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1 Abstract 

Recent research has effectively used quantitative traits from imaging to boost the capabilities of 
genome-wide association studies (GWAS), providing further understanding of disease biology and 
various traits. However, it's important to note that phenotyping inherently carries measurement 
error and noise that could influence subsequent genetic analyses. The study focused on left 
ventricular ejection fraction (LVEF), a vital yet potentially inaccurate quantitative measurement, 
to investigate how imprecision in phenotype measurement affects genetic studies. Several methods 
of acquiring LVEF, along with simulating measurement noise, were assessed for their effects on 
ensuing genetic analyses. The results showed that by introducing just 7.9% of measurement noise, 
all genetic associations in an LVEF GWAS with almost forty thousand individuals could be 
eliminated. Moreover, a 1% increase in mean absolute error (MAE) in LVEF had an effect 
equivalent to a 10% reduction in the sample size of the cohort on the power of GWAS. Therefore, 
enhancing the accuracy of phenotyping is crucial to maximize the effectiveness of genome-wide 
association studies. 
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2 Introduction 

Cardiovascular disease is the leading cause of death in the world, and significant work has been 
undertaken to understand the mechanisms of disease and develop preventive measures. By 
studying the human genome, insights have been obtained to understand pathways and 
mechanisms of function and disease risk, and in recent studies, researchers have moved beyond 
binary labels of disease diagnosis to quantitative phenotypes to obtain greater power in assessing 
the relationship between genotype and phenotype1–4. From quantitative laboratory biomarkers 
elucidating the relationship between hypercholesterolemia and coronary artery disease5 to 
imaging characteristics in population cohorts4 revealing the genetic determinants of 
cardiovascular development 6,7, quantitative assessments of health provide additional signal 
compared to conventional binary labels of disease.  

 Despite its relative frequency, critical public health importance, and often penetrant 
inheritance, heart failure has relatively few known genetic risk factors. Early classic genetic 
studies were not able to identify many genetic associations with measurements determined by 
echocardiography8. Recent studies with larger cohorts and measurements from cardiac MRI have 
been able to find additional loci of relevance and reaffirm previously suspected variants2, 
suggesting both larger sample sizes, as well as improvements in phenotyping precision, can 
improve our understanding of the human disease. 
 While quantitative traits often have more power than binary labels of disease, the issue of 
measurement error in quantitative traits is a known problem9. For example, left ventricular 
ejection fraction (LVEF) as measured by echocardiography can have measurement variation up 
to 7 - 10%10,11, impacting downstream analyses. We use LVEF, the most prevalent metric of 
cardiac function, as an example of an important but noisy measurement to explore the impact of 
measurement variability on downstream genetic association studies. We compare various 
methods to obtain the same phenotypic measurement as well as introduce simulated noise in the 
phenotype measurement to evaluate the relative impact of measurement noise and sample size on 
downstream genetic studies.  
 

Table 1. Cohort baseline characteristics 

Characteristic Mean or n 
N 39624 

Age at MRI 54.9 ± 7.47 
Male 18933 (47.8%) 

Self-identified White British 33726 (85.1%) 
Body mass index (kg/m2) 26.5 ± 4.19 

Hypertension 2487 (6.3%) 
Pulse rate 67.9 ± 10.9 

LV ejection fraction (%) 55.4 (6.78) 
LV end diastolic volume (mL) 141 
LV end systolic volume (mL) 64.1 
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3 Methods 

3.1 Cohort 

The UK Biobank is a population-based cohort that links genetic and phenotypic data for 
approximately 500,000 adult participants from the United Kingdom 12,13. We focused on 39,624 
participants who had InlineVF measured LVEF 14, cardiac MRI, and genetic data available. 
Before running Genome-Wide Association Studies this cohort was passed through additional 
quality check filters (Figure A1).  

3.2 Multiple Approaches to Measure LVEF 
Multiple methods of calculating LVEF from the same underlying imaging data were used to 
assess the impact of phenotyping precision on downstream analyses. First, the UKB provides 
automated LVEF measurements derived from MRI using Inline VF software15, however, this is 
presented without manual quality control. To compare alternative automated approaches, we also 
derived LVEF from MRIs using the deep learning segmentation approach suggested by Bai et al 
6. From the short-axis view videos, segmentation was performed, we calculated the LV volume
for each frame with Simpson’s method and used the following LVEF formula:

!"	$%&'()*	!+	$%&'()
!"	$%&'()

	× 100 (1) 

 To simulate reader variability, additional experiments were performed introducing Gaussian 
noise with a mean of 0 and a standard deviation (sd) ranging from [1,10]. We generated multiple 
phenotypic measurements from the same underlying imaging data, gradually incrementing 
Gaussian noise, and performed GWAS on each to investigate how measurement 
error/imprecision affects genetic associations.  
 Additionally, we further compared results with two final approaches to assess LVEF. When 
visually assessing LVEF, clinicians often round the value to the nearest 5%, thus we generated a 
set of phenotype labels by rounding LVEF values to the nearest multiple of 5. For the final 
comparison, we generated binary LVEF labels by categorizing values as normal or abnormal, 
with normal values ranging from 52-72 for males and 54-74 for females. 

3.3 Genome-wide association study 

We used the UKB imputed genotype calls in BGEN v1.2 format. Samples were genotyped using 
the UK BiLEVE or UK Biobank Axiom arrays. Imputation was performed using the Haplotype 
Reference Consortium panel and the UK10K+1000 Genomes panel12. We used the QC files 
provided by UKB to create a GWAS cohort consisting of subjects who did not withdraw, were of 
inferred European ancestry, and were unrelated. Subjects with a genotype call rate < 0.98 were 
also removed. We considered variants with a minor allele frequency (MAF) ≥ 0.01, and we 
required genotyped variants to have a call rate ≥ 0.95 and imputed variants to have an INFO 
score ≥ 0.3. Variants with a Hardy-Weinberg equilibrium P value < 1x10-20 were excluded. After 
variant filtering, we were left with 9774199 filtered variants. GWAS was done on a Spark 3.1.1 
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cluster, using the library Hail 0.2 with Python version 3.6. The GWAS was adjusted for age at 
MRI and sex. We used the conventional P value of 5x10-8 as the threshold for defining genome-
wide significance.  

3.4 Assessing Association Power’s Relationship with Cohort Size 

Apart from noise in phenotype measurements, we also evaluate the effect of cohort decrease on 
GWAS results. We generated 6 different phenotype files where, starting from the original LVEF 
cohort (39,624), we keep 90% (35,661), 80% (31,699), 70% (27,736), 60% (23,774), 50% 
(19812), and 40% (15850) of the samples. Cohort decrease was performed before GWAS QC, 
and for each step the selection of samples to be excluded was random. Inspecting the effect of 
cohort decrease helps us define the relationship between the number of LVEF samples and 
GWAS power.   

3.5 SNP-based accuracy 

We use an accuracy metric to determine the amount of overlap in significant SNPs between the 
baseline GWAS results and noise-modified GWAS results. First, we remove all non-significant 
SNPs by excluding SNPs with a p-value less than 5	 × 10!", which is the Bonferroni corrected 
p-value threshold. Then, we consider significant SNPs found in both the base results and noise-
modified results as true positives (TP), the SNPs found only in the noise-modified results as false
positives (FP), and the SNPs not found in the noise-modified results but found in the base results
as false negatives (FN). We then calculate

𝑆𝑁𝑃,--'.,-/ =
01

01231234
(2) 

3.6 GWAS Sensitivity 

Sensitivity determines the amount of overlap in significant loci between the baseline GWAS 
results and noise-modified GWAS results. Specifically, given that 𝑝𝑒𝑎𝑘𝑠#$%& is the number of 
significant loci in base GWAS, and 𝑝𝑒𝑎𝑘𝑠'())&'* is the number of significant loci that persisted 
in noise GWAS then  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 5),67!"##$!%
5),67&'($

 (3) 

The number of loci and their position can be determined by manual inspection, but we also 
developed an automatic method. Our automatic method applies a hierarchical clustering 
algorithm on SNPs above the significance threshold line to determine the number and the 
position of loci from both GWAS, which we then use to compute 𝑝𝑒𝑎𝑘𝑠#$%& and 𝑝𝑒𝑎𝑘𝑠'())&'* .	

3.7 Heritability 

Heritability is a measure of the level of influence genetic variation has on a given trait’s 
phenotypic variation. To estimate SNP heritability based on GWAS summary statistic we use 
command line tool LDSC16. LDSC performs LD score regression between GWAS test statistic 𝜒)* 
and per SNP LD scored which allows for the estimation of ℎ+*
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4 Results 

 
 
Figure 1 Manhattan plots for genome-wide association studies on UK Biobank reported left ventricular 
ejection fraction a, GWAS on continuous LVEF measurements b, GWAS on Normal/Abnormal LVEF 
where the range for normal is 52-72 in male and 54-74 female population c, GWAS on LVEF bucketed to 
the nearest multiple of 5 
 

4.1 Quantitative phenotypes improve power of association studies 

The study cohort for all analyses consisted of 39,624 adult unrelated subjects of European 
ancestry (Table 1). As a baseline, we first conducted a GWAS of the LVEF phenotype released 
with the UKBB cardiac MRI data. We identified 5 loci at genome-wide significance on 
chromosomes 1, 6, 8, 10, and 19 near genes ZBTB17, CDKN1A, CTSB, BAG3, and AP1M1 
(Figure 1). In comparison, for an LVEF phenotype binarized to simply abnormal or normal, 
multiple previously detected loci lost genome-wide significance (including loci for CTSB and 
AP1M1). Similarly, recognizing the inherent variation present in measuring LVEF, we 
additionally compared the results if the LVEF was bucketed to 5% bins and showed such 
imprecision decreased statistical power in all SNPs in the association study compared to the 
continuous LVEF baseline phenotype. 
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Figure 2 Impact of noise in LVEF on GWAS a, Visualizing r2 score, mean absolute error, and the 
distribution of noise-modified-LVEF with respect to the baseline LVEF. b, Q-Q plots of P values from 
GWAS summary statistics for different levels of noise 

4.2 Phenotype noise degrades power of association studies 

To investigate the effect of measurement imprecision on GWAS power, we performed a series of 
association studies while introducing noise in the range of known clinician variation (Figure 2). 
Simulated variation to the LVEF measurement naturally increases in mean absolute error. Noise 
with a gaussian standard deviation of 5 results in a mean absolute error of 3.97% and R2 of 0.65 
(Table A1), and results in the loss of genome-wide significance for the AP1M1 loci on 
chromosome 19. As we increase phenotypic noise in the range of clinical variation, heritability 
and power gradually declines and the noise equivalent to 7.92% MAE results in a complete loss 
of genomic-wide significance (Table 2). Given echocardiography is known to have a clinician-
to-clinician variation of the same or greater MAE10, such measurement imprecision could 
contribute to the limited hits in historial echocardiography-derived GWAS8.  

Table 2. Metrics of genetic signal for each increase in SD 

Noise SD SNP Accuracy Loci Sensitivity Heritability 
0% 1.0 1.0 0.1114 (00357) 
1% 0.9377 1.0 0.1055 (0.0332) 
2% 0.8547 1.0 0.0878 (0.0352) 
3% 0.3675 1.0 0.1003 (0.0265) 
4% 0.2537 0.8 0.089 (0.0256) 
5% 0.3921 0.8 0.1208 (0.0355) 
6% 0.0228 0.4 0.0179 (0.0271) 
7% 0.0307 0.4 0.0482 (0.0247) 
8% 0.0145 0.4 0.022 (0.0349) 
9% 0.0020 0.2 0.0355 (0.0204) 
10% 0 0 0.0477 (0.0214) 
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4.3 Comparison of Impact of Phenotype Noise vs Cohort Size  

Given the summary statistics from 16 different GWAS, we modeled the relationship between 
noise and GWAS power (Figure 3, Figure A4). There is a linear relationship between the 
increase in MAE and the decrease in GWAS power. We calculated that an increase of 1% in 
MAE causes the loci sensitivity to decrease by 13% (p=5.5e-6) and the SNP accuracy by 14% 
(p=6.6e-5). Experiments with other methods of introducing noise in assessing LVEF similarly 
show a decrease in genetic association with more imprecise measurements (Figure A3, Table 
A2). A similar effect occurs with reductions in cohort size, as a 1% decrease in cohort size 
results in a 1.3% decrease in loci sensitivity (p=0.01) and a 1.9% decrease in SNP-based 
accuracy (p=0.0007). We found that a 1% MAE increase has the same effect on loci sensitivity 
as a 10.3% cohort decrease and the same effect as a 7.2% cohort decrease on SNP accuracy.  
 

 

Figure 3 a, Slope chart shows the change in the P value of the top 5 loci with respect to mean absolute 
error; b, Slope chart shows the change in a P value of top 5 loci with respect to the cohort decrease; each 
locus is named after the closest gene  

4.4 Improving phenotyping augments downstream genetic analyses 

Cardiac MRI provides clinicians and researchers with a plethora of high-resolution imaging, with 
even the abbreviated 20-min UK Biobank cardiac MRI protocol resulting in 9 sequences with 
over 30,000 images per study17. With so many images and patients, the released UKBB 
measurements were generated using a fully automated workflow (with Siemens inLineVF) 
without quality inspection and bias correction. When compared with manual clinician evaluation, 
the automated measurements of LVEF result in a mean absolute error (MAE) of 3.4%, R2 of 
0.348, and ICC of 0.521 for LVEF15.  Imprecision in the inline LVEF can be partially addressed 
by linear adjustment18 and doing so slightly increases genetic signal, within the difference in 
identified loci with MAE of 1% (Figure A2). To evaluate the role of imprecision, we applied a 
deep learning-based method of obtaining LVEF and analyzed downstream results. Using a 
previously published deep learning segmentation model6, we independently derived LV 
segmentation-based calculated LVEF and found a MAE of 6.1%, R2 of 0.335, and ICC of 0.431 
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for LVEF compared to the automated measurements from UKBB, and MAE of  5.3%, R2 of 
0.60, and ICC of 0.518 compared to the linearly adjusted LVEF (Figure 5). However, with these 
deep learning segmentation derived LVEF measurements, the same cohort identified more loci 
of interest with significant experimental data backing its relevance. In particular, loci on 
chromosomes 2, 5, and 8 near genes TTN, DNAJC18, and ZNF572 were not previously 
identified using the released UKBB LVEF measurements but able to be picked up with our 
quality-controlled measurements. While we could not directly compare the segmentation-derived 
LVEF measurements to clinical labels due to the absence of manual labels, the stronger genetic 
signal and higher association with linearly adjusted LVEF suggest that deep learning derived 
LVEF is less noisy. 

 

Figure 5 Differences in distribution and GWAS summary statistics between two methods of obtaining 
LVEF from MRI a, Histograms of InlineVF derived LVEF and Deep Learning derived LVEF b, 
Manhattan plot from GWAS performed on Deep Learning derived LVEF; genes colored in blue don’t 
appear in InlineVF LVEF GWAS (Figure 1a); genes colored in red appear in InlineVF LVEF GWAS but 
not in deep learning derived LVEF GWAS 

5 Discussion 

In this study, we assessed the impact of measurement noise on genetic associations with LVEF 
and found substantially impaired power in downstream GWAS analysis with even slight 
increases in measurement imprecision. Even slight phenotyping variation can significantly 
impact downstream genetic associations, often to a greater extent than changes in cohort size.   
As measurement variation is present in many clinical measurements, efforts to improve the 
precision of measurements can potentially be a cost-effective way to maximize the yield of 
genetic association studies.   
 Cardiac function as measured by LVEF is an important clinical measurement that defines 
disease and identifies patients who are eligible for life-prolonging therapeutics as implantable 
devices.  In echocardiography, human test-retest evaluation of LVEF can range between 7-10%, 
with slight changes in annotation as well as timing that can significantly impact calculations10,19. 
Few variability studies have been undertaken in cardiac MRI, although similar degrees of manual 
measurement variability have been found20. Prior studies have suggested that polygenic risk 
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scores of LVESV have more power than polygenic risk scores of LVEF2, consistent with our 
analyses that more precise measurements correspond to stronger genetic associations. Our 
analysis suggests that a substantial and primary gain in signal comes from the improvement of 
noisy measurements that can affect the power and accuracy of downstream analyses. 
 Noise in measurements can appear in both semi-automated and fully automated 
workflows11, and by improving the precision of measuring LVEF, we also improve the accuracy 
and robustness of downstream GWAS results. The relatively large improvement in yield of 
genetic association with more precise phenotyping was substantial in comparison to the marginal 
benefit of increasing the cohort size.  As more genetic analyses are undertaken with automated 
measurements or assessments4,7,21,22, an additional evaluation must be taken to assess the 
variability and quality of the phenotyping. Such insights ideally will be confirmed with 
orthogonal measurements of similar phenotypes. Some of the first genetic association studies 
were performed on quantitative traits like height, but it should be recognized that many imaging-
based phenotypes do not have the same precision and accuracy as the assessment of height on a 
population.  
 In summary, genetic association studies on imaging phenotypes allow researchers to 
discover many associations that help understand the underlying biology of the disease and 
structure23. For LVEF, even advanced imaging has variability in measurements that can 
substantially impact downstream association studies. The impact of such variability is even more 
profound than significant changes in cohort size, suggesting improvement in imaging precision 
and precise phenotyping in general has significant additional value in improving the power of 
genetic association studies.  
 Our study offers key insights into measurement noise’s effect on genetic associations with 
LVEF. However, a few considerations remain. The impact of measurement noise could vary for 
different quantitative phenotypes, and thus future studies should investigate its influence on 
various phenotypes for a broader understanding. Secondly, our GWAS methodology could be 
further enhanced by using a linear mixed model method24, shown to produce more significant 
associations. Lastly, while our deep learning LVEF method showed a high GWAS signal, we 
could not compare it to manual clinical labels due to their unavailability. 
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6 Appendix 

Table A1. Mapping between Gaussian Noise SD and MAE 

SD MAE R2 

0 0 1 

1 0.797489 0.9788 

2 1.594416 0.9199 

3 2.386753 0.8371 

4 3.183924 0.743 

5 3.974958 0.6508 

6 4.793956 0.5632 

7 5.604129 0.4832 

8 6.380848 0.4192 

9 7.228321 0.3602 

10 7.920860 0.3183 
 
 
 
 
Table A2. Metrics of genetic signal for each decrease in cohort size 
 
Cohort 
decrease 

SNP Accuracy GWAS Sensitivity Heritability 

0% 1.0 1.0 0.1114 (00357) 

10% 0.8744 0.8 0.1071 (0.0397) 

20% 0.8713 0.8 0.0867 (0.037) 

30% 0.3436 1.0 0.082 (0.0332) 

40% 0.1392 0.4 0.0497 (0.0216) 

50% 0.0477 0.4 0.039 (0.0287) 

60% 0.0019 0.2 0.0384 (0.0288) 
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Figure A1. Cohort diagram 

 

 

Figure A2. Manhattan plot for genome-wide association study on corrected left-ventricular ejection 
fraction. 
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Figure A3. Q-Q plots of P values from GWAS summary statistics for different percentages of cohort 
decrease 

 

 

 

 

 

 

 

 

 

 

 

Figure A4 Impact of cohort decrease and noise generation on GWAS power. a, Regression analysis on 
the impact of measurement error quantified by a mean absolute error on sensitivity. b, Regression 
analysis on the impact of the mean absolute error on SNP accuracy. c, Regression analysis of the impact 
of cohort size decline on sensitivity. d, Regression analysis of the impact of cohort size decline on SNP 
accuracy  
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