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Abstract 

There is a desire in research to move away from the concept of race as a clinical factor because it 
is a societal construct used as an imprecise proxy for geographic ancestry. In this study, we leverage 
the biobank from Vanderbilt University Medical Center, BioVU, to investigate relationships 
between genetic ancestry proportion and the clinical phenome. For all samples in BioVU, we 
calculated six ancestry proportions based on 1000 Genomes references: eastern African (EAFR), 
western African (WAFR), northern European (NEUR), southern European (SEUR), eastern Asian 
(EAS), and southern Asian (SAS). From PheWAS, we found phecode categories significantly 
enriched neoplasms for EAFR, WAFR, and SEUR, and pregnancy complication in SEUR, NEUR, 
SAS, and EAS (p < 0.003). We then selected phenotypes hypertension (HTN) and atrial fibrillation 
(AFib) to further investigate the relationships between these phenotypes and EAFR, WAFR, SEUR, 
and NEUR using logistic regression modeling and non-linear restricted cubic spline modeling 
(RCS). For EAS and SAS, we chose renal failure (RF) for further modeling. The relationships 
between HTN and AFib and the ancestries EAFR, WAFR, and SEUR were best fit by the linear 
model (beta p < 1x10-4 for all) while the relationships with NEUR were best fit with RCS (HTN 
ANOVA p = 0.001, AFib ANOVA p < 1x10-4). For RF, the relationship with SAS was best fit with 
a linear model (beta p < 1x10-4) while RCS model was a better fit for EAS (ANOVA p < 1x10-4). 
In this study, we identify relationships between genetic ancestry and phenotypes that are best fit 
with non-linear modeling techniques. The assumption of linearity for regression modeling is 
integral for proper fitting of a model and there is no knowing a priori to modeling if the relationship 
is truly linear.   
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1.   Introduction 

Race is a social construct that is an imprecise way to classify groups prevalence of heritable risk 
factors, therefore there is a growing consensus in clinical and population research to move away 
from the use of race in the context of disease risk. Some racial disparities in health condition risks 
documented in the epidemiological literature may be due to non-biological differences between 
racial groups.1 Geographic or genetic ancestry has been proposed as a more precise approach to 
capture differences in disease etiology that may be due to acquired biological differences in human 
populations. We hypothesize that when populations have evolutionarily adapted to a specific 
environment encounter different circumstances, disease risks can be influenced, and disparities can 
arise when compared to a population that is in evolutionary equilibrium with that environment. If 
this hypothesis is true, then this relationship would be detectable as an association between 
genetically inferred proportions of ancestry and disease risk. Improved understanding of how 
different geographic ancestries are responding to modern environments, nutrition, and behavioral 
lifestyles could help us understand genetic causes of diseases and improve healthcare.  

Current approaches to precision medicine focus on a patient’s clinical history and are often 
combined with known genetic risk factors, such as causal monogenic variants and more recently 
polygenic risk scores. Over the last several decades, race has been incorporated into clinical risk 
prediction models for several conditions when racial differences have been observed in disease 
prevalence, particularly for estimating drug responses. Race has also been used for medical tools 
such as calibrating eGFR measures for assessment of kidney disease risk. However, multiple studies 
have shown that administratively determined race or self-reported race are imprecise estimates of 
an individual’s genetic ancestry, and thus use of race in modeling is a flawed approach.2,3 Imprecise 
racial/ancestral identification may lead to lack of response to a personalized treatment plan that 
depends on a strong assumption of race capturing biological differences. Furthermore, recent work 
by several groups have shown that for some diseases genetic ancestry (global ancestry)4 may directly 
interact with a patient’s clinical characteristics to modify risk for disease and that this interaction 
varies at specific points in their genome (local ancestry).5-7  

Within this study we leverage the rich phenotypic information available from Vanderbilt 
University Medical Center’s (VUMC) biobank, BioVU, to evaluate the relationship between global 
geographic ancestry and the clinical phenome using phenome wide association study (PheWAS). 
From PheWAS results, we sought to identify enriched phenotype categories for ancestry groups and 
selected phenotypes within them for additional modeling. Selected phenotypes were then modeled 
using logistic regression and restricted cubic splines (RCS) to further investigate the relationship 
between phenotype and ancestry group. Studies usually make the strong assumption that the 
relationship between genetic ancestry and disease risk is linear. We chose to explore if fitting a non-
linear model better described the relationship. 

2.   Methods 

2.1.   Study Population 

The BioVU DNA Repository is a de-identified database of electronic health records (EHR) that are 
linked to patient DNA samples at VUMC. A detailed description of the database and how it is 
maintained has been published elsewhere.8 BioVU participant DNA samples were genotyped on a 
custom Illumina Multi-Ethnic Genotyping Array (MEGA-ex; Illumina Inc., San Diego, CA, USA). 
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Quality control included excluding samples or variants with missingness rates above 2%, excluded 
if consent had been revoked, sample was duplicated, or failed sex concordance checks. Imputation 
was performed on the Michigan Imputation Server v1.2.410 using Minimac49 and the Haplotype 
Reference Consortium (HRC) panel v1.1.10  

2.2.   Ancestry Estimations of BioVU Participants 

Estimation of ancestry proportion for BioVU participants based upon 1000 Genomes reference data 
has been described elsewhere.11 In brief, the 1000 Genome populations were grouped into six super-
population by geographic ancestry of east African (EAFR), west African (WAFR), southern 
European (SEUR), northern European (NEUR), east Asian (EAS), and south Asian (SAS) as 
described in Keaton, et. al 202112 using ADMIXTURE.13 The six ancestry groups were projected 
onto BioVU to determine proportion of the six ancestries for all samples. Ancestry proportion of 
samples in the cohort was visualized by plotting subjects along the x-axis and their corresponding 
stacked ancestry proportions on the y-axis. Subjects were sorted by increasing SEUR ancestry. 

2.3.   Ancestry Phenome Wide Association Study 

We conducted hypothesis-free PheWAS analyses of evaluating phecodes in the phenome with each 
of the six ancestries. Each ancestry was used as the main predictor in separate analysis, adjusted for 
age, sex, and body mass index (BMI). PheWAS was performed with the R package ‘PheWAS’ 
version 2.14 1,875 clinical disease phenotypes called phecodes from Phecode Map 1.2 were 
evaluated.15 A p-value of 2.7x10-5 was the threshold for significance to correct for multiple testing 
(Bonferroni correction of 0.05/1,875 phecodes tested).  

2.3.1.   Hypergeometric Testing of Enrichment 

Post PheWAS, phecodes were mapped to phenotypes and the phenotypes were grouped into sixteen 
categories from the phecodes map. We then conducted hypergeometric testing for enrichment for 
each phecode category within each ancestry PheWAS result. The hypergeometric distribution 
function HYPGEOM.DIST from excel was used to calculate fold change and significance level for 
each category. Threshold for significance was 0.003 to correct for multiple testing (Bonferroni 
correction of 0.05/16 phecode groups tested). Hypergeometric testing results were visualized by 
plotting the -log(p-value) of enrichment for each category as a function of fold change. Phecode 
categories pregnancy complication and neoplasms were visualized by graphing each phecode in the 
categories by -log(p-value) as a function of effect size. Plots were made with R 4.2.2.16  

2.3.2.   Selection of Phecodes for Modeling 

In PheWAS results, we looked for phecodes that differed in relationship between EAS and SAS, 
and between EAFR, WAFR and NEUR, SEUR. Renal failure (RF) was selected for further modeling 
in EAS and SAS. The pre-made phecode categories do not always capture all relevant codes to a 
certain system. To focus more on the cardiac system, we extracted phenotypes using the key terms 
“hypertens”, “heart”, “card”, “valv”, “fibril”, “coronary”, and “angina.” After manual review, we 
excluded codes pertaining to “poisoning by agents primarily affecting the cardiovascular system” 
and “heartburn”. Selected cardiac phecodes were visualized by plotting the -log(p-value) of the 
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phecodes as a function of effect size using R 4.2.2. From this cardiac systems plot, we selected 
phenotypes hypertension (HTN) and atrial fibrillation (AFib) for further modeling with EAFR, 
WAFR, NEUR, and SEUR. 

2.4.   Logistic Regression Modeling of Select Phecodes 

Selected phenotypes were modeled as logistic regression and RCS using the R package “rms” 
version 6.2-0.17 Each ancestry was used as the main predictor in separate models. Phenotypes were 
modeled as a function of ancestry proportion (ANC) using (Eq. 1) for logistic regression.  
  

𝑃{𝑌 = 1|𝑋} = 	𝛽! + 𝛽"#$𝑋"#$ + 𝛽%&'𝑋%&' + 𝛽(')𝛽(') + 𝛽*+,𝑋*+,  

Odds ratios (OR) and confidence intervals (CI) calculated for each ancestry from logistic 
regression are given for a 10% increase in ancestry proportion. Phenotypes were modeled as a 
function of ancestry proportion using (Eq. 2) for RCS with three knots (a,b,c).  

𝑃{𝑌 = 1|𝑋} = 	𝛽! + 𝛽"#$𝑋"#$ + 𝛽%&'𝑋%&' + 𝛽(')𝛽(') + 𝛽*+,𝑋*+, +
𝛽%(𝑋"#$ + 𝑎)- + 𝛽.(𝑋"#$ + 𝑏)- + 𝛽/(𝑋"#$ + 𝑐)-    

Knot positions were determined by default “rms” placement. Odds ratios for RCS were 
calculated using integrated “rms” functions for a quartile increase in ancestry from the 25th to 50th 
percentile and for the 50th to 75th percentile. Significance threshold for ANOVA tests of significant 
model improvement with RCS over linear was 0.004 (Bonferroni correction of 0.05/12 [six 
ancestries * two models]). 

3.   Results 

3.1.   Genetic Ancestry of BioVU Participants 

There were 71,140 participants from BioVU, 59.06% of which were female, the average age was 
54.09 (SD = 18.15), and the average BMI was 29.03 (SD = 7.27). (Table 1) Ancestry proportions 
for all individuals in BioVU are visualized in Figure 1. From the six ancestry proportions calculated, 
the ancestry group SEUR represented the largest proportion of genetic ancestry with a population 
average of 60.9%, followed by NEUR with 22.4%, WAFR with 6.41%, EAFR with 7.07%, SAS 
with 1.40%, and EAS with 1.76%. (Table 1) 

3.2.   PheWAS Summarized with Hypergeometric Testing 

There were 404 phecodes significantly associated with EAFR, 396 with WAFR, 414 with SEUR, 
150 with NEUR, 68 with SAS, and 74 with EAS. (Table 2) Hypergeometric testing of phecode 
categories identified enriched and de-enriched categories of phecodes. (Figure 2A) EAFR, WAFR 
and SEUR were de-enriched for ‘injuries and poisonings’ and ‘musculoskeletal’ and enriched for 
‘neoplasms.’  

(1) 

(2) 
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Phecodes significant within neoplasms showed opposite directions of effect for NEUR and SEUR 
groups versus WAFR and EAFR groups. (Figure 2B) Codes representing skin cancer and other skin 
neoplasms increased in odds with increasing NEUR and SEUR ancestry proportion but decreased 
in odds with increasing WAFR and EAFR ancestry proportion. Conversely uterine leiomyoma had 
increased odds with increased EAFR and WAFR ancestry proportion and decreased odds with 
increased SEUR and NEUR ancestry proportion. (Figure 2B) EAFR was additionally enriched for 
‘genitourinary.’ ‘Pregnancy complications’ was enriched in NEUR, SEUR, EAS, and SAS. When 
investigated further, it was revealed the significant phecodes in the category were almost all in the 
decreased direction for NEUR and SEUR and increased direction for EAFR, WAFR, EAS, and 
SAS. (Figure 2C)  

 Mean (SD) or N (%) 
Age (years) 54.08 (18.15) 
BMI (kg/m2) 29.03 (7.27) 

Sex (Females) 42016 (59%) 
NEUR 22.43 (9.72) 
SEUR 60.93 (23.29) 
EAFR 7.07 (15.4) 
WAFR 6.41 (14.09) 
EAS 1.76 (9.6) 
SAS 1.4 (6.05) 

Figure 1. Structure plot of the genetic ancestry make up of BioVU Participants. Subjects are aligned 
on the x-axis by proportion of SEUR. NEUR: northern European; SEUR: southern European; 
EAFR: eastern African; WAFR: western African; EAS: eastern Asian; SAS: southern Asian 
ancestry. 

 

Table 1. Population characteristics of the BioVU cohort. 
 

Kg: kilogram; m: meters 
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3.3.   Modeling Ancestry Proportion 

We identified 103 phecodes that included cardiac keyword/phrases. The most significant phecodes 
were phecodes representing hypertension and its consequences. Increasing EAFR and WAFR 
ancestry proportion increases odds for the phecodes and increasing SEUR and NEUR ancestry 
proportion decreases odds for the conditions. Phecodes involving atrial fibrillation and related codes 

Figure 2. Volcano plots of fold change from hypergeometric testing or ancestry coefficient from PheWAS 
plotted against the negative log transformed p-value for A) Phecode categories B) neoplasm and C) 
pregnancy complications. Created with BioRender.com 

Figure 3. Volcano plot of selected phecodes related to the cardiac system. Coefficient of phecode from 
PheWAS is on the x-axis and the y-axis is negative log transformation of p-value. Created with 
BioRender.com 
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were significantly associated with the same ancestries, but in opposite directions: increasing NEUR 
and SEUR increase odds while EAFR and WAFR decrease odds. (Figure 3)  
 

 
We then investigated phecodes 401 ‘hypertension’ (HTN) and 427.2 ‘atrial fibrillation’ (AFib) 

with modeling in EAFR, WAFR, NEUR, and SEUR. (Figure 4A) When modeled linearly, each 
ancestry was associated with HTN and AFib (p < 0.003). (Table 3) When HTN and AFib were 
modeled using RCS, the ANOVA test revealed adding the complexity of non-linearity did 
significantly improve the model for NEUR (p = 0.001, p < 1x10-4 respectively) but not for EAFR, 
WAFR, and NEUR (p > 0.003). (Figure 4) Increasing ancestry proportion by 10% in the linear 
model gave an OR for HTN of 2.29 (95% CI: 2.11 - 2.48) for EAFR, 2.73 (95% CI: 2.48 - 3.01) for 
WAFR, 0.27 (95% CI: 0.22 - 0.33) for NEUR, and 0.73 (95% CI: 0.70 - 0.75) for SEUR,  visualized 
in the top row panels of Figure 4A. For AFib, a 10% increase in ancestry proportion yields ORs of 
0.58 (95% CI: 0.49 - 0.68) for EAFR, 0.53 (95% CI: 0.44 - 0.63) for WAFR, 4.39 (95% CI: 3.07 - 

Ancestry ~ N Significant Codes Fold Change P-value 
EAFR ~ 404 

 

genitourinary 1.39 0.003 
injuries & poisonings -2.4 2.24x10-4 

musculoskeletal -2.05 3.89x10-4 
neoplasms 1.51 0.001 

WAFR ~ 396 
 

injuries & poisonings 2.35 3.35x10-4 
musculoskeletal -2.17 2.31x10-4 
neoplasms 1.57 4.13x10-4 

SEUR ~ 414 
 

injuries & poisonings -2.05 0.001 
musculoskeletal -1.96 5.77x10-4 
neoplasms 1.58 2.83x10-4 
pregnancy complications 2 5.06x10-4 

NEUR ~ 150 
 

infectious diseases 1.87 6.38x10-4 
musculoskeletal -3.83 4.17x10-4 
pregnancy complications 2.2 1.27x10-4 

SAS ~ 68 
  

pregnancy complications 7.32 1.97x10-8 
EAS ~ 74 

  

digestive 2.34 7.63x10-4 
mental disorders 3.56 1.57x10-4 
pregnancy complications 6.16 5.57x10-7 

Table 2. Significant results from hypergeometric testing of phecode categories for each ancestry. 
Positive values indicated an enrichment of significant phecodes within that category while negative 
values indicate de-enrichment. Significance level is 0.003.  
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6.27) for NEUR, and 1.31 (95% CI: 1.22 - 1.40) for SEUR when modeled linearly and is visualized 
in the third row of panels in Figure 4A. Only NEUR had significant ANOVA p-values for the RCS 
models in both HTN and AFib. Increasing NEUR ancestry in RCS modeling of HTN from 25th to 
50th percentile in NEUR ancestry proportion gave an OR of 0.96 (95% CI: 0.94 - 0.98) and the 50th 
to 75th percentile increase gave an OR of 0.99 (95% CI: 0.98 - 1.01). In RCS modeling of AFib, 
increase from 25th to 50th percentile in NEUR ancestry yielded an OR of 1.02 (95% CI: 0.99 - 1.06) 
and the 50th to 75th percentile increase yielded an OR of 0.98 (95% CI: 0.96 - 1.01). (Table 3) RCS 
models for HTN and AFib are visualized in the second and fourth row of panels in Figure 4A, 
respectively. 
 

In PheWAS results, phecode 585 ‘renal failure’ showed different relationships with EAS and 
SAS ancestry proportion; RF was significantly associated with SAS, but not for EAS. (Table 3) 
When modeled linearly, SAS ancestry proportion was significantly associated with RF (p < 1x10-4) 

 Logistic Regression Restricted Cubic Spline 

 
OR* (95% CI) P-value OR± (95% CI)  OR ‡ (95% CI) ANOVA  

P-value 
Atrial Fibrillation      

SEUR 1.31 (1.22-1.40) <1x10-4  1.00 (0.98-1.03)  1.00 (0.98-1.02) 0.06 

NEUR 4.39 (3.07-6.27) <1x10-4 1.02 (0.99-1.06) 0.98 (0.96-1.01) <1x10-4 

EAFR 0.58 (0.49-0.68) <1x10-4  0.99 (0.99-1.00)  0.97 (0.96-0.99) 0.01 

WAFR 0.53 (0.44-0.63) <1x10-4  0.99 (0.99-1.00)  0.98 (0.96-0.99) 0.02 

Hypertension      

SEUR 0.72 (0.70-0.75) <1x10-4 0.98 (0.96-0.99) 0.99 (0.98-1.00) 0.25 

NEUR 0.27 (0.22-0.33) <1x10-4  0.96 (0.94-0.98) 0.99 (0.98-1.01) 0.001 

EAFR 2.29 (2.11-2.48) <1x10-4 1.00 (0.999-1.003) 1.003 (.996-1.01) 0.30 

WAFR 2.73 (2.48-3.01) <1x10-4  1.00 (0.998-1.002) 1.00 (0.99-1.01) 0.11 

Renal Failure      

EAS 0.96 (0.73-1.26) 0.78  1.09 (1.08-1.11)  1.18 (1.15-1.21) <1x10-4 

SAS 0.15 (0.06-0.37) <1x10-4 1.00 (0.98-1.03)  1.00 (0.98-1.03) 0.41 

Table 3. Results of logistic regression and restricted cubic spline modeling for hypertension and 
atrial fibrillation in northern European, southern European, west African, and east African ancestry; 
and renal failure in eastern Asian and southern Asian ancestry.  

*Odds ratio given for 10% increase of ancestry proportion 
±Odds ratio given for 25th to 50th percentile of ancestry proportion 
‡ Odds ratio given for 50th to 75th percentile of ancestry proportion  
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but adding non-linear complexity did not significantly improve the model (p = 0.41). (Figure 4B) 
EAS was not significantly associated with RF when modeled linearly (p = 0.78). Modeling with the 
non-linear RCS revealed a significant relationship between RF and EAS ancestry proportion (p < 
1x10-4). (Figure 4B) For SAS, a 10 % increase in ancestry proportion had an OR of 0.15 (95% CI: 

Figure 4. Linear modeling using logistic regression and restricted cubic spline (RCS) modeling of select 
phenotypes. A) Hypertension and atrial fibrillation risk models for SEUR, NEUR, EAFR, WAFR. B) 
Renal failure models for EAS and SAS. Log odds of outcome was graphed as a function of ancestry 
proportion adjusted for age, sex, and BMI. * = significant model. Created with BioRender.com.  
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0.06 - 0.37) when modeled linearly. In RCS modeling, increasing from the 25th to 50th percentile of 
EAS ancestry proportion increases odds for RF by 1.09 (95% CI: 1.08 – 1.11) and increasing from 
the 50h to 75th percentile increases odds by 1.18 (95% CI: 1.15 – 1.21). (Table 3)     

4.   Discussion 

We present an evaluation of the relationships between genetic ancestry proportions and the clinical 
phenome of the BioVU cohort. Our analyses revealed significantly enriched and de-enriched 
phecode categories for each ancestry group studied. We further evaluated the relationship between 
genetic ancestry and risk for HTN, AFib, and RF using linear and non-linear modeling methods.  

4.1.   Relationships Between Ancestry and the Clinical Phenome   

Phecode categories that were de-enriched for PheWAS associations were ‘injuries and poisonings’ 
and ‘musculoskeletal’ for EAFR, WAFR, SEUR and EAFR, WAFR, SEUR, NEUR respectively. 
Both categories represent codes that are not conditions typically considered heritable. ‘Injuries and 
poisonings’ category comprises codes related to non-pathologic fractures, trauma injuries, and 
poisonings, all events caused by environment. Phecodes in musculoskeletal involve injuries or 
deformities of joints, bones, and muscles acquired from usage of the body. One specific phenotype 
to mention in this category is osteoporosis, where increasing NEUR and SEUR ancestry increased 
risk for codes relating to osteoporosis (phecodes 743, 743.1, 743.11) and spine curvature (737, 
737.3), while the same codes have a protective effect with increasing EAFR and WAFR ancestry. 
Studies have shown increased bone mineral density and lower rates of osteoporosis associated in 
Black women compared to non-Hispanic White women.18 Our genetic ancestry study findings 
support this previously observed epidemiological relationship.  
 In the ‘neoplasm’ category, many of the phecodes were in the risk direction for SEUR and 
NEUR ancestries and in the protective direction for WAFR and EAFR. The top significant neoplasm 
codes refer to skin cancer and other neoplasms of skin. The biological relationship between 
geographic ancestry and skin cancer has been well documented; populations in equatorial regions 
produce more melanin to protect against DNA damage from UV radiation while populations out 
towards the poles have evolved to produce less melanin due to less UV exposure.19,20 It is possible 
that individuals of European genetic ancestry migrated away from the environments where they 
adapted to be at equilibrium and are now in new environments they are at disequilibrium with.21  
 One of the few exceptions to the pattern seen in ‘neoplasms’ were the phecodes 218 and 218.1, 
representing ‘uterine leiomyoma’ (or fibroids). Increasing EAFR and WAFR ancestries increases 
odds for fibroids while increasing SEUR and NEUR ancestries was protective against fibroids. This 
relationship pattern is consistent with previous epidemiology literature. Black women have been 
found to develop fibroids at younger ages, were more likely to have a clinical diagnosis, and to have 
had a hysterectomy from fibroids.22 The overall odds of developing fibroids by age 50 were 2.9 
times higher among Black women compared to White women.22 Due to the significant racial 
disparities that exist for fibroids, it has been hypothesized that there is a genetic component to the 
condition, with a heritability estimate of ~30%.23 Previous genetic studies have found African 
genetic ancestry proportion to be associated with fibroids diagnosis12 and multiple fibroids.24 Our 
study further supports the theory that African genetic ancestry may explain a portion of the risk for 
fibroids.  
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The pregnancy complication category was significantly enriched in NEUR, SEUR, EAS, and 

SAS. Within the category, significantly associated phecodes were all in the protective direction for 
NEUR and SEUR and in the risk direction for EAS and SAS. Racial disparities in maternal health 
outcomes have been well documented for White and Black women, with Black women having 
significantly higher adverse maternal outcomes compared to White women.25 There have been many 
external factors posited for why Black women in US experience pregnancy complications and 
maternal mortality at much higher rates.26 Trends in pregnancy complications for Asian women are 
less well-documented. A study of fertility treatment outcomes in Asian American women found 
decreased success of treatment in the forms of lower pregnancy rates and live births.27 Using genetic 
ancestry proportions as a study variable may help to fill in some of the missing epidemiological gaps 
that still are pervasive in historically under-represented racial groups.    

4.2.   Modeling Ancestry Proportion Linearly and non-Linearly 

From the phecodes grouped into the cardiac category, we saw a striking pattern. Several phecodes 
representing HTN and hypertensive disorders and consequences were found to be at increased risk 
in EAFR and WAFR and decreased risk in NEUR and SEUR. An opposite trend was seen for 
phecodes representing AFib and related codes; SEUR and NEUR were at increased risk while EAFR 
and WAFR were at decreased risk. This pattern follows what has been reported in literature.28-30 
Our study shows the trends we see for HTN and AFib are due in part to genetic ancestry. 

While plenty of studies have focused on external causes and contributions to the higher 
prevalence of HTN in Black individuals,31 it is known to be heritable.32 A small (N = 998), previous 
study evaluated the relationship between African genetic ancestry proportion in self-identified Black 
individuals and hypertension and found the highest quartile of African genetic ancestry proportion 
had 8% higher prevalence than the lowest quartile.33 Marden et al. used African genetic ancestry 
proportion to tease apart the contributions of genetics and socioeconomic status to HTN prevalence 
and found that their accounted socioeconomic factors only explained one-third of the difference in 
prevalence measured.33 We as well sought to use genetic ancestry to determine its contribution to 
HTN disease risk as it helps to avoid confounders. The previous study and ours have both found 
African genetic ancestry to be associated with HTN risk and prevalence.  

Within our evaluation of RF, we found linear modeling to be sufficient to model the relationship 
with SAS ancestry. EAS ancestry was not significantly associated with RF in PheWAS or when 
modeled individually linearly. Allowing for flexibility with non-linear RCS modeling revealed a 
relationship between EAS ancestry and RF. Only with the RCS model were we able to detect an OR 
of 1.18 (95% CI: 1.15-1.21) with an increase from 50th to 75th percentile of EAS ancestry. EAS was 
the ancestry group with the most skewed data density of the six groups, with the 3rd quartile ancestry 
proportion value being just 0.45% and one of our smallest sub-sample sizes with 760 self-identified 
individuals. The RCS model may have performed better due to being able to compensate for the 
skewness of data. Many wide-scale analyses perform only linear modeling which may not detect 
relationships, as seen for RF in EAS ancestry PheWAS. The risk trends for EAS and RF from RCS 
modeling have been reported previously in literature. Higher rates of end stage renal disease and 
increased risk of projected kidney failure have been observed in Far East, Southeast Asia, and Indian 
populations as compared to White populations.34,35 The linear model for SAS and RCS model for 
EAS recapitulate these findings. Assuming linear relationships between genetics and disease may 

Pacific Symposium on Biocomputing 2024

399



 
 
 

cause associations to be missed, highlighting the need to consider non-linear modeling methods such 
as RCS.    

4.3.   Considerations and Strengths 

While our study found some phenotype relationships that were consistent with epidemiology studies 
based on self-identified race, we did not evaluate the potential contribution of proportions of 
admixture on disease risk. On average, people had an admixture proportion of 0.33 (+/- 0.12) 
amongst the 6 super populations we determined with the more granular division of Southern and 
Northern European, Eastern and Western African, and East and South Asian. Within our cohort, 
those who self-identified as non-Hispanic Black had on average 78.6% African ancestry (EAFR + 
WAFR), 19.4% European ancestry (SEUR + NEUR), and 1.99% Asian ancestry (EAS + SAS). 
Those who self-identified as non-Hispanic White had on average 6.85% African ancestry, 98.0% 
European ancestry, and 1.26% Asian ancestry. Our study was limited in its ability to test more 
admixed populations where these methods may be more useful in identifying phenotypes associated 
with genetic ancestry.  

We only used one ancestry as a predictor variable per model. Different geographic ancestries 
may interact differently, and this study does not account for various combinations of genetic 
ancestry proportions. Further investigation is needed to understand how the different genetic 
ancestries interact with each other and modify risk. A potential limitation of our study is the way in 
which some phenotypes may be diagnosed. Some phenotypes such as chronic kidney disease rely 
on algorithms that use self-reported race as a criterion to determine diagnosis, for example estimated 
glomerular filtration rate (eGFR) algorithms have historically used race as a coefficient in the 
equation for measuring eGFR levels which may bias diagnoses across racial and ethnic groups.36  

In this study, we identified hundreds of traits in the clinical phenome that are associated with 
ancestry proportion. From our selected studies of enriched phecode categories and modeling of HTN 
and AFib, we observed many relationships between ancestry and phecodes that matched the 
epidemiology literature between self-identified race and traits. We used RCS to model a significant 
relationship between RF and EAS ancestry, one that was not originally identified from linear 
modeling. We highlighted a few phenotypes in this paper as an exploratory investigation into the 
potential of RCS modeling for ancestry proportion and disease risk.  

Most traditional epidemiology literature notes the shortcomings of their studies revolve around 
using the societal construct of race, a lack of healthcare access for underrepresented groups and low-
income individuals, and external environmental factors. Adjusting for race to better account for 
these factors like socioeconomic status or systemic discrimination in addition to using genetic 
ancestry proportion, which capture heritable contributions, may provide more comprehensive 
models. Future work controlling for genetic ancestry that demonstrates significant associations with 
race would highlight systemic factors affecting outcomes that are not captured by ancestry alone. In 
addition to utilizing genetic ancestry, we show how alternative modeling methods can be useful 
especially in a case of an underrepresented ancestry group where linear models may not be as 
successful to describe more complicated associations. Our study displays how genetic ancestry can 
be leveraged in furtherance of studying disease risk where traditional epidemiological studies have 
fallen short.    
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