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The greatest known risk factor for Alzheimer’s disease (AD) is age. While both normal aging and 

AD pathology involve structural changes in the brain, their trajectories of atrophy are not the same. 

Recent developments in artificial intelligence have encouraged studies to leverage neuroimaging-

derived measures and deep learning approaches to predict brain age, which has shown promise as a 

sensitive biomarker in diagnosing and monitoring AD. However, prior efforts primarily involved 

structural magnetic resonance imaging and conventional diffusion MRI (dMRI) metrics without 

accounting for partial volume effects. To address this issue, we post-processed our dMRI scans with 

an advanced free-water (FW) correction technique to compute distinct FW-corrected fractional 

anisotropy (FAFWcorr) and FW maps that allow for the separation of tissue from fluid in a scan. We 

built 3 densely connected neural networks from FW-corrected dMRI, T1-weighted MRI, and 

combined FW+T1 features, respectively, to predict brain age. We then investigated the relationship 

of actual age and predicted brain ages with cognition. We found that all models accurately predicted 

actual age in cognitively unimpaired (CU) controls (FW: r=0.66, p=1.62x10-32; T1: r=0.61, 

p=1.45x10-26, FW+T1: r=0.77, p=6.48x10-50) and distinguished between CU and mild cognitive 

impairment participants (FW: p=0.006; T1: p=0.048; FW+T1: p=0.003), with FW+T1-derived age 

showing best performance. Additionally, all predicted brain age models were significantly associated 

with cross-sectional cognition (memory, FW: β=-1.094, p=6.32x10-7; T1: β=-1.331, p=6.52x10-7; 

FW+T1: β=-1.476, p=2.53x10-10; executive function, FW: β=-1.276, p=1.46x10-9; T1: β=-1.337, 

p=2.52x10-7; FW+T1: β=-1.850, p=3.85x10-17) and longitudinal cognition (memory, FW: β=-0.091, 

p=4.62x10-11; T1: β=-0.097, p=1.40x10-8; FW+T1: β=-0.101, p=1.35x10-11; executive function, FW: 

β=-0.125, p=1.20x10-10; T1: β=-0.163, p=4.25x10-12; FW+T1: β=-0.158, p=1.65x10-14). Our findings 

provide evidence that both T1-weighted MRI and dMRI measures improve brain age prediction and 

support predicted brain age as a sensitive biomarker of cognition and cognitive decline.  
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1.  Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder whose greatest known risk 

factor is advancing age. Both normal aging and AD are accompanied by structural changes in the 

brain, but they follow distinct trajectories. Specifically, healthy aging typically exhibits global 

reductions in gray matter volume1,2 characterized by volume loss in frontal and temporal lobes3,4 

and enlargement of ventricles3,5, whereas AD-related brain atrophy typically starts in the 

hippocampus and gradually spreads to the entire brain6,7. Additionally, studies have shown that AD 

brains undergo deterioration more rapidly than healthy brains8. Given these differences, there arose 

recent efforts of using neuroimaging-derived measures of gray matter volume from T1-weighted 

magnetic resonance imaging (MRI) and white matter microstructure from diffusion MRI (dMRI) to 

predict an individual’s “brain age” via machine learning approaches9–12, which can differ from their 

chronological age and predict cognitive decline13–15. These models were trained on cognitive 

unimpaired individuals to learn common patterns in healthy aging, which then allowed them to 

detect aging-related abnormalities such as those associated with AD. A larger difference between 

brain age and chronological age indicates that the individual is on an accelerated trajectory 

compared with normal aging and is typically seen in individuals with cognitive impairment (e.g., 

mild cognitive impairment [MCI], AD)16–18, suggesting the potential of brain age as a sensitive 

biomarker along the AD continuum. Moreover, the development of the free-water (FW) correction 

post-processing technique19 has enabled the partition of a conventional fractional anisotropy (FA) 

map into a FW-corrected FA map (FAFWcorr) and a FW map; the FAFWcorr and FW metrics 

individually describe tissue and fluid, thereby enhancing the biological specificity of dMRI scans. 

Recently, our group has demonstrated that abnormal FW-corrected dMRI metrics are associated 

with higher rates of longitudinal cognitive decline and diagnosis along the AD clinical 

continuum20,21. These findings suggest that incorporating FW-corrected metrics into models of 

predicted brain age may provide more sensitive associations with cognitive impairment and decline.   

The present study leveraged neuroimaging data from a longitudinal cohort of aging to build three 

densely connected neural networks using FW-corrected dMRI, T1-weighted MRI, and combined 

FW+T1 features to predict participant brain age. To evaluate model performance, we examined the 

relationship between predicted brain age and chronological age. We then investigated the 

association between predicted brain age and two domains of cognition (memory and executive 

function performance at baseline and over time). We hypothesized that FW-, T1-, and FW+T1-

derived models would all accurately predict participant brain age, with the FW+T1-derived model 

showing the best performance as it incorporates both gray and white matter regions. We also 

hypothesized that all predicted brain age models would predict baseline and longitudinal memory 

and executive function performance, with FW+T1-derived brain age showing the strongest 

associations. 

2.  Methods 

2.1. Participants 
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All data leveraged in the present study were obtained from the Vanderbilt Memory and Aging 

Project (VMAP)22, a longitudinal observational study that was launched in 2012 and recruited 



 
 

 

individuals 60 years and older who speak English, have adequate auditory and visual capacity for 

testing, and have a stable study partner. Participants underwent comprehensive neuropsychological 

assessment and were categorized into cognitively unimpaired (CU) or MCI status; MCI participants 

were age-, sex-, and race-matched with CU controls. Cognitive (memory, executive function) 

measures were obtained from all participants and neuroimaging (T1-weighted MRI, dMRI) 

measures were obtained from a subset of participants. Only participants who had all necessary 

cognitive and neuroimaging data were included in the present study (n=295). All protocols for 

VMAP were approved by the IRB at Vanderbilt University Medical Center and all participants gave 

voluntary informed consent prior to enrollment. Data from the VMAP cohort can be freely accessed 

following approval (vmacdata.org). Table 1 summarizes demographic and clinical information for 

the present cohort.  

2.2. Neuroimaging data acquisition and preprocessing 

T1-weighted MRI images (repetition time: 8.9 ms, echo time: 4.6 ms, resolution: 1 mm isotropic) 

were obtained from each participant on 3T Philips Achieva using an 8-channel SENSE reception 

coil and underwent multi-atlas segmentation to calculate the volumes of 132 regions of interest 

(ROI)23. All measures were normalized by total intracranial volume, calculated as the volumetric 

sum of all 132 segmented ROIs. dMRI images (resolution: 2 mm isotropic, b-values: 0, 1000 s/ mm2
, 

number of directions: 32) were obtained from each participant using the previously described 

scanner and preprocessed using PreQual24. FW and FW-corrected metrics were calculated in 

MATLAB from the preprocessed images, as previously described19. The FW and FAFWcorr maps 

were transformed by a non-linear warp using the ANTs package to create a standardized space 

representation. Finally, publicly available tractography templates (https://github.com/VUMC-

VMAC/Tractography_Templates) were applied to the FW and FAFWcorr maps to quantify white 

matter microstructure within 48 tracts.  

T1-weighted MRI and FW-corrected dMRI metrics (FAFWcorr, FW) were harmonized separately 

using Longitudinal Combat25 in R (version 4.1.2), controlling for age at baseline, education, sex, 
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race/ethnicity, APOE-4 positivity, APOE-2 positivity, and the interaction of age at baseline with 

time interval from baseline. We also included the random effects of intercept and time interval from 

baseline for each participant and a batch variable that accounted for all combinations of image 

acquisition. The batch variable was scanner x software x coil for T1 metrics and site x scanner x 

protocol for FW-corrected metrics. 

2.3. Neuropsychological metrics calculation 

Participants completed comprehensive neuropsychological testing administered by experienced 

technicians which assessed multiple cognitive domains, including memory and executive function. 

Psychometrically sound memory and executive function composite scores were calculated from 

item-level data. Longitudinal cognitive measures (memory slope, executive function slope) for each 

participant were obtained by calculating the random effect coefficient using a linear mixed-effects 

model where the fixed effect was time interval from baseline and the outcome was composite score.  

2.4. Brain age prediction model architecture 

In the present study, we used a densely connected neural network to predict participants’ brain age 

based on neuroimaging regions (i.e., features) and created three separate models using FW, T1, and 

combined FW+T1 features. Figure 1 shows an overview of model workflow. Each model consists 

of four layers: an input layer whose dimensions correspond to the number of features (FW: 96 

features, T1: 132 features, FW+T1: 228 features), two densely connected layers with rectified linear 

unit (ReLU) activation whose number of nodes equals half and a quarter of the number of features, 

respectively, and an output layer with a single node and linear activation for brain age prediction.  

All models were trained on baseline neuroimaging data from the VMAP cohort by subsetting 

all imaging sessions to the first visit of CU participants. We minimized the loss function as 

characterized by mean absolute error (MAE) while monitoring the mean squared error (MSE) and 

root mean squared error (RMSE). We conducted ten-fold cross-validation where 90% of the data 

were used for training and 10% of the data were reserved for testing in each fold, repeating this 

process ten times until the entire dataset had been tested only once. Within the training data for each 

fold, 80% were used to train the model and 20% were used to validate model performance. During 

each fold, training was stopped when the loss function on the validation dataset had not improved 

for 15 epochs and only the best model was saved. For each set of features (FW, T1, FW+T1), saved 

models were compared across folds and the one which yielded the lowest validation loss was 

selected as the final model. All models were developed in Python (version 3.9.13) using the Keras 

library (version 2.9.0) with Tensorflow backend (version 2.9.1). We used the three final models to 

generate FW, T1, and FW+T1 predicted brain ages for all participants (CU, MCI) at all timepoints 

(baseline, longitudinal follow-ups). 
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For each model, we computed SHAP (SHapley Additive exPlanation) values for all relevant 

neuroimaging features to quantify their contribution to age prediction. Figure 2 shows the top 10 

most important features for each model based on mean SHAP value. 

 

2.5. Statistical analyses 

All statistical analyses were conducted in Python (version 3.9.13) and R (version 4.1.2). We first 

performed simple linear regression between actual age and each predicted age to assess model 

 
Figure 1. Model workflow for brain age prediction. We created three separate, densely connected neural 

networks to predict brain age, including FW-derived (A), T1-derived (B), and FW+T1-derived (C) models. 
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Figure 2. Top 10 most important features for FW-derived (A), T1-derived (B), and FW+T1-derived (C) models. 

Boldface signifies top features involved in aging and AD, including superior longitudinal fasciculus (SLF) 

FAFWcorr, fornix FW for the FW-derived model and left thalamus proper, 3rd ventricle for the T1-derived model. 
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performance as well as independent groups t-tests to compare the mean actual age and mean 

predicted brain ages of CU and MCI participants. We also conducted logistic regression analyses, 

using actual and each predicted brain age as direct predictor of diagnostic category, then evaluated 

model performance using area under the receiver operator characteristic curve (ROC-AUC) and 

DeLong’s test. Next, we conducted a series of linear models and competitive model analyses to 

assess actual and predicted brain age association with cognition. All models covaried for diagnosis, 

race/ethnicity, sex, education, and APOE-4 positivity. Significance was set a priori at α=0.05. For 

baseline cognition, actual age and predicted brain ages (FW, T1, FW+T1) were included in a general 

linear model individually to determine their main effects on baseline memory and executive 

function. We then introduced age-by-diagnosis interaction terms to the linear models to investigate 

the potential modifying effect of age on baseline memory and executive function scores. Finally, 

we conducted post-hoc competitive model analysis to determine the unique variance in baseline 

memory and executive function contributed by FW, T1, and FW+T1 predicted brain age, beyond 

that contributed by covariates and actual age. The described analyses were repeated for longitudinal 

cognition (longitudinal memory slope, longitudinal executive function slope).  

3. Results 

Participant characteristics of the VMAP cohort are shown in Table 1. There were no significant 

differences in longitudinal follow-up interval, age at baseline, sex, or race between diagnostic 

groups (CU, MC). The CU group had more years of education and lower APOE-4 positivity than 

the MCI group.  

3.1. Combined model using free-water (FW) and T1 features showed best performance  

Figure 3 shows the agreement between predicted brain age measures (FW, T1, FW+T1) and actual 

age; model performance was characterized using average mean absolute error (MAEavg) and average 

mean squared error (RMSEavg) across folds and Pearson’s correlation through ten-fold cross 

 
Figure 3. Bland Altman plots for FW-derived age (A), T1-derived age (B), and FW+T1-derived age 

(C). All models accurately predict age. FW+T1-derived age is most significantly associated with actual 

age, in comparison with FW-derived age and T1-derived age.  
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validation. While all predicted brain ages significantly predicted actual age (FW: MAEavg=

0.115, RMSEavg=0.129, r=0.66, p=1.62x10-32; T1: MAEavg=0.106, RMSEavg=0.114, r=0.61, 
-p=1.45x10 26), the combined FW+T1 model yielded the best performance with highest r as well  

as lowest 
We then compared means of actual age and predicted brain ages between CU and MCI 

participants. While there was no difference in actual age between CU and MCI groups 

(ageCU=73.07±7.24, ageMCI=72.83±6.92, p=0.792), all predicted brain ages for the MCI group were 

significantly higher than those for the CU group (FW: ageCU=72.08±5.55, ageMCI=74.18±6.16, 

p=0.006; T1: ageCU=67.52±4.96, ageMCI=68.82±5.27, p=0.048), with the combined FW+T1 model 

showing the largest difference (ageCU=71.74±5.58, ageMCI=73.93±5.67, p=0.003).  

Figure 4 shows the Receiver Operating Characteristic curves for actual and predicted brain ages 

in predicting diagnostic category (CU, MCI). Pairwise comparisons revealed that ROC-AUC values 

for all predicted brain ages were significantly greater than that of actual age (FW-actual: p=0.003; 

T1-actual: p=0.030; FW+T1-actual: p=0.004); however, no differences were found between the 

predicted brain ages (all p>0.05). 

3.2. Predicted brain age association with baseline cognition 

Actual age and predicted brain age (FW-derived, T1-derived, FW+T1-derived) associations with 

cross-sectional cognition (memory, executive function) are shown in Figure 5. While all models 

significantly predicted memory score at baseline (Actual: Radj
2=0.497, p=1.23x10-34; FW: 

Radj
2=0.481, p=4.14x10-33; T1: Radj

2=0.481, p=4.26x10-33), the combined FW+T1 model showed the 

most robust performance (Radj
2=0.513, p=2.31x10-36). Similarly, all models significantly predicted 

executive function score at baseline (Actual: Radj
2=0.472, p=3.22x10-32; FW: Radj

2=0.445, 

p=1.24x10-29; T1: Radj
2=0.422, p=1.69x10-27) and the combined FW+T1 model was the most robust 

(Radj
2=0.519, p=5.81x10-37). When examining main effect associations of each respective age 

Figure 4. Receiver Operating Characteristic curves for actual, FW-predicted, T1-predicted, and 

FW+T1-predicted age in predicting diagnostic category. All predicted ages performed significantly 

better than actual age, but no difference in performance was found between predicted ages. 
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MAEavg and RMSEavg (MAEavg=0.072, RMSEavg=0.087, r=0.77, p=6.48x10-50). 



 

 

 

variable, we saw that actual age and all predicted brain ages each had a significant main effect on 

baseline memory score (Figure 5A; Actual: β=-1.162, p=1.58x10-8; FW: β=-1.094, p=6.32x10-7; 

T1: β=-1.331, p=6.52x10-7), with the combined FW+T1 predicted brain age showing the strongest 

relationship (β=-1.476, p=2.53x10-10). Likewise, we saw significant age effects for actual and all 

predicted ages on baseline executive function score (Figure 5B; Actual: β=-1.371, p=2.98x10-12; 

FW: β=-1.276, p=1.46x10-9; T1: β=-1.337, p=2.52x10-7), with the combined FW+T1 predicted brain 

age showing the strongest relationship (β=-1.850, p=3.85x10-17). We found no significant 

interactions between actual or predicted brain ages and diagnostic status on baseline memory or 

executive function. 

Table 2 summarizes results of the competitive model analysis on cross-sectional cognition. We 

found that covariates alone explained approximately 43% of the variance in baseline memory score 

(Radj
2=42.60%) and the addition of actual age led to an increase in overall model performance 

(ΔR2
adj=6.92%). We then iteratively added predicted brain ages to this model to determine whether 

FW, T1, or FW+T1 predicted brain age contributed to any unique variance beyond covariates and 

actual age. While FW and T1 predicted brain ages were not found to be a significant contributor to 

baseline memory score, we observed that the combined FW+T1 predicted brain age significantly 

 

Figure 5. Actual and predicted age associations with baseline cognition. Actual and all derived ages 

are significantly associated with baseline memory (A) and executive function performance (B); 

FW+T1-derived age shows highest associations. Datapoint colors: green=CU; orange=MCI. 
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added to the model and led to increased Radj
2 (FW+T1: ΔR2

adj=1.74%). Similarly, covariates alone 

explained approximately 36% of the variance in baseline executive function score (Radj
2=35.70%) 

and the addition of actual age led to a drastic increase in model performance (ΔR2
adj=11.58%). When 

iteratively adding each predicted brain age to the model to determine its unique contribution beyond 

covariates and actual age, we observed that both FW and FW+T1 predicted brain age explained 

additional variance in baseline executive function score, with FW predicted brain age leading to a 

small increase in Radj
2 (ΔR2

adj=0.63%) and FW+T1 predicted brain age leading to a large increase 

in Radj
2 (ΔR2

adj=4.59%). However, T1 predicted brain age did not provide a significant increase to 

the model. 

3.3. Predicted brain age association with longitudinal cognition 

Actual age and predicted brain age associations with longitudinal cognition are shown in Figure 

6. While all models significantly predicted longitudinal memory slope (Actual: Radj
2=0.427, 

p=5.08x10-28; FW: Radj
2=0.439, p=4.90x10-29; T1: Radj

2=0.412, p=1.16x10-26), the combined 

FW+T1 model showed the most robust performance (Radj
2=0.444, p=1.50x10-29). Similarly, all 

models significantly predicted longitudinal executive function slope (Actual: Radj
2=0.424, 

p=9.20x10-28; FW: Radj
2=0.404, p=5.89x10-26; T1: Radj

2=0.420, p=2.38x10-27) and the combined 

FW+T1 model was the most robust (Radj
2=0.446, p=1.13x10-29). When examining the age effect, we 

saw that actual age and all predicted brain ages each had a significant main effect on longitudinal 

memory slope (Figure 6A; Actual: β=-0.082, p=5.30x10-10; FW: β=-0.091, p=4.62x10-11; T1: β=-

0.097, p=1.40x10-8), with the combined FW+T1 model showing the strongest relationship (β=-

0.101, p=1.35x10-11). Likewise, we saw significant main effects for actual and all predicted brain 

ages on longitudinal executive function slope (Figure 6B; Actual: β=-0.128, p=1.58x10-12; FW: β=-

0.125, p=1.20x10-10; T1: β=-0.163, p=4.25x10-12), with the combined FW+T1 model showing the 

strongest relationship (β=-0.158, p=1.65x10-14). We found no significant interactions between actual 

age or predicted brain ages and diagnostic status on longitudinal memory or executive function. 

Table 3 summarizes results of the competitive model analysis on longitudinal cognition. We 

found that covariates alone explained approximately 33% of the variance in longitudinal memory 

slope (Radj
2=33.10%) and the addition of actual age led to an increase in overall model performance 

(ΔR2
adj=9.68%). We then added predicted brain ages to this model one at a time to determine 

whether FW, T1, or FW+T1 predicted brain age contributed to any unique variance beyond 

covariates and actual age. We observed that all predicted brain ages were significant contributors to 

longitudinal memory slope and led to increases in Radj
2 (FW: ΔR2

adj=2.36%; T1: ΔR2
adj=1.17%; 
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FW+T1: ΔR2
adj=2.01%). Similarly, covariates alone explained approximately 30% of the variance 

in longitudinal executive function slope (Radj
2=29.50%) and the addition of actual age led to a drastic 

increase in model performance (ΔR2
adj=12.99%). When iteratively adding each predicted brain age 

to the model to determine its unique contribution beyond covariates and actual age, we observed 

that all predicted brain ages explained additional variance in longitudinal executive function slope 

and led to increases in Radj
2 (FW: ΔR2

adj=1.16%, T1: ΔR2
adj=2.54%; FW+T1: ΔR2

adj=2.67%).  

Figure 6. Actual and predicted age associations with longitudinal cognition. Actual and all derived 

ages are significantly associated with longitudinal memory (A) and executive function performance (B); 

FW+T1-derived age shows highest associations. 
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The present study created 3 densely connected neural network models to predict brain age using 

FW, T1, and combined FW+T1 neuroimaging features, respectively. We evaluated model 

performance by comparing actual age with FW, T1, and FW+T1 predicted brain age then 

investigated the relationships between different age variables with cross-sectional and longitudinal 

cognitive performance (memory, executive function). Specifically, we examined age effects on 

baseline and longitudinal memory and executive function performance and conducted post hoc 

competitive model analyses to determine the unique contribution provided by each predicted brain 

age to variance in cognitive function. We report 3 main findings. First, we found that predicted brain 

ages from all 3 deep learning models using different sets of neuroimaging features (FW, T1, 

FW+T1) were highly associated with actual age; top neuroimaging features shown in model SHAP 

plots (Figure 2) were also biologically relevant to aging and cognitive decline, such as superior 

longitudinal fasciculus (SLF) FAFWcorr and fornix FW in the FW model and thalamus and 3rd 

ventricle in the T1 model. Second, we found that all predicted brain ages differentiated CU from 

MCI participants and significantly predicted both cross-sectional and longitudinal cognitive 

performance. Finally, we found that, among all 3 models, FW+T1 predicted brain age was the 

strongest predictor of cross-sectional and longitudinal cognitive performance and contributed the 

largest unique variance in these outcome variables.  

4.1. Densely connected neural network robustly predicts age using neuroimaging features 

We found that predicted brain ages generated by a densely connected neural network using 3 distinct 

sets of neuroimaging features (FW-corrected dMRI, T1-weighted MRI, combined FW+T1) all 

showed high correlation with actual age in baseline CU participants, which confirms findings from 

previous literature that have accurately predicted chronological age of healthy adults using 

neuroimaging-derived measures with machine learning approaches including deep learning11,12,17,26–

29. Importantly, the top-contributing neuroimaging features identified for each model (Figure 2) 

provide biological interpretability as they include brain regions that have been associated with both 

normal aging and AD neuropathology. For instance, previous evidence has shown that thalamic 

volume, the most important feature identified in the T1 model, decreases with advancing age30 

independently from total brain volume loss and correlates with cognitive speed and verbal memory 

performance31,32. Similarly, the identification of 3rd ventricle volume as the second most important 

feature in the T1 model is consistent with prior literature which demonstrated that ventricular 

expansion is associated with normal aging and expands at an accelerated rate in individuals with 

cognitive impairment (MCI, AD)33,34 or AD-related pathology35. Among top features identified for 

the FW is the SLF, which is a white matter tract projecting from the occipital, parietal, and temporal 

lobes to the frontal cortex and is involved in language, attention, and memory36. Specifically, 

conventional FA within the SLF has been shown to undergo stable decline between ages 30-65 and 

accelerated decline after age 6537. Likewise, integrity of the fornix – a limbic white matter tract 

projecting from the hippocampus38– has been shown to decline with normal aging39 and to predict 

episodic memory40 and executive function performance41 in both healthy older adults and 

individuals with neurological disorders. Most existing literature on brain age prediction using 

machine learning techniques has leveraged T1-weighted MRI measures or conventional dMRI 
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metrics. One significant advance in the present study is that we developed models using both T1-

weighted and FW-corrected diffusion MRI data, and our results suggest that multi-modal MRI 

models may more accurately quantify brain age.  

4.2. Predicted age is a more sensitive measure than actual age and predicative of cognition 

We found that FW, T1, and FW+T1 predicted brain ages all differentiated CU from MCI patients 

by providing a significantly higher brain age for MCI patients even though the two groups did not 

differ in actual age, suggesting that predicted brain age may be a sensitive biomarker to AD clinical 

staging. This is consistent with previous research which computed predicted age difference (i.e., 

predicted brain age subtracted by chronological age) from T1-weighted MRI scans and found 

significantly larger predicted age difference in amnestic MCI participants compared with healthy 

controls16. Moreover, individuals with a higher predicted brain age at baseline were more likely to 

convert from MCI to AD42 or develop dementia later in life18. Studies generating predicted age 

difference from structural MRI scans of healthy controls have also found correlations with 

performance on traditional screening tools for AD (e.g., Mini-Mental State Examination, Clinical 

Dementia Ratio), anatomical measurements such as cortical thickness and hippocampal volume43, 

AD neuropathology such as β-amyloid positivity16,26, and AD risk factors such as APOE-4 carrier 

status16,26.  

We also found that all predicted brain ages were robustly associated with cross-sectional and 

longitudinal cognitive function including baseline memory and executive function scores and 

longitudinal memory and executive function slopes. This agrees with prior literature that has found 

predicted age difference to be associated with memory and executive function impairment16 as well 

as early signs of cognitive decline14. However, the relationship between predicted age and both 

baseline and longitudinal cognitive function needs further clarification as one previous study found 

negative associations with psychomotor speed at baseline but no significant association with delayed 

recall performance or general cognitive status at baseline44. The present study supports predicted 

brain age as a sensitive biomarker along the AD continuum as it distinguishes between CU and MCI 

participants and is associated with memory and executive function performance at baseline and 

longitudinally.  

4.3. Application of neural networks in clinical medicine 

Deep learning algorithms, particularly neural networks, offer remarkable clinical utility by enabling 

researchers to harness complex patterns from large-scale data and consolidate this information into 

easy-to-use platforms. Prior neuroimaging studies have used deep learning methods to predict brain 

age9,45–47; however, the present study is the first to combine T1-weighted and FW-corrected 

diffusion MRI data, shedding light on the potential of using multi-modal MRI to accurately predict 

brain age and use it as an endophenotype for cognitive impairment and decline, especially in the 

context of aging and AD. Importantly, our neural networks add weight to the idea that both gray and 

white matter features are important to consider in aging and AD.  
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The present study has several strengths, including a well-characterized longitudinal cohort with 

multi-modal MRI data with paired cognitive data. Regarding our neuroimaging analysis, one major 

strength is that we incorporated T1-weighted data in conjunction with FW-corrected diffusion MRI 

data, and this data was used as input into densely connected neural networks. Importantly, our data 

driven approach found that several aging related features (e.g., fornix integrity) were some of the 

highest contributing factors in our models. One limitation of this study is that it used a well-

educated, mostly non-Hispanic white population, thus limiting our networks’ versatility. Future 

studies should incorporate more diverse populations to ensure that the neural networks are more 

generalizable. Moreover, although we have a large population with extensive longitudinal follow-

up, one major limitation is that we only used data from a single cohort. Future studies leveraging 

multiple cohorts would drastically enhance our ability to predict brain age and likely improve its 

utility as an endophenotype for cognitive impairment and decline.  

4.5. Conclusions 

This study provided evidence that deep neural networks can be used to predict brain age, and that 

this predicted age is a strong predictor of cross-sectional cognitive impairment and future cognitive 

decline. Our findings provide evidence that using both T1-weighted and FW-corrected diffusion 

MRI data improves our ability to predict brain age; thus, future studies should consider both gray 

and white matter features when building deep learning models in aging and AD.  

5. Acknowledgements

This study was supported by several funding sources, including K01-EB032898 (KGS), K01-

AG073584 (DBA), U24-AG074855 (TJH), 75N95D22P00141 (TJH), R01-AG059716 (TJH), UL1-

TR000445 and UL1-TR002243 (Vanderbilt Clinical Translational Science Award), S10-OD023680 

(Vanderbilt’s High-Performance Computer Cluster for Biomedical Research). The research was 

supported in part by the Intramural Research Program of the National Institutes of Health, National 

Institute on Aging.  Study data were obtained from the Vanderbilt Memory and Aging Project 

(VMAP). VMAP data were collected by Vanderbilt Memory and Alzheimer’s Center Investigators 

at Vanderbilt University Medical Center. This work was supported by NIA grants R01-AG034962 

(PI: ALJ), R01-AG056534 (PI: ALJ), R01-AG062826 (PI: KAG), and Alzheimer’s Association 

IIRG-08-88733 (PI: ALJ). 

References

1. Courchesne, E. et al. Normal Brain Development and Aging: Quantitative Analysis at in Vivo MR

Imaging in Healthy Volunteers. Radiology 216, 672–682 (2000).

2. Good, C. D. et al. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains.

NeuroImage 14, 21–36 (2001).

3. Coffey, C. E. et al. Quantitative cerebral anatomy of the aging human brain: a cross-sectional study

using magnetic resonance imaging. Neurology 42, 527–536 (1992).

4. Sowell, E. R. et al. Mapping cortical change across the human life span. Nat Neurosci 6, 309–315

(2003).

5. Resnick, S. M. et al. One-year age changes in MRI brain volumes in older adults. Cerebral Cortex 10,

464–472 (2000).

Pacific Symposium on Biocomputing 2024

160

4.4. Strengths and limitations



 
 

 

6. Jack, C. R. et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s 

disease. Alzheimer’s & dementia : the journal of the Alzheimer’s Association 14, 535–562 (2018). 

7. Coupé, P., Manjón, J. V., Lanuza, E. & Catheline, G. Lifespan Changes of the Human Brain In 

Alzheimer’s Disease. Sci Rep 9, 3998 (2019). 

8. Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C. & Buckner, R. L. Normative estimates of 

cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64, 1032–1039 

(2005). 

9. Bermudez, C. et al. Anatomical context improves deep learning on the brain age estimation task. Magn 

Reson Imaging 62, 70–77 (2019). 

10. Chen, C.-L. et al. Generalization of diffusion magnetic resonance imaging–based brain age prediction 

model through transfer learning. NeuroImage 217, 116831 (2020). 

11. Jiang, H. et al. Predicting Brain Age of Healthy Adults Based on Structural MRI Parcellation Using 

Convolutional Neural Networks. Frontiers in Neurology 10, (2020). 

12. Lombardi, A. et al. Brain Age Prediction With Morphological Features Using Deep Neural Networks: 

Results From Predictive Analytic Competition 2019. Frontiers in Psychiatry 11, (2021). 

13. Boyle, R. et al. Brain-predicted age difference score is related to specific cognitive functions: A multi-

site replication analysis. Brain Imaging Behav 15, 327–345 (2021). 

14. Elliott, M. L. et al. Brain-age in midlife is associated with accelerated biological aging and cognitive 

decline in a longitudinal birth cohort. Mol Psychiatry 26, 3829–3838 (2021). 

15. Karim, H. T. et al. Independent replication of advanced brain age in mild cognitive impairment and 

dementia: detection of future cognitive dysfunction. Mol Psychiatry 27, 5235–5243 (2022). 

16. Huang, W. et al. Accelerated Brain Aging in Amnestic Mild Cognitive Impairment:                     

Relationships with Individual Cognitive Decline, Risk Factors for Alzheimer                     Disease, and 

Clinical Progression. Radiology: Artificial Intelligence 3, e200171 (2021). 

17. Lee, J. et al. Deep learning-based brain age prediction in normal aging and dementia. Nat Aging 2, 

412–424 (2022). 

18. Biondo, F. et al. Brain-age is associated with progression to dementia in memory clinic patients. 

NeuroImage: Clinical 36, 103175 (2022). 

19. Pasternak, O., Sochen, N., Gur, Y., Intrator, N. & Assaf, Y. Free water elimination and mapping from 

diffusion MRI. Magn Reson Med 62, 717–30 (2009). 

20. Yang, Y. et al. White matter microstructural metrics are sensitively associated with clinical staging in 

Alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 15, 

e12425 (2023). 

21. Archer, D. B. et al. Free-water metrics in medial temporal lobe white matter tract projections relate to 

longitudinal cognitive decline. Neurobiol Aging 94, 15–23 (2020). 

22. Jefferson, A. L. et al. The Vanderbilt Memory & Aging Project: Study Design and Baseline Cohort 

Overview. Journal of Alzheimer’s Disease 1–20 (2016). 

23. Huo, Y. et al. Consistent cortical reconstruction and multi-atlas brain segmentation. Neuroimage 138, 

197–210 (2016). 

24. Cai, L. Y. et al. PreQual: An automated pipeline for integrated preprocessing and quality assurance of 

diffusion weighted MRI images. Magnetic Resonance in Medicine 86, 456–470 (2021). 

25. Beer, J. C. et al. Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging 

data. NeuroImage 220, 117129 (2020). 

26. Cumplido-Mayoral, I. et al. Biological brain age prediction using machine learning on structural 

neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and 

neurodegeneration stratified by sex. eLife 12, e81067 (2023). 

27. Jonsson, B. A. et al. Brain age prediction using deep learning uncovers associated sequence variants. 

Nat Commun 10, 5409 (2019). 

28. Cole, J. H. et al. Predicting brain age with deep learning from raw imaging data results in a reliable and 

heritable biomarker. NeuroImage 163, 115–124 (2017). 

Pacific Symposium on Biocomputing 2024

161



 

 

 

29. Yin, C. et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive 

impairment. Proceedings of the National Academy of Sciences 120, e2214634120 (2023). 

30. Hughes, E. J. et al. Regional changes in thalamic shape and volume with increasing age. NeuroImage 

63, 1134–1142 (2012). 

31. Van Der Werf, Y. D. et al. Thalamic volume predicts performance on tests of cognitive speed and 

decreases in healthy aging: A magnetic resonance imaging-based volumetric analysis. Cognitive Brain 

Research 11, 377–385 (2001). 

32. Philp, D. J., Korgaonkar, M. S. & Grieve, S. M. Thalamic volume and thalamo-cortical white matter 

tracts correlate with motor and verbal memory performance. NeuroImage 91, 77–83 (2014). 

33. Carmichael, O. T. et al. Cerebral Ventricular Changes Associated With Transitions Between Normal 

Cognitive Function, Mild Cognitive Impairment, and Dementia. Alzheimer Dis Assoc Disord 21, 14–24 

(2007). 

34. Todd, K. L. et al. Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired 

Brain. Frontiers in Aging Neuroscience 9, (2018). 

35. Silbert, L. C. et al. Changes in premorbid brain volume predict Alzheimer’s disease pathology. 

Neurology 61, 487–492 (2003). 

36. Kamali, A., Flanders, A. E., Brody, J., Hunter, J. V. & Hasan, K. M. Tracing superior longitudinal 

fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain 

Struct Funct 219, 269–281 (2014). 

37. Westlye, L. T. et al. Life-span changes of the human brain white matter: diffusion tensor imaging 

(DTI) and volumetry. Cerebral cortex 20, 2055–2068 (2010). 

38. Saunders, R. C. & Aggleton, J. P. Origin and topography of fibers contributing to the fornix in 

macaque monkeys. Hippocampus 17, 396–411 (2007). 

39. Burzynska, A. Z. et al. White Matter Integrity Declined Over 6-Months, but Dance Intervention 

Improved Integrity of the Fornix of Older Adults. Frontiers in Aging Neuroscience 9, (2017). 

40. Douet, V. & Chang, L. Fornix as an imaging marker for episodic memory deficits in healthy aging and 

in various neurological disorders. Frontiers in Aging Neuroscience 6, (2015). 

41. Srisaikaew, P. et al. Fornix Integrity Is Differently Associated With Cognition in Healthy Aging and 

Non-amnestic Mild Cognitive Impairment: A Pilot Diffusion Tensor Imaging Study in Thai Older 

Adults. Frontiers in Aging Neuroscience 12, (2020). 

42. Gaser, C. et al. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to 

Alzheimer’s Disease. PLOS ONE 8, e67346 (2013). 

43. Beheshti, I., Maikusa, N. & Matsuda, H. The association between “Brain-Age Score” (BAS) and 

traditional neuropsychological screening tools in Alzheimer’s disease. Brain and Behavior 8, e01020 

(2018). 

44. Wrigglesworth, J. et al. Brain-predicted age difference is associated with cognitive processing in later-

life. Neurobiology of Aging 109, 195–203 (2022). 

45. Peng, H., Gong, W., Beckmann, C. F., Vedaldi, A. & Smith, S. M. Accurate brain age prediction with 

lightweight deep neural networks. Medical Image Analysis 68, 101871 (2021). 

46. Mouches, P., Wilms, M., Rajashekar, D., Langner, S. & Forkert, N. D. Multimodal biological brain age 

prediction using magnetic resonance imaging and angiography with the identification of predictive 

regions. Hum Brain Mapp 43, 2554–2566 (2022). 

47. Liu, X. et al. Brain age estimation using multi-feature-based networks. Computers in Biology and 

Medicine 143, 105285 (2022). 
 

Pacific Symposium on Biocomputing 2024

162




