort and
convenience.

Early detection of ICANS would allow using lower doses of corticosteroids but would also
require intensive monitoring of cognitive function (e.g., 3 times per day vs. the typical once
per day frequency). Infrequent monitoring for ICANS (once a day or less) is likely to miss
the early onset of subtle symptoms, as demonstrated by a study of 133 patients undergoing
CAR-T therapy.10 Fifty-one of these patents developed ICANS and 27 of the 51 patients
(53%) presented already with Grade >= 2 ICANS as the initial diagnosis. According to the
ASTCT Consensus Grading guidelines, Grade 2 ICANS is diagnosed when the patient scores
in the range 3-6 (out of 10 possible points). In practical terms, to score 3-6 on the ICE test,
the patient would have to be significantly impaired (i.e., unable to tell what year, month it is,
which city or hospital they are in, who the president is, and/or name three basic objects). The
fact that over half of the patients with ICANS are initially diagnosed with Grade 2 or higher,
combined with the fact that ICANS can develop in a matter of hours, indicates high likelihood
that milder symptoms were present earlier but were missed either due to poor sensitivity of
ICE, its relatively infrequent administration, or both.

Limitations of the standard-of-care approaches to ICANS detection combined with the
availability of highly effective therapy to prevent its further progression7 create the urgent
need for a validated, low provider burden, and well-tolerated by patients solution for early
identification of neurotoxicity. Deploying such a solution will potentially result in preventing
an estimated 40-70% of cancer patients who are at risk of ICANS from severe and potentially
debilitating symptoms. An effective solution will also reduce the total dose and duration of
steroids, mitigate the steroid effect on CAR-T function and response, and can potentially
improve CAR-T outcomes, enable easier access to CAR-T for older people, and facilitate
outpatient administration and management after CAR-T therapy.

In this paper, we provide a description of the design and implementation of an Auto-
mated Neural Nursing Assistant (ANNA) system designed to address the limitations of the
standard-of-care approaches by automating the administration and analysis of speech-based
neurocognitive tests a. We also discuss the challenges specific to this particular clinical use case
of intensive monitoring for cognitive changes associated with neurotoxic effects of immunother-
apy, as well as other emerging areas where such intensive monitoring may be needed. We also
report on the results of a small preliminary functional evaluation study designed to evaluate
user experience with the system and collect feedback to determine areas for improvement prior
to conducting a clinical study scheduled to begin in the Fall of 2023.

aA live demo version of ANNA has been presented at the 2023 Interspeech symposium and is currently
available at +1 (612)-682-6292. Note: the phone number may change over time - to obtain the current
number for the demo, please contact the authors
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2. System Description

ANNA consists of a multi-platform app (iOS, Android, telephony) that administers neurocog-
nitive tests, collects voice responses, and securely uploads them to a web service that stores
the audio and automatically scores the tests. The implementation described in this paper op-
erates via the telephone interface. To make the conversation as natural as possible, the system
is implemented to work in full-duplex audio mode in which both the patient and the system
can speak at the same time without the need for the patient to signal the end of utterances
by pressing a button.

Fig. 1: Illustration ANNA system architecture and data flow.

ANNA’s architecture illustrated in Figure 1 consists of two independent components, a
dialogue manager and a cognitive assessment test battery. As the conversation manager goes
through the script of the phone call, it transcribes the patient’s speech, responds with syn-
thesized speech, plays audio, and listens for pauses and cue words from the patients speech
to allow ANNA to take turns in conversation in a natural manner. For speech transcription
it employs OpenAI’s state-of-the-art Whisper transcriber, which we have found to produce
acceptable transcriptions of audio recordings from even the lowest end consumer phones. For
speech generation we use the the pre-trained SpeechT5 model.11 Twilio b currently provides
telephony services to ANNA, however, the Dialogue Manager can easily be reconfigured to
accept input from and produce input for other audio recording and playback devices, allowing
us to reuse it in our group’s other voice application projects. The Dialogue Manager cur-
rently consists of a set of rules that are designed to walk the patient through the process of

bhttps://www.twilio.com/
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participating in the cognitive assessment. The conversation manager can either read directly
from a script, which is how it conducts the word-list cognitive assessments or it can prompt a
Large Language Model (LLM) using the patient’s last utterance to generate a response. For
this purpose we currently use the blenderbot-400M-distill12 model and insert the responses to
the input received from the patient at each conversation turn. Blenderbot is pre-configured
to understand dialog and uses no prompt, responding directly to the patient’s utterance. We
also continue to experiment with other pre-trained LLMs (limited to those that can be used
in a local HIPAA-compliant environment) including the Vicuna Chat13 and, most recently,
Llama2 Chat14 models.

We developed ANNA as an easily deployed set of Docker images which can be deployed
within an on-site server when provided with a phone number, web address, and a GPU with
at least 24Gb of VRAM (e.g., NVIDIA RTX 3090 Ti). The current demo implementation is
running on a server with two NVIDIA RTX 4090 cards. We have also constructed an alternative
implementation of ANNA which does not use Docker images for any components which require
access to a GPU, as the fully containerized application can have difficulty accessing the GPU
in some environments.

2.1. Spontaneous Speech and Language Elicitation

We programmed ANNA to make a phone call to the patient’s phone (smartphone or landline)
and administer the following tasks: a brief conversation with a conversational agent based on
a LLM that asks the patient to describe how they are feeling and conducts a brief conversation
on one of a set of pre-defined topics such as favorite pastime, books, movies, etc. Topics are
currently randomly drawn from a pre-defined list without replacement to alleviate practice
effects.

2.2. Cognitive Testing: Word List Recall

The conversation is followed by a series of brief cognitive tasks including a word list learning
task in which the patient is presented with a list of 6 words and is asked to recall as many
of these words as the patient can immediately after the presentation (immediate recall) and
a few minutes later (delayed recall). The word list recall task is vulnerable to practice effects
in serial testing.15 Practice effects can mask subtle cognitive changes due to early stages
of ICANS; therefore, we developed a mechanism for generating multiple alternative lists of
6 words to minimize the effects of repeated test administration. To ensure that the lists
of words are roughly equivalent across multiple presentations, we developed an approach
for automatically generating lists of words that are equivalent in their lexical properties of
frequency, concreteness, and imageability using the MRC Psycholinguistic database.16

2.3. Cognitive Testing: Verbal Fluency

Two verbal fluency tests are administered between the immediate and delayed recall tasks.
The verbal fluency tests consist of a category fluency test in which the patient is asked to name
as many animals as they can think of in 30 seconds, followed by a letter fluency test asking to
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name as many words beginning with the letter “F” as they can think of also in 30 seconds. The
verbal fluency task also suffers from practice effects; however, prior work of other researchers
and our own preliminary data show that in these generative tasks the practice effects are
small and plateau after several presentations in individuals with cognitive impairment.16 The
rationale for selecting verbal fluency and list learning tasks rests on the evidence that they
are particularly sensitive to a broad-spectrum of cognitive impairment effects caused by a
wide variety of acute and chronic conditions including effects of medications,17 are quick to
administer, and lend themselves well to automation.

We selected the abbreviated versions of the list learning and verbal fluency tests to make
them less burdensome for patients undergoing cancer treatment. The abbreviated version have
been shown to have similar psychometric properties to their full counterparts (10 words for
the list learning and 60 seconds for the verbal fluency tests).18,19

2.4. Speech and Language Analysis

The speech collected with ANNA is first subjected to automatic speech recognition to produce
a verbatim transcript of everything the patient said during the interaction with the system.
The current implementation of ANNA relies on the pre-trained Whisper neural transformer
model (large-v1).20 The transcribed speech is analyzed to extract the following language char-
acteristics: syntactic complexity and language model perplexity. Syntactic complexity is mea-
sured using technology we previously developed to characterize language changes in patients
with dementia.21 Measures of syntactic complexity include the mean number of clauses, var-
ious measures of the depth of syntactic trees obtained from a syntactic constituency parser,
and the mean syntactic dependency length obtained from a dependency parser. Perplexity
is a measure of how many different equally most probable words can follow any given word
based on probabilities obtained from a probabilistic or a neural language model. High mean
perplexity computed over an utterance that did not participate in training the model indicates
a poor fit between a language model and the text of the utterance. This measure has been
shown to be useful for distinguishing between speech of individuals with probable Alzheimer’s
Disease and healthy controls.22 Both the syntactic complexity and the language model per-
plexity have been included in an attempt to capture early signs of confusion and changes in
language patterns that have been noted in patients starting to develop ICANS. In addition
to the language characteristics described above, we also extract the following paralinguistic
speech characteristics: initial pause duration prior to onset of speech, mean pause duration,
perseveration and hesitation density. These characteristics have also been noted (anecdotally)
by oncology treatment teams as being observed in early stages of ICANS.

2.5. Motivation for Selecting Analytical Measures

Rigorous prior work by other investigators and by our group demonstrated that the category
verbal fluency task (animal naming) discriminates between individuals with Alzheimer’s dis-
ease dementia and healthy controls with sensitivity of 0.88 and specificity of 0.96.23 The list
learning task has also been previously shown to have excellent psychometric properties for
detecting mild (mean MMSE score = 22.1) memory impairment (sensitivity and specificity of
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90%) and high test-retest reliability.24 In our own prior work, we have demonstrated that using
deep neural modeling of the spontaneous speech patterns produced during a picture descrip-
tion task is able to discriminate between Alzheimer’s disease dementia and controls with 87%
accuracy.22 Our team has been engaged in validation studies in which we have demonstrated
that neurocognitive tests of verbal fluency (semantic and phonemic) are highly sensitive to
the neurotoxic effects of psychoactive medications such as lorazepam and topiramate,25 as
well as the effects of chronic traumatic encephalopathy,26 effects of nicotine withdrawal27 and
neurodegeneration due to Alzheimer’s disease.28 While ICANS is distinctly different from the
slowly progressing symptoms in dementia and chronic traumatic encephalopathy, it is similar
to the rapid (on the order of hours) changes in cognition observed as a result of acute effects
of psychoactive medications and nicotine withdrawal.

2.6. Pilot Evaluation Study

We conducted a small functional evaluation study of ANNA to elicit initial feedback from
healthy individuals that could inform any further changes in system design and help us debug
the system. We asked 10 Amazon Mechanical Turk workers to place an anonymous call to
ANNA, interact with the system, and respond to a brief survey shown in Figure 3.

Fig. 2: Example of an interaction between an Amazon Mechanical Turk worker and ANNA.
This example shows the actual unedited transcription of the caller’s voice with the Whisper
transcriber.
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3. Results

An example interaction between a functional evaluation study participants and ANNA is
shown in Figure 2. This example shows a verbatim transcript of the interaction which illus-
trates the performance of all ANNA components including the automatic speech recognition
and large language models. The quantitative results of the functional evaluation are summa-
rized in Table 1.

The Duration column in Table 1 reflects the amount of time it took the evaluator to interact
with ANNA and complete the evaluation survey. The mean duration for the 10 evaluators was
11 minutes. All evaluators had a 100% approval rating on the Amazon Mechanical Turk system
(i.e., they were approved for payment for all human intelligence tasks that they performed in
the past). All evaluators were able to get to the end of the interaction with ANNA successfully
(Completed column in Table 1). The mean audibility rating was 4.1 (SD: 0.74), the sensibility
of ANNA’s responses to evaluators was rated as 3.7 (SD: 0.95), and the latency of system
responses was rated as 2.0 (0.92).

Table 1: Results of pilot functional evaluation.

Evaluator Duration Completed Audibility Sensibility Latency Comments
(sec.) Y/N (1-5) (1-5) (1-5)

1 660 Y 5 3 1 –
2 669 Y 4 3 4 Good exprience
3 660 Y 5 3 1 –
4 557 Y 3 5 2 Make it a little bit

faster in response.
5 784 Y 4 5 2 –
6 808 Y 4 3 3 It could be a bit more

human-like, now it
sounds too machine
like.

7 782 Y 3 5 2 Just improving re-
sponse time would be
a huge upgrade.

8 744 Y 5 3 1 –
9 748 Y 4 3 2 GOOD
10 588 Y 4 4 2 It should be able to

restate the instruc-
tions instead of just
waiting on an affir-
mative to being.

Mean
(SD)

700
(86.18)

Y 4.1 (0.74) 3.7 (0.95) 2.0 (0.92) –
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4. Discussion

The broad clinical need that ANNA is designed to address arises from the limitations of the
healthcare system in which intensive monitoring of patients’ cognitive function (multiple times
per day) by a human healthcare professional is not feasible and is cost-prohibitive. Monitor-
ing cognitive function is unlike monitoring of physiologic function in that the former requires
symbol-mediated interaction, which is typically achieved through the use of language. Many
years of research in language technology and artificial intelligence yielded a number of conver-
sational agents designed for use in healthcare applications.29 However, recent developments in
speech and language technology and, in particular, the introduction of large language models
such as ChatGPT and Whisper can potentially move these efforts to a new level by making
these systems simpler an more accurate in recognizing the incoming speech and producing
more natural and flexible responses.

Fig. 3: Evaluation survey administered to Amazon Mechanical Turk workers.

The proposed automated cognitive assessment methods address the limitations of the exist-
ing manual methods by using a series of brief, validated and easy to administer neurocognitive
tests that use speech as the input modality to detect expressive aphasia deficits - the most
specific symptom of ICANS. The key innovative aspect of our approach is the use of AI tech-
nologies such as LLMs and automatic speech recognition based on deep learning to convert
spoken responses to text that can subsequently be used to compute traditional scores as well
as novel speech and language-based measures to further improve the sensitivity and specificity
of these instruments. The use of AI, large language models and automatic speech recognition
and synthesis, as well as scoring algorithms tailored to the neurocognitive tests at hand, is
what sets us apart from other commercial and academic computerized neurocognitive testing
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approaches. To the best of our knowledge none of the current computerized approaches to
neurocognitive assessment use conversational AI technology to elicit speech from patients and
to analyze the resulting speech for cognitive impairment due to immunotherapy with machine
learning. Another innovation is that we use extensively validated and recognized neurocogni-
tive tests in a novel, accessible, and fully automated way that can also enable at-home and/or
remote monitoring for ICANS, which could improve the accessibility of immunotherapy in
rural and other settings away from medical centers.

In addition to the immunotherapy used to treat certain types of cancer, other newly
emerging therapies that leverage the immune system have been recently approved by the US
Food and Drug Administration for treatment of Alzheimer’s disease. The most recent approval
was granted in July 2023 to lecanemab, an immunotherapy agent that was demonstrated to
remove Alzheimer’s disease biomarkers from the brain and significantly (albeit moderately)
slow down the disease progression as compared to other treatments. However, serious side
effects including brain edema in 12.6% of the participants in the active arm of the clinical trial
of this medication were observed.30 Therefore, similarly to ICANS, early detection and clinical
management of these side-effects in the treatment of Alzheimer’s disease may potentially
benefit from intensive cognitive monitoring. Another potential clinical application area for
systems like ANNA is in automating the monitoring for post-operative delirium. Proactive
monitoring for post-operative delirium and early intervention has been shown to shorten length
of hospital stay and improve surgical outcomes.31

Pending successful demonstration of ANNA’s feasibility and validity for early detection of
ICANS, as we move outside of the realm of research and into wide adoption of ANNA in clinical
practice, ANNA is ready to be integrated into a wide variety of clinical settings as a laboratory
service using already existing technology and informatics standards including the Health Level
7 (HL7 v2) and FHIR protocols to interface with EHR via the standard lab test results route.
One of the challenging issues that we expect to face has to do with handling of critical values.
Critical values or failure to do the ANNA assessment will need to be communicated to the
care team verbally by phone also using a standard protocol (ISO 15189) for communicating
critical lab values. To this end, ANNA would need to have an interface (voice or graphical) to
enable the care team to configure the system for each individual patient. The configuration
will need to include telephone numbers for the patient and the care team as well as some
of the patients’ preferences (e.g., topics for the conversational part of ANNA’s assessments,
do-not-call times, system voice and personality preferences).

4.1. Limitations

ANNA currently has several technical limitations. Due to the use of multiple large neural
models, the response latency can vary between less than a second for short turns (e.g., confir-
mations) to 3-4 seconds for longer turns in which ANNA has to convert longer input utterances
to text and then also generate a response text and synthesize it into a spoken utterance. The
evaluators in the pilot study clearly noted this as something that should be improved. We
found that neural text-to-speech generation is the biggest contributor to response latency;
however, other modules can be optimized as well. We plan to reduce the response latency in
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the production version of ANNA by a) switching to a faster version of the Whisper model
c which has been benchmarked to be about 5 times faster than the OpenAI version, and b)
distributing the LLM and TTS models across multiple GPU cards.

Another potential limitation that ANNA inherits from the pre-trained large language mod-
els is the potential for going off-topic (a.k.a. ”hallucinating”) during the initial conversational
part of the assessment. To minimize this potential risk, we limit the amount of text produced
by the models in response to the user input to 1-2 utterances. In the near future, we also
plan to implement a set of guardrails to prevent ANNA from responding in inappropriate
or offensive manner d. This limitation was not noted in the pilot study as the sensibility of
ANNA’s responses was rated as fairly high (mean 3.7 out of 5) and none of the 10 evaluators
commented on any specific nonsensical responses.

The racial, cultural, gender and ethnic biases learned by large language models from train-
ing data is a major concern with applications of AI in medicine in general32 and is a potential
concern in our application as well. Given the nature of the interactions between patients and
ANNA and the focus on eliciting as much speech from patients as possible over as few conver-
sational turns as possible, we do not anticipate any such biases to have a chance to manifest
themselves in any discernible fashion to the patients. Nonetheless, since inherent bias in lan-
guage models is a known issue and we plan to examine the data collected with ANNA for any
signs of bias or unfairness and experiment with current de-biasing methods.

ANNA’s use case also has a distinct strength with respect to one of the biggest known
limitations of large language models - variable trustworthiness of the information they gen-
erate. The lack of confidence in the information provided by these models is currently one
of the major barriers to their adoption for clinical applications as primary sources of clinical
knowledge.33 ANNA’s clinical use case, however, does not rely on large language models for
knowledge. We rely on these models only to support a chatbot application used to elicit speech
from patients for subsequent analysis and not to inform either patients or clinicians. As such,
ANNA currently represents one of the safest and most immediate ways of using large language
models in a clinical context.

5. Next Steps

We have developed and submitted an observational study protocol to the University of Min-
nesota Institutional Review Board. In this prospective clinical study University of Minnesota
Masonic Cancer Center patients undergoing CAR-T therapy for hematological cancers will
be monitored for ICANS with ANNA concurrently with the standard of care ICE testing.
The following primary endpoints will be evaluated: a) acceptability of the frequency of ANNA
administration; b) quality and quantity of audio collected from patients; and c) naturalness
and ease of interaction with automated ANNA assessments. As we test the central feasibil-
ity hypothesis, we will also seek to understand the reasons why ANNA administration may
not have occurred (examples: unable, refused, too tired, ill, forgot, technical reason, app not

chttps://github.com/guillaumekln/faster-whisper
dhttps://github.com/NVIDIA/NeMo-Guardrails
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working, battery out, other). We will also evaluate ANNA’s usability characteristics that are 
not central to its feasibility but may affect t he f easibility i ndirectly s uch a s n aturalness of 
interactions with patients, convenience, and patients’ perceptions of ease of use.

Prior to conducting the clinical study, we plan to address the system latency limitation 
pointed out by the pilot study evaluators as well as experiment with the more recently released 
chat models such as Llama2 to improve the sensibility of the initial conversations with the 
patient.

We also plan to enhance the language analysis of the conversations collected with ANNA 
by adding language coherence measures using a recently developed Time-series Augmented 
Representations for Detection of Incoherent Speech (TARDIS) method that relies on a time-
series analysis of coherence features computed using semantic relatedness between words in a 
given piece of discourse e. The TARDIS approach has been used successfully to characterise 
disordered speech in patients with schizophrenia34 and may prove to be useful for detecting 
possible thought disturbances caused by early ICANS.

One of our current concerns with using ANNA for intensive monitoring of cognitive changes 
in cancer patients is that even the abbreviated version of the cognitive tests we have currently 
implemented may present a burden for the patients who are likely to experience significant 
distress and fatigue as a result of therapy. Our ultimate goal in the forthcomeing clinical study 
is to determine if we can reliably ascertain the onset of ICANS based entirely on the analysis 
of the brief conversation between ANNA and the patient. If we can successfully do so, then 
we would likely be able to dispense with the more formal word list learning and verbal fluency 
tests, which would make intensive monitoring much less burdensome for patients.
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