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Spatial transcriptomics (ST) represents a pivotal advancement in biomedical research, enabling the 
transcriptional profiling of cells within their morphological context and providing a pivotal tool for 
understanding spatial heterogeneity in cancer tissues. However, current analytical approaches, akin 
to single-cell analysis, largely depend on gene expression, underutilizing the rich morphological 
information inherent in the tissue. We present a novel method integrating spatial transcriptomics and 
histopathological image data to better capture biologically meaningful patterns in patient data, 
focusing on aggressive cancer types such as glioblastoma and triple-negative breast cancer. We used 
a ResNet-based deep learning model to extract key morphological features from high-resolution 
whole-slide histology images. Spot-level PCA-reduced vectors of both the ResNet-50 analysis of the 
histological image and the spatial gene expression data were used in Louvain clustering to enable 
image-aware feature discovery. Assessment of features from image-aware clustering successfully 
pinpointed key biological features identified by manual histopathology, such as for regions of fibrosis 
and necrosis, as well as improved edge definition in EGFR-rich areas. Importantly, our combinatorial 
approach revealed crucial characteristics seen in histopathology that gene-expression-only analysis 
had missed. 

Supplemental Material: 
https://github.com/davcraig75/song_psb2014/blob/main/SupplementaryData.pdf 
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1. Introduction

Mapping the spatial organization of genes and cells in tissues is the foundation for understanding
higher-level molecular and cellular processes driving disease pathogenesis. In the past decade, 
paradigm-shifting approaches such as single-cell RNA-seq (scRNA) have provided unprecedented 
insights into cellular populations. More recently, Spatial Transcriptomics (ST) methods have 
emerged (e.g., Visium ST), providing a view of cellular RNA expression and disease pathology in 
the context of neighboring cells and structures1,2. Instead of measuring a single bulk transcriptome 
from a tissue section, ST obtains thousands of transcriptomes across a tissue section at spatially 
distinct spots, where each spot covers a few cells with Visium3, or provides sub-cellular data as with 
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MERFISH4 and Xenium. These emerging ST technologies have unlocked unprecedented 
possibilities for exploring the transcriptomic architecture of multicellular organisms, revealing 
intricate cellular heterogeneity in diverse tissues and disease states5.  

However, analytical methodologies that do not take into account spatial context or the 
underlying histopathology frequently limit the full potential of these potent technologies. In the case 
of ST analysis methods, many are extensions of earlier strategies that lack direct incorporation of 
spatial information between spots or not to directly leverage the underlying imaging data of protein 
and cellular structure. For example, current clustering techniques, such as Louvain and k-means 
clustering provided by Seurat6, primarily focus on gene expression7, often neglecting spatial context 
and the potential complementary information that can be gleaned from tissue morphology. This 
incomplete fusion of transcriptomic and morphological data limits our ability to fully understand 
the cellular ecosystem within tissues, particularly in cancer related states. In particular groups, 
efforts are being made to integrate imaging data in order to better capture the richness of information 
embodied in high resolution H&E images7–10.  

In our exploration of the utility of advanced analytical methods for spatial transcriptomics, we 
developed a novel approach we termed "stMIC" (Spatial Transcriptomics and Morphological 
Integrated Clustering). Central to stMIC's design is the incorporation of a form of Convolutional 
Neural Network (CNN) deep learning, specifically the Residual Network-50 or ResNet-50, which 
is characterized by its versatility and effectiveness across a wide array of applications3,11. The 
Resnet-50 architecture uses the concept of residual connections, and, with its existing prior training, 
is highly effective for image classification, object detection, and image segmentation12. To underline 
the clinical implications of our study, we deployed our method on previously histopathological 
assessed disease specimens, with a particular focus on aggressive malignancies such as glioblastoma 
and triple-negative breast cancer.  

2. Method

2.1.   Visium Spatial Gene Expression Assay, Sequencing, and Preprocessing

Freshly frozen, OCT-embedded tissues were cryosectioned and mounted on Visium spatial gene 
expression slides (10x Genomics, #1000184), which contain four 6.5 mm * 6.5 mm capture areas 
comprising 5,000 barcoded spatial features each. Hematoxylin and eosin (H&E) staining was 
applied, and microscopic images were obtained subsequently with a Zeiss Axioscan2 microscope 
using a 10x objective. After staining, tissues underwent a permeabilization process to facilitate RNA 
binding to the slide surface, which was determined using the Spatial Tissue Optimization procedure 
(10x Genomics, #1000193). The on-slide cDNA synthesized from immobilized RNA was used to 
generate sequencing libraries, which were paired-end sequenced on an Illumina NovaSeq 6000 
instrument to produce a minimum of ~250 million read pairs per sample13. The Triple-Negative 
Breast Cancer (TNBC) sample utilized in our study was originally characterized using Spatial 
Transcriptomics (ST) in the work of Bassiouni et al13.  
 The Space Ranger pipelines (version 1.1.0; 10x Genomics) were employed to preprocess the 
sequencing data. Demultiplexing of BCL data and conversion to FASTQ format were accomplished 
using the spaceranger mkfastq pipeline. Further, the spaceranger count pipeline enabled read 
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alignment to the human reference genome GRCh38, UMI counting, and the generation of feature-
spot matrices corresponding to the microscopic tissue image. This pipeline also provided automatic 
tissue detection and fiducial alignment based on the image. Raw gene expression data underwent 
Counts Per Million (CPM) normalization, and subsequent log transformation, followed by scaling 
the data to zero mean and unit variance. All these steps were completed using Scanpy 
(version:1.6.0).14 

2.2.   Histopathological Image Annotation and Evaluation 

Frozen tissues from each block selected for study were stained with H&E. Images derived from 
the Visium slides were examined and annotated by a pathologist utilizing Adobe Photoshop 
software13. Regions characterized by blood vessel, necrosis, dense immune cell infiltrates, or 
stromal fibrosis were indicated when applicable. 

2.3.   Histological Image Segmentation and Patch Selection 

The primary stage of image preprocessing entailed segmenting whole-slide H&E histological 
images from patient samples into smaller patches. Patches were chosen such that each entirely 
encompassed corresponding spots under the tissue, as indicated in the second column of the 
“tissue_positions_list.csv” if it is 1. For each spot Si, a corresponding patch was defined, with the 
geographic center of the patch aligned with the center of the spot, denoted by coordinates (xi,yi) from 
the last two columns in  “tissue_positions_list.csv” file. The patch dimensions were such that both 
the height and width were equivalent to the diameter of the spot, d, from scalefactors_json.json. 
Thus, the boundaries of the patch were formally determined by the following coordinates: the upper 
boundary at (xi+d/2), the lower boundary at (xi-d/2), the left boundary at (yi-d/2) , and the right 
boundary at (yi+d/2).  

2.4.   Feature Extraction Using ResNet-50 

We implemented a convolutional neural network (CNN) model for feature extraction from each 
patch. We utilized a pretrained ResNet-50 model (Tensorflow version: 2.6.0) trained on the 
ImageNet dataset for optimal performance in our task. Specifically, it was employed with its top 
fully-connected layer excluded, selecting "avg" pooling mode for feature extraction (Tensorflow 
version: 2.6.0), and everything else was default setting. The segmented histology image patches, 
read in using OpenCV (version: 4.5.3) and resized to (224,224,3), served as inputs. The ResNet-50 
model subsequently outputted a 2048-dimensional feature array that represented the patch's 
morphological features. Feature standardization was achieved using StandardScaler from sklearn 
(version 0.22.1), which removes the mean and scales to unit variance. 

2.5.   Integration of Matrices and Clustering 

Both the normalized gene expression matrix and morphological feature matrix underwent 
Principal Component Analysis (PCA), separately processed through the top 10 principal 
components. The resulting matrices were concatenated based on the corresponding barcode of the 
spots. Clustering was accomplished using the Louvain modularity optimization algorithm with a 
resolution range of 1.5-1.9 and k-neighbors set at 39, implemented in Orange Data Mining (version 
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3.30.1). This configuration yielded a stable set of clusters, paralleling the cluster numbers obtained 
through the current analytical approach solely based on gene expression. 

2.6.   Evaluation Measures 

 The performance of our method was evaluated using multiple validation metrics. The 
Adjusted Rand Index (ARI) served as the initial metric, quantifying the similarity between clustering 
assignments relative to the pathologist's annotation15. Gene set enrichment analysis (GSEA) was 
then performed at the cluster level via the Broad Institute’s GenePattern software 
(RRID:SCR_003199). Utilizing the FindAllMarkers feature of Seurat (version: 4.3.0.1), 
differentially expressed genes within chosen clusters were identified via Wilcoxon rank sum testing.  

Gene lists from each selected cluster were subjected to Pre Ranked GSEA, contrasting against 
chosen gene sets (H: hallmark gene sets16, C2:CP:KEGG17, C418, C7: immunesigdb19), with 
permutations set at 1000 and the collapse dataset selected as “Remap_only”. The final step involved 
visualizing spatial expression patterns for genes of interest using the SpatialPlot feature in Seurat. 

2.7.   Implementation 

stMIC has been developed with Python 3.7 as a user-friendly pipeline. Setting up and tutorials 
are described in the stMIC GitHub page: https://github.com/USCDTG/stMIC.  

2.8.   Supplemental Material 

Supplemental Material referred to in the paper may be found at the following URL: 
https://github.com/davcraig75/song_psb2014/blob/main/SupplementaryData.pdf 
 

3.    Results 

3.1.   Pipeline 

Our primary goal was to enhance identification of biological features from 10X Visium ST by 
incorporating deep learning analysis. We first show the default approach in Figure 1A, where “spot-
level” normalized gene expression obtained via the Space Ranger pipeline is first reduced by 
principal component analysis (PCA) from (spots x genes) to (spots x M) where M is 10.  This is 
frequently followed by graph-based clustering using a sparse nearest neighbor graph, followed by 
Louvain Modularity Optimization to identify highly-connected modules in the graph. We note that 
other clustering methods, such as K-means, are used and are presenting the default clustering 
method of Space Ranger. 

Our stMIC pipeline is shown in Figure 1B and includes partitioning or splitting the ST                 
histological image into segmented tissue spots, followed by feature extraction in the ResNet-50 
model on the underlying image for each spot. Thus, if there were 4,096 passing spots, we would 
have the same number of images. Computationally, this step took approximately 2.5-5 minutes per 
whole slide image on a machine with an NVIDIA Tesla T4 GPU with 16GB of VRAM, depending 
on the number of spots under tissue. The gene expression data was simultaneously processed with                                                                        
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the Space Ranger pipelines, turning raw sequencing data into normalized feature-spot matrices 
within 3 hours on a standard bioinformatics workstation with 32 CPU cores. 
 Following dimensionality reduction of both morphological and gene expression data via 
Principal Component Analysis (PCA), we concatenated and performed clustering using the                                     
Louvain algorithm, an operation that took roughly 1-2 minutes on the same workstation. To evaluate 
our method's performance, we used multiple validation metrics, including the Adjusted Rand Index 
(ARI) and Gene Set Enrichment Analysis (GSEA).  

 
Fig. 1. (A) Default spatial transcriptomics clustering approach, e.g. used in 10X Space Ranger Pipeline. 
(B) stMIC: ST analysis integrating image-aware deep-learning analysis. High-resolution histology 
images undergo an initial cropping process into smaller patches, driven by the location and size of 
spots within the tissue. Subsequently, these patches are introduced to a deep learning model, ResNet-
50, resulting in the production of a morphological feature matrix. Principal Component Analysis (PCA) 
is applied to this matrix, from which the top 10 principal components (PCs) are selected. A parallel 
procedure is enacted on the gene expression matrix derived from the spatial transcriptomics dataset. 
The reduced matrices from both the morphological and gene expression data are then concatenated at 
each spot to form a unified matrix. 
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3.2.   Application to human glioblastoma spatial transcriptomics data 

In the exploration of the pretrained ResNet-50 model's proficiency, we started with  a 
representative glioblastoma sample, FFD1. This sample encompasses 3,594 spots and 33,538 genes, 
obtained from the 10x Genomics Visium platform. The analysis commences by contrasting the 
clustering outcomes from both the Louvain methodology, which is only dependent on gene 
expression (GEBC) (Fig. 2B), and the approach leveraging H&E histology image feature extraction 
via ResNet-50 (Fig. 2C). For enhanced visual interpretability, each cluster is assigned a unique 
color. 

Further exploration of the three most significantly differentially expressed genes (DEGs) within 
this cluster, HBB, HBA1, and HBA2, revealed their critical role in blood biochemistry. HBB encodes 
the beta-globin protein, while HBA1 and HBA2 code for the alpha-globin protein, forming essential 
components of hemoglobin20. Predominantly, the expression of these genes was concentrated within 
the region defined as cluster 10 (Fig. 2D), affirming the blood vessel identity of this cluster. 

 
Fig. 2. Comparative analysis of clustering methods and spatial expression patterns of FFD1. 
(A) Haematoxylin and eosin (H&E) staining image of Glioblastoma sample. (B) Spatial 
domains identified by gene-expression-based Louvain clustering method. (C) Spatial domains 
identified by ResNet-50 feature extraction method. (D) Spatial distribution of the top 
upregulated genes in cluster 10 (HBA1, HBB, HBA2). (E) Spatial domains identified by stMIC 
method. 

These findings attest to the remarkable capability of ResNet-50 in uncovering areas that remain 
undetected by the gene-expression-based methodology, which relies strictly on gene expression. 
These advantages provide a solid foundation for developing an even more robust and comprehensive 
analysis method, stimulating the formulation of an integrated approach. Motivated by this, we 
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proceeded to implement an advanced strategy that harnesses both histological and gene expression 
information. This integrative method not only enhances our ability to discern various tissue regions, 
but also seeks to offer a more nuanced, multidimensional view of the complex histopathological 
landscape. The harmonization of image-derived and transcriptomics data enables us to move beyond 
the limitations of each individual data type, allowing a more holistic exploration of biological 
phenomena at the tissue level. Importantly, stMIC strategy not only successfully pinpoints the blood 
vessel area, but also enhances edge definition in this key area (Fig. 2E), thus increasing precision in 
key region detection. These results highlight the potential of the integrated image-aware method 
methodology for providing comprehensive and accurate histopathological profiling.  

We set the number of clusters at ten for all methods to compare the clustering results of SpaGCN, 
SpaCell, and stLearn. SpaCell, which employs an autoencoder for dimension reduction, failed to 
detect the EGFR-rich region (not detailed in the main results) and did not align closely with the 
pathologist-annotated blood vessel region as depicted in Supplementary Fig. 1D. Notably, both 
SpaGCN and stLearn in their default implementation were also unable to identify the blood vessel 
region, as shown in Supplementary Fig 1.E&F. Still any interpretation of features missed or seen 
should be taken with caution since these types of features were not part of their development. 

 

 

Fig. 3. Comparative analysis of clustering methods and spatial expression patterns of Slide 120D. 
(A) Histology and manually annotated structure for slide 120D. (B) Spatial domains identified by 
gene expression-based clustering method. (C) Spatial domains identified by ResNet-50 feature 
extraction method.  (D) Spatial domains identified by stMIC method. (E) Adjusted Rand Index 
(ARI) in stMIC, gene expression based (GEBC), and ResNet clustering methods determined 
sections against the ground truth labels (pathologist annotation). (F) Spatial expression of the 
fibrosis marker gene. (G) boxplot of GSEA for cluster 4 of sample 120D against selected gene sets. 
NES = Normalized enrichment score.  
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3.3.   Application to human triple-negative breast cancer spatial transcriptomics data 

In our evaluation of the triple-negative breast cancer sample, termed Slide 120D, ResNet 
enhanced the performance in distinguishing between fibrotic and necrotic regions, a result that is 
corroborated by pathologist annotations (Fig. 3A,C). The gene expression-based method could not 
differentiate these distinct regions, splitting the fibrotic region into two clusters (Fig. 3B). Using an 
approach previously applied to a glioblastoma sample, we employed our integrated image-aware 
method, stMIC. Consequently, our stMIC method not only improved clustering of the fibrotic and 
necrotic regions but also significantly enhanced the accuracy in identifying the dense lymphoid 
infiltrate region (Fig. 3D). To assess and compare the performance of two clustering methods, the 
Adjusted Rand Index (ARI) was employed as an evaluation metric. The ARI is a widely used 
measure that quantifies the similarity between two clustering assignments by comparing their 
agreement with respect to the ground truth, in this case, the pathologist's annotation. Clustering 
based on the integration of morphological features with gene expression was more consistent with 
the regional annotations obtained by pathologists (ARI = 0.2536) compared to gene expression-
based clustering method (ARI = 0.1796) and ResNet-50 feature extraction clustering (ARI = 0.1793) 
(Fig. 3E). To discern each method's proficiency in detecting intricate tissue structures, we observed 
stLearn's clustering closely mirrored that of the gene expression-based Louvain clustering. Both 
stLearn and SpaGCN does not segregate the fibrosis and necrosis regions (Supplementary Fig 
2.E&F). Specifically, SpaCell managed to identify almost the entire fibrosis region but did not fully 
differentiate between these two crucial areas (Supplementary Fig. 2D). The Adjusted Rand Index 
(ARI) is 0.173 for SpaGCN, 0.151 for stLearn, and 0.125 for SpaCell (Supplementary Fig 2H). At 
some level, these results must be taken with caution since these tools had not been evaluated or 
designed for these types of pathologies. 

From a biological point of view, improved clustering is supported by the fact that the key marker 
tenascin-XB (TNXB) of fibrosis shows high differential expression in cluster 4 (Fig. 3D&F). 
Tenascin-XB, a key component of the extracellular matrix, has been linked to tissue remodeling and 
fibrosis, and is often upregulated in fibrotic tissues21 . Its elevated expression and localization within 
the fibrotic region not only strengthen the characterization of this region but also implies the ongoing 
process of tissue remodeling - a common event in fibrosis22. This discovery again emphasizes the 
capacity of our integrated method to reveal crucial biological elements and events, contributing to 
a more comprehensive understanding of tumor progression. 

Furthermore, stMIC approach proved better in capturing biologically relevant features within 
the detected fibrotic region compared to the gene expression-based clustering method. Gene set 
enrichment analysis revealed significant distinctions between the two methods (Fig. 3G). Only 
results with a false discovery rate (FDR) < 0.05 are displayed. While no significant pathways were 
detected using the expression-based method, our integrated approach identified four significantly 
enriched pathways. These pathways were indicative of active immunity, antigen processing and 
presentation, as well as humoral immune and inflammatory responses, all with Normalized 
Enrichment Scores (NES) greater than 1.5 (Supplementary Fig. 2G). These findings demonstrate 
the profound immune involvement within the fibrotic area, further underscoring the added value of 
stMIC in capturing these nuanced dynamics.  
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In another triple-negative breast cancer sample, 094D, in a horizontal comparison of results from 
the gene expression based, ResNet-50, and stMIC methods with annotation, stMIC approach 
unveiled critical biological phenomena (Fig. 4A-D). Notably, it achieved higher accuracy in 
capturing the middle right fibrotic region, a conclusion that was further corroborated by the higher 
Adjusted Rand Index (ARI) in the stMIC (ARI = 0.1479) vs. gene-expression alone (0.1111)  or 
ResNet feature clustering (0.1051). In a comparison between the clustering results of stMIC and 
spaCell, Figure 4G indicates SpaCell did not differentiate between these sub-clusters 
(Supplementary Fig. 3D). While both spaGCN and stLearn could differentiate these sub-
clusters((Supplementary Fig 3.E&F), their performance was not markedly superior to stMIC. When 
measured against pathologist annotations using the ARI), SpaGCN, stLearn and SpaCell recorded 
ARIs of 0.098, 0.127 and 0.091, respectively (Supplementary Fig 3H). 

In-depth analysis of marker genes, facilitated by the stMIC approach, revealed notable features 
absent from gene-expression-only clustering. Specifically, our approach discerned that what was 
identified as cluster 1 in gene-expression-only clustering comprised two distinct, biologically 
relevant clusters. One of these exhibited increased expression of hypoxia markers CA9/NDRG1, 
while the other was characterized by the presence of IFIT1, a marker indicative of an active 
interferon response (Fig. 4 F-H).  

 
Fig. 4. Comparative analysis of clustering methods and spatial expression patterns of Slide 94D. (A) 
Histology and manually annotated structure for slide 94D. (B) Spatial domains identified by gene-
expression-based Louvain clustering method. (C) Spatial domains identified by ResNet-50 feature 
extraction method.  (D) Spatial domains identified by stMIC method. (E) Adjusted Rand Index (ARI) 
in stMIC, gene-expression (graph-based), and ResNet-50 clustering methods determined sections 
against the ground truth labels (pathologist annotation). (F-G) Spatial expression of hypoxia marker 
genes. (H) Spatial expression of hypoxia marker gene. (I) Boxplot of GSEA for cluster 4 of sample 
94D against selected gene sets.  
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The genes CA9 (Carbonic Anhydrase IX) and NDRG1 (N-Myc Downstream Regulated 1) (Fig. 
4F&G) are known to be upregulated under hypoxic conditions, which often occur in solid tumors 
such as breast cancer due to inadequate oxygen supply23,24. This upregulation is a response to the 
low oxygen tension in an attempt to adapt to the harsh microenvironment. Hypoxia within tumors 
is associated with increased invasiveness, resistance to therapy, and a poor prognosis, thus indicating 
a potentially more aggressive disease state within this cluster25. 

In addition to these hypoxia markers, stMIC discerns a separate region with high expression of 
IFIT1 (Fig. 4H). This interferon-induced protein has been associated with active interferon signaling 
and an ongoing immune response. Active interferon signaling can have complex implications in 
cancer, possessing both tumor-suppressive and tumor-promoting properties26. Meanwhile, an 
ongoing immune response may reflect the immune system's attempts to counteract tumor 
progression or could even suggest the shaping influence of the immune system on the tumor's 
behavior27. Beside this, IFIT1 has been associated with chemotherapy response in breast cancer28, 
suggesting that this region might be more susceptible to chemotherapy. 

In fact, previous studies have validated the relevance of these two distinct clusters, but this was 
determined only through a comprehensive joint expression analysis spanning 28 diverse samples13. 
Thus, while expression-analysis does identify these sub-clusters, it is reliant on the comparative 
context gleaned from multiple, external samples. Furthermore, our stMIC approach has identified 
significantly more enriched pathways in cluster 4 than what the gene-expression-based method 
alone was able to capture (Fig.4 I). The gene set enrichment score of top five Hallmark pathways 
are further compared between gene expression based vs. stMIC clustering method (Supplementary 
Fig.3E). Only results with a false discovery rate (FDR) < 0.05 are displayed. This difference 
underscores the potential of the integrated image-aware approach to provide a richer, more nuanced 
analysis of gene expression within specific tissue regions. In conclusion, our integrated image-aware 
approach has provided new insights into the spatial heterogeneity of the 094D triple-negative breast 
cancer sample, unraveling the complexities of hypoxia and immune responses within the tumor 
environment. The incorporation of morphological information in gene expression analysis can 
enhance the resolution of tumor substructure identification and pave the way for a more nuanced 
understanding of tumor biology, with potential implications for treatment strategies. 

4.   Discussion 

Our results showed how integrating a naïve pre-trained ResNet-50 into Spatial Transcriptomics 
workflows identified features missed from standard ST gene-expression analysis. Second, our 
results show an improved ability to recapitulate features identified by a pathologist.  

An image-aware, integrated approach can identify previously overlooked or undervalued 
features. The most prominent feature identified from the combined approach was the glioma's blood 
vessel and vascularization features. These features are unmistakable in the histology image. 
However, only three genes (HBA, HBA1, and HBA2) within this biological feature have significant 
expression within the gene expression data. While this is expected from globin-producing 
erythrocytes, these three genes did not contribute significantly to the first 10 PCs used in gene 
expression clustering. In practice, given that hallmarks of the disease involve post-translational 
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modifications, many types of features would be less evident by gene expression alone. The ability 
to highlight these features underscores the power of stMIC approach that draws from the strengths 
of deep learning and the rich data afforded by spatial transcriptomics. 

Clear identification of novel features and improved clustering is encouraging, given that there 
are several areas where the approaches used here could be improved or optimized. First, we utilized 
a naive, pre-trained ResNet-50 model. Training approaches could lead to improved clustering. 
However, histopathological image data often have well-described biases that limit transferability 29. 
Indeed, some groups have identified approaches for internal training, as in the case of the tool stMIC, 
which shows promising early results in disease relevant contexts30. Thus, the value seen even in this 
naive model is notable, as improvement was seen without further training.  

Our approach differs significantly from RESEPT31, stLearn32, and SpaCell9, which are well 
established pipelines using the ResNet-50 model in spatial transcriptomics analysis. RESEPT uses 
a graph autoencoder to embed ST gene expression data into a three-dimensional representation and 
maps this to an RGB image for visual analysis using the ResNet101 deep learning model. Unlike 
RESEPT, which does not consider H&E image data, our approach integrates both spatial gene 
expression and H&E image data to capture comprehensive morphological and transcriptional 
details, offering the potential for richer biological insights. Like stLearn, our pipeline utilizes a pre-
trained ResNet-50 model, but we diverge by integrating the image data with gene-expression 
clustering, rather than just normalization, offering a richer exploration of tissue features. By 
comparison, SpaCell also uses a ResNet-50 model for feature extraction and integrates imaging with 
transcriptomics; they differ by using autoencoders to reduce features and mainly focusing on 
classification/prediction. 

Within this work, we leveraged pathology annotated samples to assess performance, and very 
importantly, while some methods employ models on non-pathological systems, such as Spatial 
Transcriptomics (ST) on a mouse cortex or similar non-disease settings, their utility can be limited 
in capturing the full spectrum of cellular interactions in aggressive human diseases like cancer. 
Instead, our approach prioritizes pathological samples from patients, given their inherent complexity 
and heterogeneity. By targeting unique pathological landmarks and intricacies, our method seeks to 
illuminate tumor progression and identify key biological elements and events. While we can see 
improved results using pathology annotation as a benchmark, it has limitations. First, these samples 
were predominantly done on fresh-frozen tissue, whereas pathologists typically prefer annotation 
on FFPE fixed tissues. With the emergence of spatial transcriptomics approaches that work with 
FFPE tissue, these ideally annotated histology images will become more available; however, FFPE 
usually comes with lower quality ST due to degraded RNA. 

A deeper dive into understanding the exact mechanisms by which ResNet-50 outperforms solely 
gene-expression-based approaches would be beneficial. Unraveling the strengths and limitations of 
image-aware deep learning model in the context of spatial transcriptomics can provide a foundation 
for optimizing or even designing new architectures that can more comprehensively capture 
pathology-related features. We recognize this as a crucial next step and are planning further 
investigations to elucidate the specific advantages of these models and to guide the development of 
even more effective methodologies. 
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Some advanced deep learning architectures have emerged that could potentially enhance the 
methods presented in this study. The Vision Transformer (ViT)33, for instance, processes images by 
segmenting them into fixed-size patches and then leverages the Transformer architecture, offering 
the potential to extract more nuanced spatial relationships crucial for spatial transcriptomics. 
Similarly, the MLP-Mixer34, through its unique mixing of tokens with multilayer perceptrons, and 
the Swin Transformer35, with its shifted windows approach, can be particularly advantageous for 
capturing intricate spatial hierarchies and features from histology images. Our study predominantly 
utilized the ResNet-50 model for its proven efficacy in image analysis. However, integrating recent 
architectures like ViT, MLP-Mixer, and Swin Transformer might allow for a more comprehensive 
feature extraction, bridging image-based nuances with spatial transcriptomic insights. 

Several potential extensions and improvements could be made to the presented approaches. 
Consideration could be given to incorporating other types of omics data to enrich the data pool 
further. Refinement of the deep learning model could enhance performance by integrating new 
layers or algorithms. A promising avenue to explore is the incorporation of spatial distances between 
spots into the analysis, offering a more nuanced understanding of cellular organization. 

A broader sample set and more detailed annotations would certainly strengthen the robustness 
of our model. The requirement for specialized technical expertise to operate and interpret results is 
another hurdle that needs to be overcome. Furthermore, validating our methodology using a more 
comprehensive range of patient-derived data is necessary to ascertain the model's clinical relevance 
and translational applicability. 

Beyond cancer, the potential application of our approach to other diseases warrants further 
exploration. With the in-depth view of the tumor microenvironment that our method provides, we 
foresee a crucial role for it in the realm of personalized medicine, particularly given advances in 
immune-oncology treatments. As our understanding of cellular heterogeneity within tissues 
becomes increasingly nuanced, an image-informed ST approach will likely serve as a powerful tool 
in understanding the role of the immune microenvironment. This work underscores the exciting 
potential of spatial transcriptomics and deep learning in shaping the future of understanding disease 
heterogeneity. 
 
Availability of data and materials. 

The stMIC code has been developed with Python 3.7 as a user-friendly pipeline. Code, setting 
up and tutorials are described in the stMIC GitHub page: https://github.com/USCDTG/stMIC.  

Supplemental Material referred to in the paper may be found at the following URL: 
https://github.com/davcraig75/song_psb2014/blob/main/SupplementaryData.pdf 
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