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Immune modulation is considered a hallmark of cancer initiation and progression, with immune
cell density being consistently associated with clinical outcomes of individuals with cancer.
Multiplex immunofluorescence (mIF) microscopy combined with automated image analysis is a
novel and increasingly used technique that allows for the assessment and visualization of the tumor
microenvironment (TME). Recently, application of this new technology to tissue microarrays
(TMAs) or whole tissue sections from large cancer studies has been used to characterize different
cell populations in the TME with enhanced reproducibility and accuracy. Generally, mIF data has
been used to examine the presence and abundance of immune cells in the tumor and stroma
compartments; however, this aggregate measure assumes uniform patterns of immune cells
throughout the TME and overlooks spatial heterogeneity. Recently, the spatial contexture of the
TME has been explored with a variety of statistical methods. In this PSB workshop, speakers will
present some of the state-of-the-art statistical methods for assessing the TIME from mlIF data.
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1. Introduction, Background and Motivation

The treatment of cancers has been revolutionized in recent years with the advent of
immunotherapies'®. However, not all patients respond to immunotherapies and a subset of patients
that initially respond to immunotherapy go on to develop resistance. To understand why some
patients do not respond to immunotherapies, much research has been devoted to understanding the
role of the immune contexture of the tumor immune microenvironment (TIME) and its association
with clinical outcomes*”. Thus, immune profiling using a variety of approaches has become an
important part of immuno-oncology.

Some commonly used approaches for studying the tumor immune microenvironment include
(but are not limited to): flow cytometry'?, imaging mass cytometry'', immunohistochemistry
(IHC)", immune cell devolution of bulk RNA-seq data'’, single-cell RNA-seq'®, spatial
transcriptomics'®> and multiplex immunofluorescence (mlIF)'®. Multiplex immunofluorescence
microscopy combined with automated image analysis is a novel and increasingly used technique
that allows for the assessment and visualization of the TME. This technology has been applied to
a variety of sample types, from whole slide images to regions of interest (ROIs)'” and tissue
microarrays (TMAs)'®1°.

As with any new technology, there are inevitability challenges with the statistical analysis of
the single-cell imaging data’*?!. Some of the challenges come from cell phenotyping, which is
labeling cells as positive or negative for each antibody of interest. This is a necessary preprocessing
step that occurs before spatial data analysis that is critical for accurately estimating immune cell
abundance in the TIME. After phenotyping, it is typical to measure immune cell abundance,
typically calculated as percent or proportions of specific cell types in the tumor compartment of
the tissue. A challenge of this task is that many cell types are often observed at low-abundance
(i.e., zero-inflated), particularly in low immune infiltrated tumors (e.g., immune “cold” tumors).

Besides the protein markers used for phenotyping cells, it is often of important to quantify the
actual levels of proteins of interest in all or some cell types. Such quantitative functional markers
may include proliferation markers (e.g., Ki-67, PCNA), checkpoint proteins (e.g., PD-1, PD-L1,
CTLA-4) and growth factors and receptors (e.g., EGFR, HER2). Traditionally, a single mean
expression level across the cells of interest is computed and considered as a biomarker. This
approach ignores important tumor heterogeneity and has low sensitivity for detecting high
expression in some portion but not all cells of interest. Alternative approaches have been recently
developed®,” using the entire distributions of single-cell protein expression levels in a tumor
tissue to derive quantitative functional markers.

Finally, there is growing evidence that the spatial architecture of the TIME has high impact on
disease progression and response to immunotherapy. Generally, mIF data has been used to
examine the presence and abundance of immune cells in the TIME; however, this aggregate
measure assumes uniform patterns of immune cells throughout the tumor and overlooks spatial
heterogeneity. Recently, the spatial contexture of the TIME has been explored with a variety of
spatial statistical methods, including those for assessing co-localization. In this session, speakers
will present some of the state-of-the-art statistical methods for assessing the TIME from mIF data.
All  slides and R code presented during the workshop can be found at
http://juliawrobel.com/PSB_scProteomics .
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2. Speaker Abstracts

Overview of abundance-based and spatial-based analysis approaches for multiplex imaging
data
Brooke L Fridley

With the advent of immunotherapies for the treatment of cancer, much research is being conducted
to understand the tumor immune microenvironment (TIME). To date, much of the research
completed has focused on understanding the abundance of different immune cell subsets in the
TIME using either single-cell RNA-seq or multiplex immunofluorescence (mlF). One benefit in
using mIF based technologies is that, in addition to abundance of immune cells, one is also able to
get the spatial location of these cells within the TIME. Thus, researchers can answer question that
relate to the spatial architecture or contexture of the TIME and how this might impact clinical
outcomes. In this presentation, we provide an overview of how mlIF data is generated and analysis
methods used for assessing the non-spatial aspects of the TIME (i.e., abundance level analyses).
After providing an overview of mIF data and abundance-based analysis approaches, we will
review a variety of spatial statistical approaches for analyzing the spatial contexture. To facilitate
spatial analyses, we will also present on an R package, spatialTIME, developed to generate these
spatial statistics on large sets of samples!”**.

Normalization and Cell Phenotyping for mIF data
Simon Vandekar

Normalization and cell phenotyping are critical steps in the multiplexed image analysis pipeline
prior to performing downstream statistical analysis because they remove batch effects and identify
consistent cell types across slides. These analysis steps are particularly challenging for mIF data
due to the unique heterogeneity of the image intensities across slides and overlapping cell
distributions. We review some recently proposed normalization methods 2°2° and discuss the three
main procedures for cell phenotyping (marker gating, unsupervised clustering, and supervised
algorithms), in the context of mIF imaging®’, including our recently developed semi-supervised
algorithm, GammaGateR. The R package GammaGateR focuses on efficiently estimating the
marginal distributions of single-cell marker intensities using a novel closed-form Gamma mixture
model to identify marker positive cells. It incorporates biological constraints to improve
consistency across a large number of slides and allows users to interactively curate the model fit.
We compare several cell phenotyping algorithms developed for multiplexed imaging and
demonstrate how to use the results to perform spatial analyses of mIF imaging data.

Quantile biomarkers based on single-cell multiplex immunofluorescence imaging data
Inna Chervoneva

Modern pathology platforms for multiplex fluorescence-based immunohistochemistry provide
distributions of cellular signal intensity (CSI) levels of proteins across the entire cell populations
within the sampled tumor tissue. However, heterogeneity of CSI levels is usually ignored, and the
simple mean signal intensity (MSI) value is considered as a cancer biomarker. To account for
tumor heterogeneity, we consider the entire CSI distribution as a predictor of clinical outcome.
This allows retaining all quantitative information at the single-cell level by considering the values
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of the quantile function (inverse of the cumulative distribution function) estimated from a sample
of CSI levels in a tumor tissue.

A simple and intuitive approach is to select an optimal quantile of the CSI distribution as the
best predictor of clinical outcome of interest. In Yi et al (2023)*, we developed an algorithm,
implemented in the R package Qindex, for selecting optimal CSI distribution quantiles as best
predictors of outcome. The proposed algorithm was used to select optimal quantile biomarkers of
progression-free survival in a large cohort of breast cancer patients and validated in an independent
external validation cohort. The optimal quantile protein biomarkers yielded generally improved
prognostic value as compared to the standard MSI biomarkers.

A more comprehensive approach is to derive new biomarkers as single-index predictors based
on the entire CSI distribution summarized as a quantile function. > The proposed Quantile Index
(QI) biomarker is defined as a linear or nonlinear functional regression predictor of outcome. The
linear functional regression quantile Index (FR-QI) is the integral of subject-specific CSI quantile
function multiplied by the common weight function®?. The nonlinear functional regression quantile
index (nFR-QI) is computed as the integral of unspecified bivariate twice differentiable function
with probability p and subject-specific quantile function as arguments. The weight and nonlinear
bivariate function are represented by penalized splines and estimated by fitting suitable functional
regression models to a clinical outcome. The proposed QI biomarkers were derived for proteins
expressed in cancer cells of malignant breast tumors and compared to the standard MSI predictors
and optimal quantile protein biomarkers?’. The R package Qindex implements the optimization of
QI biomarkers and their evaluation in an independent test set.

Tools and software for functional data analysis of multiplexed imaging data
Julia Wrobel

The TME, which characterizes the tumor and its surroundings, plays a critical role in
understanding cancer development and progression. Recent advances in imaging techniques
enable researchers to study spatial structure of the TME at a single-cell level. Many popular
approaches for analyzing spatial relationships between cell types or quantifying spatial co-
expression of biological markers in multiplex imaging data are based on point process theory. The
location of cells in mIF data are treated as following a point process, realizations of a point process
are called “point patterns”, and point process models seek to understand correlations in the spatial
distributions of cells. Under the assumption that the rate of a cell is constant over an entire region
of interest a point pattern will exhibit complete spatial randomness (CSR), and it is often of interest
to model whether cells deviate from CSR either through clustering or repulsion.

Spatial summary functions characterize the degree of spatial interaction among cells across
different radii, however, these are often evaluated at a single arbitrarily chosen cellular distance.
Using techniques from functional data analysis, we introduce an approach to model the association
between these summary spatial functions and patient-level survival outcomes across all radii
simultaneously, while controlling for other clinical scalar predictors such as age and disease stage.
In addition, we introduce a novel hypothesis test to what level of model flexibility is most
appropriate for a given multiplex imaging dataset. Finally, our methods are implemented in mxfda,
a general-purpose R package for functional data analysis of multiplex imaging data.
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A Flexible Generalized Linear Mixed Effects Model for Testing Cell-Cell Colocalization in
Spatial Immunofluorescent Data
Siyuan Ma

mlF data analysis is interested in characterizing the nuanced spatial context of tissue
microenvironments, such as the infiltration or exclusion of certain immune cell populations in
tumor tissues. To test for cell colocalization or exclusion events, existing methods often rely on
image-wide statistics to create null distributions for cell colocalization events and evaluate their
statistical significance?®. Given that tissue characteristics can be image-specific (i.e., size of
images, the local topology of tissue organization), this type of approach does not generalize well
for comparisons between images/conditions. We show that, by examining cell colocalization
events on a per-cell basis, they can be modeled with common count-based distributions such as
the binomial. As such, cell colocalization or exclusion can be practically analyzed with generalized
linear mixed effects models with spatially correlated error terms. This allows flexible inclusion
and testing of image/condition effects and subject-specific correlations, because they can be easily
modeled as fixed or random regression effects. We demonstrate that this model relies on essentially
the same assumptions as existing image-wide modeling approaches. In practice, it can be
implemented with the readily available R package spaMM. We exemplify the utility of such a
model with an application in protein immunofluorescent imaging of inflammatory bowel disease
tissues?’.
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