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In the intricate landscape of healthcare analytics, effective feature selection is a prerequisite
for generating robust predictive models, especially given the common challenges of sam-
ple sizes and potential biases. Zoish uniquely addresses these issues by employing Shapley
additive values—an idea rooted in cooperative game theory—to enable both transparent
and automated feature selection. Unlike existing tools, Zoish is versatile, designed to seam-
lessly integrate with an array of machine learning libraries including scikit-learn, XGBoost,
CatBoost, and imbalanced-learn.

The distinct advantage of Zoish lies in its dual algorithmic approach for calculating
Shapley values, allowing it to efficiently manage both large and small datasets. This adapt-
ability renders it exceptionally suitable for a wide spectrum of healthcare-related tasks. The
tool also places a strong emphasis on interpretability, providing comprehensive visualiza-
tions for analyzed features. Its customizable settings offer users fine-grained control over
feature selection, thus optimizing for specific predictive objectives.

This manuscript elucidates the mathematical framework underpinning Zoish and how
it uniquely combines local and global feature selection into a single, streamlined process.
To validate Zoish’s efficiency and adaptability, we present case studies in breast cancer
prediction and Montreal Cognitive Assessment (MoCA) prediction in Parkinson’s disease,
along with evaluations on 300 synthetic datasets. These applications underscore Zoish’s
unparalleled performance in diverse healthcare contexts and against its counterparts.
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1. Introduction

Healthcare datasets, despite being typically sparse and heterogeneous, are a treasure trove of
rich information. However, their high-dimensionality, often paired with smaller sizes, presents
obstacles to building predictive models, with overfitting and extensive training time being
common concerns.1–3 Feature selection becomes an essential strategy in this context, aimed
at pruning redundant or less important features. This helps to minimize information loss,
enhance model interpretability, and curtail computational demands.

Although traditional feature selection methods, grounded in statistical concepts like corre-
lation analysis or chi-square tests, are widely used, they tend to fall short in offering detailed
insights into feature importance. This shortcoming, along with the manual effort required, can
lead to a time-intensive cycle of feature selection and performance evaluation, thus requiring
expert intervention.4,5

Our proposed feature selection tool, Zoish, aims to overcome these limitations by utilizing
the mathematical framework of additive Shapley values. Originating from cooperative game
theory, Shapley values offer detailed understanding of feature importance,6 thereby enhancing
both local (instance-level) and global interpretability. Moreover, the integration of Zoish with
our scalable hyperparameter optimization package, Lohrasb,7 facilitates building models with
optimal feature sets, all the while maintaining an industry-ready, user-friendly design.

The structure of the paper is as follows. The first section sheds light on the core concepts of
additive Shapley values and delves into the mathematical principles vital to Zoish. Subsequent
to this, a section introducing a user guide for Zoish is presented. Lastly, we demonstrate the
adaptability of Zoish through a variety of use-cases, experiments on large synthetic datasets,
and a closing discussion.

2. Theoretical Foundations of Zoish

Our exploration into Zoish begins with the foundation of its theoretical structure, built upon
Shapley additive values. First proposed in the field of cooperative game theory, Shapley addi-
tive values have proven to be a potent tool for understanding the contribution of each feature
to a prediction made by a machine learning model. Simply put, the Shapley value of a fea-
ture represents the average marginal contribution of that feature, factored across all possible
combinations of features.

2.1. Shapley Additive Values and Feature Selection: A Game Theoretical
Approach

In the realm of cooperative game theory, the Shapley value denotes each player’s payoff based
on their marginal contribution across all possible coalitions. In machine learning, ’players’
correspond to the features and ’game’ to the prediction task.6

An additive cooperative game assumes that the value of any coalition equals the sum of
its members’ independent values. This idea leads us to Shapley additive values, where the
Shapley value of a feature equals its average marginal contribution across all feature subsets.

Mathematically, the Shapley value for a feature i in an additive game is:
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ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) = v({i})

In this formula, |N | denotes the total number of features, S a subset of features excluding
feature i, and |S| the number of features in subset S. The terms |S|!(|N | − |S| − 1)! and |N |!
calculate the number of possible permutations of features. The expression v(S ∪ {i}) − v(S)

computes the marginal contribution of feature i when added to subset S.
In feature selection, the Shapley value presents a way to distribute the model’s prediction

among the features, based on their marginal contribution.8,9 Shapley Additive exPlanations
(SHAP) values, maintaining additivity, provide a unified measure of feature importance, at-
tributing the difference between the model’s actual and expected output to each influencing
feature.10 High Shapley or SHAP values indicate significant feature importance, while values
near zero suggest negligible predictive power.11 This correlation aids in reducing data dimen-
sionality and enhances model interpretability, marking a significant stride in feature selection.

2.2. Properties of Shapley Additive Values

The Shapley additive values satisfy a number of properties that make them particularly useful
for interpreting machine learning models:

• Efficiency: The sum of the Shapley values of all features is equal to the difference
between the prediction for an instance and the average prediction over all instances.

• Symmetry: If two features contribute equally to all possible combinations of features,
they have the same Shapley value.

• Additivity: Given two games (or in our context, two models), the Shapley value of
the combined game is the sum of the Shapley values of the individual games.

• Nullity (Dummy): If a feature does not improve the prediction for any combination
of features, its Shapley value is zero.

2.2.1. Proof of Nullity (Dummy)

The Nullity (Dummy) property states that if a feature does not change the prediction model,
i.e., its contribution is always zero, then its Shapley value is also zero. Let f be the prediction
model and d be such a dummy feature.

According to the definition of Shapley values, the Shapley value of a feature is the average
of its marginal contributions across all possible subsets of features. Therefore, the Shapley
value sf (d) for the dummy feature d is:

sf (d) =
1

M

∑
S⊆N\{d}

|S|!(|N | − |S| − 1)!(f(S ∪ {d})− f(S))

In the above formula, M is the total number of possible subsets of N that can be formed
when the dummy feature d is excluded. The term |S|!(|N | − |S| − 1)! is the number of permu-
tations of N in which the dummy feature d and the features in subset S appear together, and
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f(S∪{d}) and f(S) are the values of the game f when the dummy feature d is added to subset
S and when it is not, respectively.

Since d is a dummy feature, adding it to any subset S does not change the value of the
game f . Thus, we have f(S∪{d}) = f(S) for all S ⊆ N \{d}, which simplifies the above formula
to:

sf (d) =
1

M

∑
S⊆N\{d}

|S|!(|N | − |S| − 1)!(0)

sf (d) = 0

This confirms that the Shapley value of a feature that does not contribute to the prediction
model is indeed zero, thus proving the Nullity (Dummy) property.9

2.3. Leveraging Shapley Additive Values for Efficient Feature Selection

Shapley additive values have become increasingly prominent in feature selection for machine
learning due to their robustness, efficiency, and power. Verdinelli et al. examined the explain-
ability of machine learning models, focusing on methods such as LOCO and Shapley Values
for assessing feature importance. Although their research indicated that Shapley Values do
not eliminate feature correlation, they proposed new, statistically sound axioms for measuring
feature importance.12 In a separate study, Karczmarz et al. compared Shapley and Banzhaf
values in the context of explaining tree ensemble models. They found Banzhaf values to be
more intuitive, efficient, and numerically robust, and introduced faster algorithms for both
methods to improve computational efficiency.13 The SHAP (SHapley Additive exPlanation)
library serves as a prime example of effectively leveraging the additivity and efficiency inher-
ent in Shapley values.14 A fundamental advantage of Shapley values lies in their additivity,
which enables fast and efficient computation, especially in the context of tree-based models.
The SHAP and FastTreeShap libraries employ Tree SHAP, a highly efficient and accurate
algorithm designed for tree ensembles.14,15 Given the innate additivity of ensemble tree mod-
els, which amalgamate multiple decision trees, this characteristic ensures swift and precise
computation of Shapley values.6 The efficacy of Shapley values is further underscored by their
intrinsic efficiency. This is manifested in the fact that the sum of the Shapley values for all
features equals the difference between the prediction for a specific instance and the average
prediction across all instances. This aspect permits a meaningful distribution of the ”credit”
for a prediction across features, hence illuminating their relative importance. The Zoish pack-
age,16 designed to optimize feature selection, taps into the beneficial properties of Shapley
values. It employs the Nullity (or Dummy) property to eliminate features with Shapley values
close to or exactly zero, indicating their minimal predictive relevance. To assist users in setting
the cut-off level, two methods are offered: one involves setting an internal parameter called
threshold, while the other entails defining the number of desired features to retain in the model.
By removing these non-influential features, the package enables dimensionality reduction of
the model without sacrificing prediction quality. The symmetry property of Shapley values
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is also exploited by Zoish. This property mandates that if two features contribute equally to
all possible subsets of other features, they must have identical Shapley values. By identifying
and discarding these redundant features, Zoish facilitates the construction of models that are
simpler and more interpretable, with no compromise on predictive power. By utilizing the
SHAP and FastTreeShap libraries to incorporate Shapley additive values, Zoish implicitly
benefits from its advantages, including the mathematical robustness and beneficial proper-
ties of Shapley values. Therefore, these libraries and the Zoish package present themselves as
potent instruments for feature selection, spanning a wide range of machine learning tasks.

3. Feature Selection Approaches

Zoish is a versatile package designed to enhance the evaluation of feature importance and
improve the overall performance of machine learning models.16 While Zoish can function ef-
fectively as a standalone tool for feature selection, it is engineered to be highly extensible and
can seamlessly integrate with hyperparameter optimization packages to further refine its ca-
pabilities. One such potent integration is with the Lohrasb package,7 which provides advanced
tuning methods to optimize the feature selection process. However, it’s worth noting that users
are not confined to using Lohrasb; Zoish’s flexible architecture allows for easy integration with
other hyperparameter optimization tools as well.

3.1. Optimization and Flexibility in Zoish

Zoish’s integration with Lohrasb serves a dual purpose: it not only optimizes the tree-based
estimator used for feature selection but also offers a choice of hyperparameter tuning meth-
ods, including Optuna, GridSearchCV,17 RandomizedSearchCV,18 OptunaSearchCV, tune-
sklearn,19 and Ray’s Tune.20 This optimization is crucial for enhancing Zoish’s feature selec-
tion capabilities, as represented in Fig 1. However, the use of Lohrasb is optional, giving users
the freedom to employ other tree-based estimators or hyperparameter tuning engines. Even
without hyperparameter optimization, Zoish maintains its core functionality, allowing for a
balance between efficiency and interpretability. The importance of hyperparameter optimiza-
tion for feature selection is further elaborated in Section 6. Therefore, while Lohrasb’s role is
significant for optimal performance, users have the flexibility to choose an approach that best
suits their specific needs.

3.2. Workflow explanation

Within a machine learning pipeline, Zoish functions as a feature selection component. The
pipeline commences by cleaning and splitting the original dataset into training and validation
subsets. A tree-based estimator, which is compatible with Zoish, is trained on the training
subset. If hyperparameter tuning is applied, tools such as Lohrasb optimize the estimator
against a specific metric, as shown in Fig 1.

Once the estimator is optimized, it becomes an input to Zoish along with a set of pa-
rameters, such as cross-validation settings, Shapley value calculation algorithms, and feature
importance thresholds. Zoish computes Shapley values via either the SHAP library for smaller
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datasets, due to its exhaustive computational approach, or FastTreeShap for larger datasets,
owing to its computational efficiency.

Based on the calculated Shapley values, Zoish automatically selects the highest-ranking
features. The training set is then narrowed down to these selected features. Subsequently,
these refined training and validation sets are channeled to the next steps in the pipeline,
which usually involve fitting another predictive model.

To ensure robustness in feature selection, Zoish employs multiple rounds of cross-validation
on the same training set, regulated by a parameter named n iter.

Fig. 1. Zoish workflow
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Documentation and code examples elucidating these operational details can be found in
the Zoish repository.

4. Source Code, installation and usage example

The public repository of Zoish is available on GitHub alongside examples for end users is
https://github.com/TorkamaniLab/zoish. Zoish package is available on PyPI and can be
installed with pip:

pip install zoish

A straightforward example demonstrates how Zoish can be effectively combined with hy-
perparameter optimizers. Both this example and the comprehensive documentation in the
repository highlight the package’s flexibility and adaptability across various scenarios.

import xgboost as xgb

from sklearn.model_selection import KFold, GridSearchCV

from zoish.feature_selectors.shap_selectors import ShapFeatureSelector

from sklearn.pipeline import Pipeline

from sklearn.linear_model import LogisticRegression
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X_train, X_test, y_train, y_test = ... # Your dataset here

grid = GridSearchCV(xgb.XGBClassifier(), {’n_estimators’: [100, 150], ’max_depth’:\

[6, 10], ’gamma’: [0.5, 1.0]}, cv=5, n_jobs=-1, scoring=’accuracy’).\

fit(X_train, y_train)

shap_selector = ShapFeatureSelector(grid.best_estimator_, \

num_features=15, cv=KFold(10), n_iter=5, direction="maximum", \

scoring="accuracy", algorithm=’auto’, use_faster_algorithm=True)

pipeline = Pipeline(steps=[("s", shap_selector), \

("m", LogisticRegression())]).fit(X_train, y_train)

5. Use cases and applications

5.1. Use case 1: Application to UCI breast cancer dataset - comparison
with related XAI work

To demonstrate the value of the Zoish feature selector in a real use case from the biomedical
domain, we applied it to the openly available breast cancer dataset from the UCI Archive,21

and compared the results with a recent study evaluating different feature importance measures
for the same dataset.22

The UCI dataset includes benign and malignant samples from 569 patients, 212 with cancer
and 157 with fibrocystic breast masses. Each sample includes thirty features - ten real valued
features for each cell nucleus (radius, texture, perimeter, area, smoothness, compactness, con-
cavity, concave points, symmetry, fractal dimension) each reported as Mean, Standard Error
(SE) and Worst.23 As the classes in this dataset are almost linearly separable, classification
per se is not a difficult task; however, the most important features generally differ depending
on the technique used.24 To further investigate this aspect, Saarela et al.22 compared different
feature importance measures using both linear (logistic regression) and non-linear (random
forest) models and local interpretable model-agnostic explanations for the same dataset. In
Fig. 2 we show the top 20 important features for the UCI Breast Cancer dataset computed
with Zoish by training a XGboost classifier over ten folds of cross validation. The AUC for
the trained classifier was 0.96, similar to the mean AUC reported in22 (0.99+-002). Overall,
the most important features in Zoish/XGboost agree well with the set of nine statistically
significant features for both RF and LR reported in22 – where, for each method, significance
was computed through a procedure based on permutation tests – i.e. by shuffling class labels
in the training data over hundreds of runs. Seven out of nine features deemed statistically
significant in22 were found in Fig. 2 (Mean concave points, Worst concave points, Worst Area,
Worst Radius, Worst Perimeter, Mean Concavity, Mean Area), with five of the most signifi-
cant features near the top of the list (Table 1). Only one feature was labeled as not significant
by both RF and LR (Worst Compactness) and such feature has consistently a zero Shap value
in Zoish/XGboost (not shown).
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Fig. 2. Shap summary plot of the top 20 important features for the UCI Breast Cancer dataset -
computed with Zoish by training a XGboost classifier.

It is worth noting that certain features which rank very high in Zoish/XGboost (Worst
concavity, Worst texture, Compactness SE ) appeared not to be significant in RF classifica-
tion, hence not reported in the set of nine common, statistically significant features for breast
cancer classification in the UCI dataset. Why did Zoish / XGboost select them up then? A
very interesting hint comes from the analysis of local importance measures for a specific set of
observations in the UCI dataset. Again in,22 LIME (local interpretable model-agnostic expla-
nations,25) was used to estimate local importances for the four most interesting observations,
(i.e. correctly classified as benign with highest probability, correctly classified as malignant
with highest probability, misclassified as benign with highest probability, and misclassified as
malignant with highest probability). Strikingly, the features ranking high in Zoish/XGboost
but absent in RF were also important features in LIME, especially for the observations mis-
classified as benign (false negatives), which are critical for medical purposes (Table 1). The
final recommendation in22 was to combine several explanation techniques in order to provide
more reliable and trustworthy results, but this advice can often be impractical. Conversely,
The Zoish/XGboost feature selector appears to select relevant features both at the global
and local level, adding more detailed explanations of feature importance (i.e., not just the
magnitude but also the direction of change), while being fast and straightforward to use.
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Table 1. Comparison of top features in the UCI Breast Cancer dataset

Zoish features Significant features in LR and RF LIME - Correctly classified benign (RF) LIME - Misclassified benign (RF)

concave points 1 concave points 3 area 3 perimeter 3
concavity 3 area 3 perimeter 3 area 3
concave points 3 concave points 1 radius 3 radius 3
area 3 area 1 concave points 3 texture 3
texture 3 perimeter 3 texture 3 concavity 3
compactness 2 radius 3 concave points 1 area 2
radius 3 concavity 1 concavity 3 smoothness 3
area 2 perimeter 1 area 2 area 1
perimeter 3 radius 1 texture 1 concave points 1
symmetry 3 area 2
concave points 2 concavity 3
texture 1 texture 3
symmetry 2 texture 1
smoothness 3 compactness 3
smoothness 1 radius 2
concavity 1 perimeter 2
radius 2 compactness 1
fractal dimension 1 smoothness 3
compactness 1 symmetry 3
area 1 fractal dimension 3

This Table is about comparison of top features in the UCI Breast Cancer dataset computed by
Zoish/XGboost vs. Random Forest / Logistic Regression / LIME. For all features, 1=Mean, 2=Stan-
dard Error, 3=Worst. Top 20 features in Column 2 are ranked based on permutation p-value for RF.
In red are features found in LIME but not considered significant in RF/LR.

5.2. Use case 2: Predict short-term PD progression status using the
Montreal Cognitive Assessment (MoCA)

Our model, Zoish, was put to another practical test where we aimed to predict short-term
PD progression status using the Montreal Cognitive Assessment (MoCA) total scores for
patients in baseline. MoCA was developed as a tool to screen patients who present with mild
cognitive complaints and usually perform in the normal range on the MMSE (Mini-Mental
State Examination).26 For this prediction task, we utilized the AMP-PD dataset, which is a
comprehensive collection of data from various sources, including clinical information, genetic
data, imaging data, and other biomarkers from individuals with Parkinson’s disease. The
dataset consists of eight cohorts, making it a large and harmonized resource. Access to the
data was obtained under the AMP-PD Data Use Agreement, and the information was retrieved
from the website: https://amp-pd.org/. Our prediction model incorporated several essential
features from the datasets, such as ”family history,” genetic information (PRS), ”medical
history,” ”smoking and alcohol history,” and demographic information of the participants from
the eight cohorts. After fitting the model, we evaluated its performance using the coefficient
of determination, commonly known as R-squared, and achieved an R-squared value of 23.6
percent on the test dataset. Additionally, we calculated the Mean Squared Error (MSE) of
the model to be 2.49 for the test dataset. Furthermore, the Mean Absolute Error (MAE) was
found to be 13.04. The MAE represents the average absolute difference between the predicted
values and the actual total score values in the test dataset. List of selected features by Zoish
can be seen in Fig. 3

In order to draw a comparison with another prevalent feature selector, specifically, Se-
lectFromModel from the sklearn library, we applied it to the same dataset under identical
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Fig. 3. List of selected features and their importance by Zoish

conditions. This application yielded a Mean Absolute Error (MAE) of 15.91, a Mean Squared
Error (MSE) of 2.69, and an R-squared value of 0.12. The features selected by this approach
are depicted in Fig. 4.

Fig. 4. List of selected features and their importance by SelectFromModel

Pacific Symposium on Biocomputing 2024

90



As observed, Zoish not only outperforms its counterparts in terms of prediction accuracy,
but it also excels in the selection of meaningful features. Notably, the Polygenic Risk Scores
(PRSs) selected by Zoish have demonstrated substantial relevance to the Montreal Cognitive
Assessment (MoCA). A prime example among these is PGS001641, which is renowned for its
strong correlation with the volume of white matter, normalised for head size. This particular
PRS underscores the genetic predisposition towards the volume of white matter, a crucial
neuroimaging measurement that relates directly to cognitive functions evaluated in the MoCA
test. Therefore, the selection of this PRS by Zoish validates its capability in discerning features
with profound implications for cognitive assessment.

6. Evaluations and Performance Analysis

To offer a comprehensive evaluation of Zoish, we performed an array of tests ranging from
comparative analyses to hyperparameter optimization and scalability assessments.

Comparative Analysis: We initiated our evaluation with a rigorous comparison in-
volving 300 synthetic datasets tailored to mirror the complexities of healthcare data. These
datasets span regression, binary classification, and multi-label classification tasks. Zoish was
compared against six established feature selection techniques from Scikit-learn under identical
conditions.Our findings suggested that Zoish surpassed other selectors in 77% of regression
problems, while in multi-label classification and binary classification tasks, Zoish outperformed
in 53% and 57% of the cases, respectively (refer to Table 2).

Table 2. Performance comparison of Zoish with other feature selectors

Selector Regression Binary Classification Multi-label Classification

Zoish 77% 57% 53%
VarianceThreshold 2% 3% 6%
SelectKBest 2% 3% 6%
SelectPercentile 2% 2% 2%
RFE 5% 10% 6%
RFECV 7% 10% 11%
SelectFromModel 5% 15% 16%

Hyperparameter Optimization:While Zoish itself is powerful, coupling it with a hyper-
parameter optimization tool like Lohrasb significantly improves performance. We performed
100 runs comparing Zoish’s efficacy with and without Lohrasb, and found marked improve-
ments when paired with Lohrasb (see Fig. 5).

Scalability: Our most recent update introduces a faster algorithm for Shapley value com-
putation, making Zoish efficient on large datasets. In our trials, Zoish selected 500 features
from a dataset with 10,000 samples in under 2 minutes on a machine with a 2.3 GHz Quad-
Core Intel Core i7 processor and 32 GB RAM.
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Fig. 5. The importance of Hyperparameter Optimization for Better Feature Selection

All the code for our tests is available in the public repository, allowing for independent
verification and further exploration of Zoish’s capabilities.

7. Discussion and Limitations

This paper introduces Zoish, a feature selection tool built on cooperative game theory prin-
ciples.16 Zoish has gained traction in the community, as evidenced by a significant number of
downloads from pip-trends (https://piptrends.com/package/zoish). The tool specializes
in optimizing predictive models, particularly in the healthcare sector, and leverages Shap-
ley additive values for a comprehensive view of feature importance at both local and global
scales.10 Through its Nullity property, Zoish effectively minimizes model complexity by omit-
ting features with negligible Shapley values, thereby retaining model performance.3 The tool
is further enriched by integration with the Lohrasb package, which aids in achieving optimal
estimators and hyperparameter settings.7

While Zoish’s capabilities are robust, some limitations are noteworthy. Firstly, its computa-
tional efficiency may be compromised when dealing with exceptionally large datasets. Secondly,
the Shapley values employed assume feature independence and local linearity—assumptions
that may not be fully met in complex applications like healthcare. These limitations are par-
tially mitigated by Zoish’s tree-based modeling approach, which is robust to feature correlation
and can capture non-linear relationships.6

The flexibility and interpretability of Zoish make it a promising tool for future appli-
cations in other high-dimensional data fields, including finance and e-commerce. Additional
functionalities could be incorporated to broaden its applicability further.

Future work will focus on extending Zoish’s utility to various high-dimensional domains
and incorporating more algorithms and tools for an even more robust feature selection process.
We have conducted extensive tests on synthetic datasets mimicking real-world complexities
in healthcare, which are detailed in Section 6. These tests demonstrate Zoish’s reliability and
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adaptability, even under challenging conditions.
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