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Classical machine learning and deep learning models for Computer-Aided Diagnosis (CAD)
commonly focus on overall classification performance, treating misclassification errors (false
negatives and false positives) equally during training. This uniform treatment overlooks the
distinct costs associated with each type of error, leading to suboptimal decision-making,
particularly in the medical domain where it is important to improve the prediction sensitiv-
ity without significantly compromising overall accuracy. This study introduces a novel deep
learning-based CAD system that incorporates a cost-sensitive parameter into the activation
function. By applying our methodologies to two medical imaging datasets, our proposed
study shows statistically significant increases of 3.84% and 5.4% in sensitivity while main-
taining overall accuracy for Lung Image Database Consortium (LIDC) and Breast Cancer
Histological Database (BreakHis), respectively. Our findings underscore the significance of
integrating cost-sensitive parameters into future CAD systems to optimize performance and
ultimately reduce costs and improve patient outcomes.
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network

1. Introduction

Machine learning (ML) models have been developed to identify patterns in data across various
domains, including computer-aided diagnosis,1 public health,2 and defect detection.3 Gener-
ally, these ML models are optimized based on overall prediction accuracy across all classes
and data points, assuming that misclassification errors are equal.4 However, this assumption
can be perilous in classification problems where misclassifying a positive instance carries a
higher cost than misclassifying a negative instance. Particularly in the medical domain, a
false negative error will likely have much greater consequences than a false positive.

To address this challenge, we propose a novel cost-aware deep learning-based CAD sys-
tem that incorporates different cost values into the activation function to boost the model’s
sensitivity. By fine-tuning the cost values associated with false positive and false negative in-
stances, we can significantly increase true positives. Our contributions are twofold: 1) a CAD
training framework designed to enhance sensitivity while maintaining overall accuracy, and 2)
a proof-of-concept demonstrating the value of incorporating cost values as hyperparameters
in future CAD systems.

© 2023 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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2. Related Work

2.1. Cost-Sensitive Learning in Non-Medical Domains

In recent years, cost-sensitive learning has gained popularity as a valuable tool in non-medical
domains to tackle class imbalance4–10 and to address its associated costs of misclassification.

Prior research by Zhu and Wan11 proposed a cost-sensitive learning method for semi-
supervised hit-and-run analysis to handle the data imbalance issue which significantly im-
proved model’s performance even with a small proportion of labeled historical data. Khosh-
gotaar et al.12 introduced cost-sensitive learning into Software Defect Prediction (SDP) and
used a boosting method to build software quality models. Le et al.13 implemented a hybrid ap-
proach by combining oversampling techniques and cost-sensitive learning, which significantly
improved bankruptcy prediction performance. Devi et al.14 proposed a cost-sensitive weighted
random forest algorithm for effective credit card fraud detection. The model assigns more
weight to minority instances during training, resulting in improved performance compared to
existing random forest techniques. Xiao et al.15 integrated a group handling neural network-
based cost-sensitive semi-supervised selective ensemble model for credit-scoring problems.

Other prior work focused on improving the overall prediction performance by modifying the
loss function to consider different cost values for various misclassifications. Li et al.16 proposed
a pixel-based adaptive weighted cross-entropy loss function to facilitate road crack detection.
Wang et al.17 also introduced a novel cost-sensitive loss function for semantic segmentation
of remote sensing images. More recently, Li et al.18 constructed a new cost-sensitive loss
function that incorporates the cost difference caused by misclassification between different
classes proving its ability to enhance the model’s effectiveness.

2.2. Cost-Sensitive Learning Applied to Medical Diagnosis

Research studies on the ML application to medical diagnosis typically employ traditional ML
algorithms and advanced algorithms via ensemble learning,19 evolutionary algorithms,20 sparse
autoencoders (SAE).21 However, few research works have conducted cost-sensitive learning in
medical diagnosis. Recently, Manop5 developed a cost-sensitive XGBoost model for breast can-
cer detection and evaluated it on four breast cancer datasets with uneven class distribution,
achieving accuracy ranging from 95.99% to 96.43%. Ali et al.6 developed a method that com-
bines cost-sensitive learning and ensemble learning techniques to predict breast cancer. The
ensemble learning methods include GentleBoost, Bagging, and Adaptive Boosting, resulting in
a 3.91% improvement. Zieba et al.7 proposed the combination of ensemble learning and cost-
sensitive Support Vector Machine (SVM) to address the lung cancer patients’ post-operation
life expectancy. They observed that patients not covered by the minority rules have a 97%
chance of surviving the considered survival period. Ali et al.22 applied cost-sensitive ensem-
ble methods in the classification of chronic kidney disease (CKD) which incorporates feature
ranking capabilities instead of enhancing predictive accuracy. Cost-sensitive deep neural net-
works (CSDNN) have also been developed by Wang et al.23 to predict hospital readmission,
achieving a significant improvement in accuracy of 6% and 4% for 1-year and 30-day read-
mission prediction, respectively. Mienye and Sun10 developed robust cost-sensitive classifiers
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for predicting medical diagnosis by modifying the objective functions of algorithms such as
logistic regression, decision trees, extreme gradient boosting, and random forest. They tested
these classifiers on four medical datasets and demonstrated that cost-sensitive methods yield
improvements ranging from 1% to 4% compared to the standard algorithms.

These works5–7,10,23 suggest that incorporating cost-sensitive learning with specific cost val-
ues during misclassifications into ML models can improve overall classification performance.
However, these studies focus solely on improving overall classification results without deter-
mining the impact of different cost values on sensitivity and specificity metrics. Our study
expands the integration of the misclassification costs into the learning algorithm by optimizing
the diagnostic interpretation sensitivity without sacrificing the overall diagnostic performance.

3. Methodology

3.1. Convolutional Neural Networks

A classical CNN model (Figure 1) comprises convolutional layers and fully connected layers.
The convolutional layers are designed to extract features, while the fully connected layers
are responsible for classification. For our study, we focus on the binary classification problem
distinguishing between malignant and benign cases. To achieve this, we employed a single
neuron in the output layer with the sigmoid activation function. The output of the sigmoid
activation function determines the predicted label.

Fig. 1: CNN architecture overview.

Let O
(t)
rcur be the output of the current layer’s neuron with index rcur at epoch t for any

image Xi:

O(t)
rcur,i = w

(t)
0,rcur,i

+

dpre∑
rpre=1

g(z(t)rpre)w
(t)
rprercur,i (1)

where w
(t)
rprercur represents the weights between the neuron indexed as rpre in the previous

layer and the neuron indexed as rcur in the current layer at epoch t. dpre represents the number
of neurons in the previous layer, and g represents the activation function applied to each output
value of a neuron z

(t)
rpre from the previous layer rpre.

Given an image Xi, where i represents the image index, we denote yi as its actual label
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and p̂i as its prediction probability:

p̂
(t)
i = σ(O(t)

rcur,i) =
1

1 + e−O
(t)
rcur,i

(2)

where σ represents the sigmoid activation function applied to the output layer neuron. The
predicted ȳi is calculated as follows:

ȳi =

{
1, if σ(O(t)

rcur,i) ≥ 0.5

0, if σ(O(t)
rcur,i) < 0.5

(3)

Using the actual label yi and its predicted probability p̂i, the loss for instance Xi at epoch
t is calculated using Binary Cross Entropy (BCE) loss:

Loss(t)BCEi
= −[yi log2(p̂i) + (1− yi) log2(1− p̂i)] (4)

During the backpropagation, the model updates its weights to minimize the overall loss
L
(t)
ERM (Equation 5) at epoch t, which is the average loss across all N training instances.

L
(t)
ERM =

1

N

N∑
i=1

Loss(t)BCEi
(p̂i) (5)

where ERM denotes Empirical Risk Minimization.

3.2. Cost-aware CNN model

To direct the performance of the CNN model towards the true positives (malignant cases
denoted by 1), we propose a cost-sensitive activation function σ(O

(t)
rcur , c(y, ȳ)

(t)) that penalizes
more false negatives than the false positives by assigning higher costs to outcomes that are
misclassifications of true positives and lower costs for misclassifying true negatives (benign
cases denoted by 0). Grounded in the work by Li et al.,18 we define an inverse relationship
between the cost of false negatives c(1, 0) and the cost of false positives c(0, 1) and restrict the
values of c(1, 0) to be greater than 1:

c(0, 1) =
1

c(1, 0)
(6)

The activation function remains the same for correctly classified cases, and therefore, the
costs for true positives c(1, 1) are equal to the costs for true negatives c(0, 0) and are equal to
1.

By integrating the cost values into the activation function, Equation (2) is transformed
into Equation (7), denoting that the predicted probabilities p̂(t) at epoch t are now influenced
by the costs associated with each type of output:

ˆ̂p(t) = σ(O(t)
rcur , c(y, ȳ)

(t)) =
1

1 + e−O
(t)
rcur ·c(y,ȳ)(t)

(7)

Implicitly, the new L
(t)
ERM Cost loss function at epoch t, which is based on the predicted

probabilities, will be dependent on the cost values:

L
(t)
ERM Cost =

1

N

N∑
i=1

Loss(t)BCEi
(ˆ̂pi) (8)
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3.3. Cost Analysis w.r.t. Sensitivity and Specificity

Maximizing both sensitivity and specificity simultaneously is not possible as they are inversely
related.24,25 However, introducing cost-values in the activation function of the outcome layer
allows optimizing the performance of each without a decline in the overall accuracy. Here we
illustrate two examples that show the impact of the costs on the performance of a CNN model.

3.3.1. Handling False Negative Cases

In a false negative case, where the actual label y = 1 and the predicted label ȳ = 0, to achieve
ȳ = 0, Orcur must be a negative value. Using Equations (2) and (4), and if c(1, 0) = 1, which
represents no cost value being used, we obtain the loss function:

LossBCE
(t)
i

= −

[
log2

(
1

1 + e−O
(t)
rcur,i

)]
(9)

If we introduce c(1, 0) > 0 in the activation function, which is a cost value associated with
the false negative situation, we obtain the modified loss function:

LossBCE Cost
(t)
i

= −

[
log2

(
1

1 + e−O
(t)
rcur,i

·c(y,ȳ)(t)

)]
(10)

LossBCE Cost
(t)
i

> LossBCE
(t)
i

(11)

After introducing a cost value of c(1, 0), the loss value obtained from Equation (10) demon-
strates an increase, as shown in Equation (11). This cost value impacts the ’false negative’
case during the training process, leading to a decrease in false negative cases and an increase
in sensitivity.

3.3.2. Handling False Positive Cases

In a false positive case, where y = 0 and ȳ = 1, to achieve ȳ = 1, Orcur must be a positive value.
If c(0, 1) = 1, which means no cost values being used, we obtain the loss function:

LossBCE
(t)
i

= −

[
1− log2

(
1

1 + e−O
(t)
rcur,i

)]
(12)

If we introduce c(0, 1) = 1
c(1,0) with c(1, 0) > 1, which represents a cost value associated

with the false positive situation, we obtain the modified loss function:

LossBCE Cost
(t)
i

= −

[
1− log2

(
1

1 + e−O
(t)
rcur,i

·c(y,ȳ)(t)

)]
(13)

LossBCE Cost
(t)
i

< LossBCE
(t)
i

(14)

After introducing a cost value of c(0, 1), the loss value obtained from Equation (13) demon-
strates a decrease, as shown in Equation (14). This cost value influences the training process,
leading to a decrease in false positive cases and a reduction in specificity.

By incorporating cost-sensitive learning for both ”false negative” and ”false positive” cases,
the model can effectively update its weights to improve performance based on the specific
misclassifications encountered during training.
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4. Applications

We apply the cost-sensitive activation function approach to deep learning CAD models for
lung cancer and breast cancer.

For the lung cancer application, we use the NIH/NCI LIDC26 data and for the breast cancer
application, we use the BreakHis.27 For both applications, the data was split into training,
validation and testing sets using stratified random sampling, with proportions of 70%, 10%,
and 20%, respectively. To ensure more robust results, we repeated the process of data splitting
and model development for 30 times. The classification performance on the testing set was
reported with the mean value across all 30 trials and a 95% confidence interval.

Fig. 2: Multiple visual appearances of cropped lung nodules: The two nodules on the left
exhibit malignant features, characterized by spiculated contours and larger size, while the two
on the right are benign, displaying smaller, smoother nodules indicative of non-malignancy.

4.1. LIDC Dataset

The LIDC26 dataset contains 2,680 distinct nodules found in Computed Tomography (CT)
scans from 1,010 patients. In this study, we implemented the following data preprocessing
steps: First, we cropped nodules into images of size 71 x 71 (Figure 2), which is the size of
the largest nodule in the dataset. Third, we assigned malignancy classification labels, where
nodules with malignancy ratings of 1 (highly unlikely) and 2 (moderately unlikely) were
labeled as ’Benign’, while nodules with malignancy ratings of 4 (moderately suspicious) and
5 (highly suspicious) were labeled as ’Malignant’. After data pre-processing, which includes
normalization and removal of indeterminate nodules with malignancy rating 3, we were left
with 1,605 nodules. This dataset is imbalanced, comprising 699 malignant and 906 benign
ones.

4.2. BreakHis Dataset

BreakHis27 comprises of 7,909 histological images of breast tumor tissue collected from 82 pa-
tients using varying magnification levels (40X, 100X, 200X, and 400X). It contains imbalanced
data with 2,480 benign and 5,429 malignant images. The images were 3-channel RGB, 8-bit
depth each channel and dimension of 700 x 460 pixels. In this study, we normalized images
using min-max normalization. A few sample images are shown in Figure 3.
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Fig. 3: Breast cancer histological images from the BreakHis Dataset. The left two images
depict malignancy, while the right two show benign samples, illustrating critical distinctions
for diagnosis.

4.3. Design and Architecture of the Deep CNN Model

The transfer learning method overcomes the limitation of having a small amount of training
data by initially pre-training a deep learning model on a publicly available large dataset. As
part of our study’s cost-sensitive algorithm classification model, we fine-tune28 a pre-trained
ResNet18 convolutional neural network from ImageNet29 on our own dataset.

For this study, we followed Nibali et al.’s recommendation30 and utilized the ResNet18 CNN
architecture.31 In the intermediate layers of the architecture, the Rectified Linear Unit (ReLU)
activation function is used. Given the objective of addressing a binary classification problem
(malignant vs. benign), we implemented a single neuron with the sigmoid activation function
as the output layer. Consequently, during training, if the output of the sigmoid activation
function is greater than or equal to 0.5, we classify the instance as Malignant (positive class);
otherwise, we classify it as Benign (negative class).

4.4. Experimental Results

The accuracy, sensitivity, and specificity assessment of the two datasets across 30 trials are
tabulated in Table 1 through Table 4, showing the performance when the classifier is trained
with different misclassification costs on the LIDC and BreakHis datasets. The first column and
second column indicate the cost value given for false positives and false negatives, while the
various metrics are listed from the third to the last columns. The numbers in bold indicate
a significant difference compared to the results obtained without any cost values, whereas
non-bold numbers indicate no significant difference.

From the experimental results, the cost-sensitive classifier indeed supports the analysis
in Section 3.3. Table 1 reveals that we can enhance sensitivity while maintaining the same
level of accuracy. Notably, in both datasets, sensitivity increases with a decrease in speci-
ficity for higher values of c(1,0), which is associated with false negatives, and lower values of
c(0,1), which is associated with false positives. For the LIDC dataset, the highest sensitivity
was achieved when c(0,1) = 0.33 and c(1,0) = 3, with accuracy and specificity remaining
unaffected. We observed a significant improvement of 3.84% compared to the baseline model,
where c(0,1) = c(1,0). Table 2 presents the classification performance of the BreakHis dataset,
showing a 5.4% significant improvement when c(0,1) = 0.067 and c(1,0) = 15. Additionally, we
observe a trend of significantly increasing sensitivity with decreasing specificity while keeping
the overall accuracy within the range of 86.55% to 88.10%. In Tables 1 to 4, numbers within
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Table 1: The classification performance on the LIDC testing data was assessed through 30
trials with increasing c(1, 0) cost values.

c(0, 1) c(1, 0) Accuracy Sensitivity Specificity

1 1
85.26%

(84.63%, 85.89%)
76.22%

(74.62%, 77.83%)
91.25%

(90.33%, 92.17%)

0.5 2
85.25%

(84.39%, 86.11%)
76.89%

(75.17%, 78.61%)
90.79%

(89.91%, 91.67%)

0.33 3
85.80%

(85.19%, 86.41%)
80.06%

(78.81%, 81.30%)
89.61%

(88.54%, 90.69%)

0.2 5
84.93%

(84.37%, 85.48%)
78.22%

(76.76%, 79.69%)
89.37%

(88.39%, 90.35%)

0.1 10
84.81%

(84.06%, 85.55%)
78.97%

(77.33%, 80.62%)
88.67%

(87.31%, 90.04%)

0.067 15
84.56%

(83.90%, 85.23%)
78.58%

(76.83%, 80.33%)
88.53%

(87.23%, 89.83%)

Table 2: The classification performance on the BreakHis testing data was assessed through 30
trials with increasing c(1, 0) cost values.

c(0, 1) c(1, 0) Accuracy Sensitivity Specificity

1 1
88.10%

(88.03%, 88.16%)
90.38%

(90.29%, 90.47%)
83.10%

(82.98%, 83.21%)

0.5 2
88.38%

(88.32%, 88.45%)
91.84%

(91.75%, 91.93%)
80.81%

(80.63%, 80.99%)

0.33 0.3
88.39%

(88.33%, 88.46%)
93.79%

(93.69%, 93.88%)
76.58%

(76.40%, 76.76%)

0.2 5
87.82%

(87.74%, 87.91%)
95.05%

(94.92%, 95.18%)
72.00%

(71.76%, 72.23%)

0.1 10
87.15%

(87.04%, 87.26%)
95.71%

(95.58%, 95.84%)
68.42%

(68.00%, 68.83%)

0.067 15
86.55%

(86.51%, 86.79%)
95.78%

(95.64%, 95.92%)
66.66%

(66.09%, 67.23%)

parentheses represent 95% confidence intervals, with bold numbers indicating significant dis-
tinctions compared to the baseline model (c(0,1) = c(1,0)).

An increase in sensitivity is observed with decreasing c(0,1) values, which shows significant
improvement compared to the baseline models. Table 3 illustrates the results, focusing on
increasing c(0,1) values, which will lead to a decrease in sensitivity significantly and an increase
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Table 3: The classification performance on the LIDC testing data was assessed through 30
trials with increasing c(0, 1) cost values.

c(0, 1) c(1, 0) Accuracy Sensitivity Specificity

1 1
85.26%

(84.63%, 85.89%)
76.22%

(74.62%, 77.83%)
91.25%

(90.33%, 92.17%)

2 0.5
84.83%

(84.13%, 85.52%)
75.06%

(73.24%, 76.88%)
91.31%

(90.24%, 92.38%)

3 0.33
84.39%

(83.70%, 85.07%)
73.25%

(71.44%, 75.06%)
91.77%

(90.66%, 92.88%)

5 0.2
83.00%

(82.53%, 84.08%)
69.56%

(67.24%, 71.88%)
92.41%

(91.17%, 93.65%)

10 0.1
81.93%

(81.03%, 82.82%)
64.11%

(61.89%, 66.33%)
93.74%

(92.70%, 94.78%)

15 0.067
80.48%

(79.38%, 81.58%)
60.69%

(57.28%, 64.11%)
93.59%

(92.36%, 94.83%)

Table 4: The classification performance on the BreakHis testing data was assessed through 30
trials with increasing c(0, 1) cost values.

c(1, 0) c(0, 1) Accuracy Sensitivity Specificity

1 1
88.10%

(88.03%, 88.16%)
90.38%

(90.29%, 90.47%)
83.10%

(82.98%, 83.21%)

2 0.5
87.43%

(87.35%, 87.50%)
88.75%

(88.64%, 88.87%)
84.52%

(84.33%, 84.71%)

3 0.33
84.70%

(80.93%, 88.46%)
84.43%

(78.48%, 90.39%)
85.27%

(84.22%, 86.32%)

5 0.2
81.34%

(76.26%, 86.41%)
79.02%

(70.99%, 87.05%)
86.41%

(85.02%, 87.80%)

10 0.1
70.62%

(63.16%, 78.10%)
61.39%

(49.71%, 73.08%)
90.85%

(89.06%, 92.65%)

15 0.067
69.41%

(62.17%, 76.66%)
59.33%

(48.02%, 70.63%)
91.50%

(89.76%, 93.20%)

in specificity. We observe that with c(0,1) = 15 and c(1,0) = 0.067, the highest specificity is
achieved, albeit with a trade-off in sensitivity. When we examine the impact of decreasing
c(0,1) values as illustrated in Table 4, we observe a reverse relationship, with decreasing
specificity and increasing sensitivity. This leads to a notable 8.4% improvement in specificity;
however, it comes at the expense of a reduction in sensitivity.
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For both the LIDC and BreakHis datasets, we observe an increasing trend of sensitivity
with increasing c(1,0) values, and an increasing trend of specificity with increasing c(0,1)
values. Notably, in both datasets, sensitivity increases with the decrease in specificity for
higher c(1,0) values and lower c(0,1) values.

Our results indicate that by tuning the cost values, we can achieve higher sensitivity or
specificity. Significantly, the overall accuracy remains consistent in the majority of cases.

5. Conclusion and Future Work

In this study, we proposed the incorporation of a cost-sensitive values into the activation func-
tion for deep learning-based CAD systems. Specifically, it addresses one of the most common
problems in CAD, which is improving true positives measured using sensitivity, by adjust-
ing the cost values without significantly impacting accuracy. The effectiveness and robustness
of the model are demonstrated through theoretical analysis and experiments on different
datasets. Compared with previous work on LIDC and BreakHis, this is the first study that
utilizes cost values in activation functions to enhance sensitivity. Our findings strongly suggest
that incorporating cost values as hyperparameters in future CAD systems holds promising ben-
efits, with statistically significant increases of 3.84% and 5.4% in sensitivity, while maintaining
overall accuracy, for LIDC and BreakHis Data.

While our study has yielded valuable insights, certain constraints, limited to the datasets
used in this research, may impact the generalizability of our findings. Furthermore, our study
predominantly relied on a single activation function and the use of binary cross entropy loss.

Future investigations can involve the inclusion of datasets from Medical Imaging and Data
Resource Center32 (MIDRC), The Cancer Imaging Archive33 (TCIA), and other medical-
related databases, which can provide a broader perspective on model performance. To im-
prove model performance and address imbalanced datasets, we can explore various activation
functions and loss functions, such as focal loss.34 In addition to this, we will also explore
different thresholds for classifying instances as malignant or benign based on the sigmoid ac-
tivation function output. Currently, we use a default threshold of 0.5. We will also investigate
the integration of the proposed cost values with the group Distributionally Robust Optimiza-
tion35 (gDRO) algorithm. This approach aims to enhance the worst group performance while
preserving the overall CAD system’s effectiveness. Additionally, we plan to delve into the
impact of cost-sensitive activation functions on multi-class classification. These endeavors col-
lectively aim to improve the accuracy and effectiveness of the cost-sensitive learning approach
in medical diagnosis, ultimately benefiting diagnostic decision-making and patient outcomes.
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