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Abstract. Advances in molecular characterization have reshaped our understanding of low-grade
glioma (LGG) subtypes, emphasizing the need for comprehensive classification beyond histology. Lever-
aging this, we present a novel approach, network-based Subnetwork Enumeration, and Analysis (nSEA),
to identify distinct LGG patient groups based on dysregulated molecular pathways. Using gene expres-
sion profiles from 516 patients and a protein-protein interaction network we generated 25 million sub-
networks. Through our unsupervised bottom-up approach, we selected 92 subnetworks that categorized
LGG patients into five groups. Notably, a new LGG patient group with a lack of mutations in EGFR,
NF1, and PTEN emerged as a previously unidentified patient subgroup with unique clinical features
and subnetwork states. Validation of the patient groups on an independent dataset demonstrated the
robustness of our approach and revealed consistent survival traits across di↵erent patient populations.
This study o↵ers a comprehensive molecular classification of LGG, providing insights beyond tradi-
tional genetic markers. By integrating network analysis with patient clustering, we unveil a previously
overlooked patient subgroup with potential implications for prognosis and treatment strategies. Our
approach sheds light on the synergistic nature of driver genes and highlights the biological relevance of
the identified subnetworks. With broad implications for glioma research, our findings pave the way for
further investigations into the mechanistic underpinnings of LGG subtypes and their clinical relevance.
Availability: Source code and supplementary data are available at https://github.com/bebeklab/nSEA

Keywords: Cancer Systems Biology · Network Analysis · Protein-protein Interaction Networks.

1 Introduction

Lower-grade gliomas (LGG) are brain neoplasms classified into 3 grades by the World Health Organization
(WHO), where grades 2 and 3 present an infiltrative phenotype. While some LGGs remain stable, others
progress to grade 4 gliomas (grade 4 astrocytoma [IDH -mutant tumors] and glioblastoma [IDH -wildtype
tumors]), resulting in survival ranges between 1 and 15 years. Common treatment options include resection,
chemotherapy, and radiation therapy. Based on the origin of glial cells, LGG can be classified into two sub-
types: astrocytomas and oligodendrogliomas. Molecular features are also associated with clinical outcomes;
for example, LGG with both an IDH mutation (IDH1 or IDH2 ) and deletion of chromosome arms 1p
and 19q (1p/19q codeletion) show a better response to radiochemotherapy and are associated with longer
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survival. However, neither grade-based stratification nor molecular features can fully capture the complex
architecture of LGG.

Gliomas are histopathologically classified into four grades associated with a worse prognosis. While this
classification has prognostic value, investigating the complex molecular alterations within gliomas can lead to
a better understanding of the biology behind the tumor types. For instance, some low-grade gliomas behave
like malignant glioblastoma, while others have a favorable outcome similar to low-grade gliomas. Identifying
genetic and epigenetic alterations in these tumors can reveal biomarkers with both prognostic value and the
potential to guide therapeutic decisions [1].

Recently, studies by The Cancer Genome Atlas (TCGA) on lower-grade di↵use gliomas defined disease
classification based on genetic and epigenetic alterations, providing biological justification for the utility of
these features over histologic ones. Integrated genome-wide data analysis from multiple platforms delineated
three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53

status than with histologic classes [2].

In recent years, various approaches have been proposed for finding disease-related sub-networks [3–7] or
predicting disease-causing genes [8–11] from large knowledge bases, such as protein-protein interaction (PPI)
networks or signaling pathway databases. Most of these methods integrate systems-level measurements of
gene and/or protein expression to prioritize networks [12–17]. A scoring function is combined with a search
strategy to evaluate identified sub-networks. However, since finding sub-networks is an NP-hard problem [12],
long run times and sub-optimal solutions are major drawbacks of these applications. Among all applicable
methods, Kernel clustering, modularity optimization, random-walk-based, and local network search methods
outperform others [6]. While some of these approaches can identify prognostic modules or disease-relevant
pathways [12, 18, 6], they lack the ability to prioritize modules for disease subtype identification and subse-
quent survival analyses.

Enrichment-based pathway analyses are also commonly used to identify biological functions related
to biomarkers and study disease subtypes in cancer [19–21]. However, since such approaches depend on
previously selected genes, these analyses may lead to biased results. For instance, Sanchez-Vega et al. [22]
analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways and mapped them to
multiple tumor types to discover pan-cancer subtypes and link them to possible drug targets. This supervised
approach easily captured known subtypes with known disease pathways. In contrast, Durmaz et al. [23]
reported an unsupervised approach that repeated this identification process using frequent subgraph mining
with sampling and identified 106 clusters from 43K sub-networks mined from patient-specific networks.
However, the former approach lacks the freedom to discover new subtypes, while the latter randomized
approach requires careful filtering and repeated trials to arrive at robust discoveries.

In this paper, we introduce a novel network analysis algorithm known as the n-Node Subnetwork Enu-

meration Algorithm (nSEA). Our aim is to address challenges encountered by disease classification methods,
which often rely on disease-associated genes or subnetworks for patient characterization and prognostics.
Here, we discern robust patient subtypes based on functional variations in gene/protein expression within
each sample and their interactions. This approach enables us to establish a patient classification framework
that not only enhances prognostic accuracy but also elucidates the distinct pathway-level di↵erences among
patient subgroups. Such an approach holds the promise of improved prognostication for future patients,
along with opportunities for enhanced treatment strategies and personalized interventions.

The (nSEA) algorithm takes a protein-protein interaction (PPI) network and system-level measure-
ments of gene expression profiles as inputs. The goal of nSEA is to identify di↵erentiating patterns among
disease samples in an unsupervised manner. The algorithm is based on a bottom-up methodology in which
a large sparse biological network (a PPI network filtered by patient gene expression profiles) is exhaustively
enumerated and decomposed into n-node sub-networks (Figure 1A and 1B). These sub-networks are then
evaluated, ranked, and filtered based on their inner-pattern consistency and network topology (Figure 1C).
In simple terms, the presented method aims to exhaustively identify n-node sub-networks that exhibit con-
sistent expression patterns of network edges, quantified by the delta of gene expressions. The selected n-node
sub-networks are expanded to include their neighboring nodes, forming more stable network structures (Fig-
ure 1D). By applying principal component analysis to network states, we identified sub-networks capable
of discriminating disease states (Figure 2A-E) [24, 25]. The final set of sub-networks represents the major
dynamics in the PPI network and provides a global picture of pathway dysfunction across cancer subtypes.
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Fig. 1: Diagram of the nSEA algorithm. The algorithm takes a protein-protein interaction (PPI) network
and gene expression profiles of samples as inputs. (A) The PPI network is converted into a sparse network.
Edges are filtered based on the expression di↵erence of their corresponding node pairs. (B) Network enu-
meration concept: All possible 4-node sub-networks are extracted from the original network, forming a list.
Letters represent proteins. Three 4-node sub-networks and their positions in the list are annotated in colors
as examples. (C) Feature selection based on the sub-network list. Sub-networks are ranked according to
their inner-pattern consistency in a decreasing manner. They are then scanned and tested for topology (not
shown in the diagram) from top to bottom. If a sub-network is selected into the feature set, it will exclude
other sub-networks that share any node with it. (D) Selected sub-networks are expanded to neighboring
nodes that share similar patterns, forming larger sub-networks. Solid lines represent edges at the current
step, while dashed lines represent potential edges that can be added during expansion. Non-significant edges
are omitted in this figure. (E) Specific application of nSEA to Lower grade gliomas (this study). Data is
represented by a square and the process is represented by a ”squircle.” The basic properties of the data
between each step were also annotated.

We applied nSEA to LGG samples and identified 5 latent groups/subtypes. We compared our sub-
types with the current classification and identified significant sub-networks related to our clustering. We also
explored the mutation, copy-number variation, and methylation features driving the force behind this classi-
fication and discussed several hypotheses based on these results. Furthermore, we compared our method with
existing disease classification methods and validated our classification using an independent LGG cohort.

2 Methods

2.1 nSEA algorithm

The nSEA algorithm is based on a bottom-up methodology with which a large sparse biological network,
G(V,E), is enumerated and decomposed into n-node subnetworks exhaustively. The goal of the algorithm
is to identify subnetworks that can classify patients into subgroups and also provide distinctive biological
states for each patient group based on these subnetworks. The first step is to create a network that is
sparse enough for further processing. The PPI networks available today are too large for any enumeration
algorithm to complete in a reasonable time. We create a sparse network to speed up the process while
preserving relevance to disease classification by utilizing gene expression profiles. This is accomplished by
using a protein-protein interaction (PPI) network and system-level measurements of gene expression profiles
as inputs. Since the subnetwork vector we will calculate in the next steps represents the first principal
component or the largest variance of the expression values within the subnetwork, edge filtration should also
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facilitate achieving this (See a toy example of how this vector is generated in Section S1.1). Let e 2 E and
v 2 V of the PPI network G = (V,E). We define an edge score Sek between nodes (genes/proteins) vi and
vj as:

Sek = �(gvi � gvj ), ek = (vi, vj), i > j (1)

where � is the standard deviation and g is the expression vector of the gene (Figure 2). Edge filtration was
done by selecting the top 5% edges ranked by the edge score Sek .

Enumeration was done by generating up to 4-node connected subnetworks from the filtered dataset.
While larger n is possible to use, due to exponential increase in size, we only generated up to 4-node
subnetworks only (See Section S1.2). Enumeration of all possible subnetworks was done to exhaustively
identify and rank all possible subnetworks. To filter out insignificant subnetworks, the subnetwork score
(inner-pattern consistency) of each n-node subnetwork was calculated:

�gek = gvi � gvj , ek = (vi, vj), i > j (2)

SSbn =

P
| cor(�gex ,�gey ) |

|e| , x > y (3)

where gvi denotes expression vector of node (gene) vi and � gek denotes edge vector of edge ek. cor denotes
Pearson correlation. |e| denotes the total edge count in the subnetwork. SSbn denotes score for subnetwork.
To avoid extreme cases when only one node has a degree larger than 1, 4-node subnetworks with an average
degree less or equal to 0.75 were discarded. A threshold of the subnetwork score was set and all subnetworks
with a score below the threshold were discarded.

Feature selection for the subnetwork list L was done using Algorithm 1. First, all subnetworks are ranked
in descending order and placed in an array. While there are subnetworks in this array, the top network is
saved as a feature and removed from the array. The feature network is then compared against the other
subnetworks in the array. If any subnetwork has shared genes with the selected feature, it is removed from
the array. The final set of subnetwork features is returned.

Algorithm 1: Feature selection for n-node subnetworks
Data: Set of subnetworks L, scoring function S
Result: Feature Set F, a set of subnetworks with unique nodes
S rank(L , S) // rank subnetworks with score function S from Eq. 3
F ; // Feature set is empty;
while S 6= ; do

t max(S) // first subnetwork in the ranked list is t ;
S  S - t ;
foreach u 2 S do

// check if any nodes (genes) are shared
if V (u) \ V (t) 6= ; then

S S� u;
end

end
F F [ t // add t to Feature set ;

end

For subnetwork expansion, nodes (genes) neighboring the subnetwork (u) were added to the subnetwork
one by one (Algorithm 2). At each iteration for each neighboring node, we test:

S(u) > ST , S(u)� S(j) > T, |E(j)|� |E(u)| > a|E(u)| (4)

where S(u) denotes the subnetwork score at the expansion step. ST denotes the minimum threshold 
for subnetwork score expansion, which is set to be 0.87. T is a threshold for the tolerance of score decrease.
|E(u)| denotes the total number of edges in the subnetwork. a is a constant coe�cient, where the set of
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nodes in the network will not grow in size more than this ratio. j is the network state assuming the node
being considered is added to the subnetwork. The purpose of these two rules is to prevent the subnetwork
from infinite expansion. If the rules are not satisfied, the expansion will stop. In this study, we set T to 0.05
and a to 0.25. We then select the neighboring node (gene) which has the largest score and add that node to
the subnetwork. This process is repeated until no node can be added due to constraints.

Algorithm 2: The subnetwork expansion algorithm
Data: Set of feature subnetworks F, where u 2 F, and networks are scored by function S
ST denotes the minimum threshold constant for subnetwork score expansion (see Section 2.2)
G is the protein-protein interaction network.
Result: Expanded subnetwork u
foreach u 2 F do

repeat
foreach v0 2 V (G) , v 2 V (u) , (v, v0) 2 E(G) do

j  u [ {v0} ;
if S(u) > ST , S(u)� S(j) > T , |E(uj)|� |E(u)| > a|E(u)| then

if maxj < S(j) then
maxj  S(j)
v00  v0

end

else
break;

end

end
u u [ {v00};

until S(u) > ST , S(u)� S(j) > T , |E(uj)|� |E(u)| > a|E(u)|;
end

2.2 Parameter Tuning

The aforementioned values of parameters were determined by parameter tuning. These include the edge
selection proportion (a), the low threshold of subnetwork score (ST ), and the number of clusters for patient
clustering (NC). First, ST and NC were tuned while a was fixed to 5%. Two indicators were used to optimize
ST and NC . One was the clustering stability (CS), and the other one was the distance from the background
(DB). CS is the mean of cluster-consensus values calculated by the ConsensusClusterPlus package. DB

is defined as the distance from background clustering, the clustering result generated by setting ST to 0.
Specifically, the distance is defined as:

DB = 1� FMindex(CST , C0) (5)

where CST is the clustering labels from threshold ST and C0 is the clustering labels when ST = 0. Fowlkes-
Mallows index (FMindex) is a measurement of similarity between two clustering results [26]. By gradually
increasing ST , for each number of clusters (k), the relationship between ST and two indicators, CS and DB ,
was explored (Figure S1A and S1B). Noticeably, DB increases with ST , which indicates that the feature
selection step is necessary in order to generate di↵erent clustering results from the background. For CS , it
is interesting that CS reaches its maximum value when NC is 5. We then further explored the relationship
between CS and DB (Figure S1C). By considering both indicators, three ST values from NC = 5 were very
prominent. Among 0.83, 0.85, and 0.87, we chose 0.87 as the final ST value since when both DB and CS are
similar, CS is a more important parameter than DB .

Second, the proportion of edge selection (a) was evaluated. Due to the limitation of computation power,
5% is almost the maximum percentage of edges we can keep. We then gradually decreased a to inspect
its influence on patient clustering. By fixing DB and CS as mentioned above, FM indices between each
clustering result caused by di↵erent a values were calculated. In addition, we fixed a to 5% but sampled its
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3 -0.36 0.59 -0.01 0.19 0.21 -0.30 
4 -0.33 0.15 -0.24 -0.15 -0.24 -0.35 
5 -0.30 -0.49 -0.38 0.27 0.27 0.09 
6 0.33 -0.11 0.45 -0.18 0.52 -0.37 
7 0.27 0.24 -0.48 -0.15 0.44 0.48 
8 0.36 -0.34 -0.19 0.36 0.00 -0.41 
9 0.32 0.07 0.19 0.14 -0.53 0.30 
10 0.31 0.42 0.00 0.57 0.12 0.01 
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Fig. 2: Subnetwork variables and their relationships A subnetwork consisting of 6 nodes and 8 edges.
The subnetwork state, which represents the expression pattern of this subnetwork in sample 1, is colored
according to gene expression levels. Expression matrix of the subnetwork in (A) with 10 samples. Expression
values are centered and scaled. Edge vector is defined as the di↵erence between expression vectors of the
corresponding node pair. Edge A-D is used here as an example. The edge matrix combines all edge vectors
from the subnetwork. The edge correlation matrix is calculated from the edge matrix. The lower triangle
(diagonal excluded) of the matrix is used to calculate the Pattern Consistency score which is defined as
the mean of the absolute values of the correlations. The subnetwork vector is defined as the first principal
component of the expression matrix. It is used as the summary of the patterns of this subnetwork across all
samples. It is also used to cluster samples in the following steps.

subnetwork features (using 80% of all the features each time) to evaluate the error of clustering caused by
random sampling (Figure S1D). It was interesting that the clustering di↵erence caused by PE was even less
than the clustering di↵erence caused by 80% random sampling. Based on these results, a did not have a
significant impact on patient clustering. Therefore, in this project, a was set to 5% since including more edges
would produce more subnetwork features and therefore provide a better view of the underlying biological
background.

2.3 Clustering of LGG patients and subnetworks

Subnetwork vector was calculated by the prcomp function from R package stats. Consensus clustering of
patients and subnetworks were done with R package consensusplus. Clustering stability was defined as the
mean of cluster-consensus values. Fowlkes-Mallows index was used to measure the distance of current clus-
tering from the background. Consensus clustering of patients and subnetworks was done for 10,000 iterations
with sampling proportion set to 0.75 and hierarchical clustering (Ward’s method). The self-organizing map
was done using R som.

2.4 Clinical analysis and tree models

Survival di↵erence (including p-value) was calculated by survdiff function from R package survival.
Distances between patient groups and previous subtypes were defined as the mean Euclidean distance of all
possible patient pairs from the two clusters. Correlation between subnetwork cluster vectors and telomere
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length or Karnofsky score was calculated with cor.test function with Spearman’s method and exact set to
false. GO term (biological process) of subnetwork groups were annotated with enrichgo function from R
package clusterProfiler. Mutation fold change was defined as the actual mutation count divided by the
expected count.

Tree models were trained with rpart function from R package rpart. For binary classification of LG3,
the parameter minbucket was set to 10, and parameter maxdepth was set to 2. For multi-label classification,
minbucket was set to 22 to simplify the model and maxdepth was left as default (30).

Random forest model is trained with TCGA data using the subset function in R. The training process
used 1000 trees and tried 8 variables at each split, while the importance of the predictor is set to be true.

Oncogenes and driver genes within each group were identified according to CCGD [27] and Uniprot [28]
(Supplementary Table S4). Each subnetwork group was annotated by its corresponding activated oncogenes
as well as the signs of the subnetwork vectors.

2.5 Comparison with existing methods

Clustering without gene selection and also nearest shrunken centroid-based gene selection [29] followed by
network integration was used to compare with the nSEA approach. First, utilizing Consensus clustering,
hierarchical clustering, principle component analysis, and k-means clustering we grouped patients and in-
vestigated the patient groups by running survival analysis and investigating clinical variables. Secondly, we
trained a nearest shrunken centroid classifier. This widely used approach [30–33] is used to identify genes
that stratify LGG samples. Subsequently, a protein-protein interaction (PPI) subnetwork was generated by
overlaying the gene expression profiles with a network downloaded from STRING (Section 2.6), followed by
node pruning and edge filtration. Networks were scored similar to nSEA approach as described in Section 2.1.
PCA scores were subjected to various clustering techniques, including consensus clustering, K-means cluster-
ing, hierarchical clustering, and PCA, to classify individuals into multiple distinct classes. The Kaplan–Meier
plots are generated based on the clustering results.

2.6 Data preparation

Gene expression data were downloaded from previously published studies by TCGA [34] and CGGA [35–
37]. The TCGA datasets were generated by Illumina HiSeq 2000 platform. The level-3 expression data was
obtained from UCSC Xena Portal [38]. Non-tumor samples were removed from the data resulting in data
for 516 patients. Gene expression matrix was already log2 transformed. Genes were normalized using z-score
normalization across all patients. Outliers were identified by adjboxStats from robustbase R package. The
CGGA datasets were genereted by Illumina HiSeq platform. The raw gene counts were downloaded from
CGGA portal from the ‘mRNAseq 693‘ dataset. CGGA data is log-transformed and normalized similar to
the TCGA dataset. PPI data were downloaded from String PPI Database [39]. PPI network was filtered by
eliminating edges with a combined evidence score of less than 0.7. The PPI network we downloaded had
13,562 nodes and 277,172 edges.

3 Results

3.1 Subnetworks Classify LGG Samples into 5 Groups

We employed the n-Node Subnetwork Enumeration Algorithm (nSEA) to analyze LGG gene expression pro-
files [40], comprising 516 patients categorized as astrocytoma (33%), oligodendroglioma (34%), and oligoas-
trocytoma (22%). A protein-protein interaction (PPI) network was derived from the STRING database using
a threshold of combined evidence score set to 0.7 [39], resulting in an undirected PPI network with 13,562
nodes and 277,172 edges (Figure 1E). A sparse network was constructed by retaining the top 5% edges based
on edge vector deviation (Figure 1A; Figure 2C), yielding 5,681 nodes and 13,643 edges. The subnetwork size
(n) was set to 4 for balance between robustness and computational e�ciency, generating a total of 25,413,392
4-node subnetworks through subnetwork enumeration.

We investigated diverse properties of subnetwork feature sets to determine the optimal threshold for
inner-pattern consistency in subnetwork selection. Decreasing the threshold led to an incremental rise in
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Fig. 3: Patient Groups and Subnetwork Clusters (A) Distance from background versus clustering sta-
bility from di↵erent inner-pattern consistency thresholds. 0.87 is highlighted in red. (B) Self-organizing map
with 100 units. Patients were mapped to the units, with di↵erent shapes representing di↵erent patient groups.
Units were also annotated with groups by majority voting. (C) Heatmap of subnetwork versus patients. LGG
patients were clustered into 5 groups (LG1⇠5) by consensus clustering using Euclidean distance. Subnet-
works were clustered into 8 clusters by consensus clustering using absolute Pearson correlation distance. The
sign of each subnetwork vector was adjusted to positively correlate with selected oncogenes or driver genes.

subnetwork inclusion in each feature set until saturation (Figure 3A). Clustering, based on subnetwork state
matrices formed from the first principal component of subnetwork expression (Figure 2F), was then assessed
for stability across thresholds. Interestingly, clustering stability peaked at both ends of the threshold curve
for cluster numbers between 4 and 7 (Figure S1B), indicating distinct clustering patterns between high and
low-threshold feature sets. Employing stability curves, we selected 5 clusters based on the relative change of
cumulative distribution function (CDF) area (Figure S2E) [41].
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Fig. 4: The Kaplan Meier Plot shows the survival analysis
for the TGGA patient groups based on TCGA prognostic
networks. The p� value < 4.1� e15 show that groups have
distinct survival patterns.

Upon fixing the cluster number at 5,
we applied the selection algorithm without a
threshold to create a background for compar-
ison against feature-based clustering (Figure
S2C). The transition from background to high-
threshold clustering was evident by a sharp in-
crease around threshold 0.8. Examining the re-
lationship between clustering stability and dis-
tance from the background revealed optimal
thresholds (0.80 to 0.87) with high stability
and separation (Figure 2A). Opting for 0.87
over 0.83 and 0.85, we selected a threshold con-
ducive to subsequent steps.

Patient samples were clustered based on
subnetwork state matrices derived from a fi-
nal feature set of 92 subnetworks. Subnetwork
sizes ranged from 6 to 11 nodes, predominantly
comprising 6-node subnetworks (57%). Con-
sensus clustering with Ward’s method (10,000
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Consensus Clustering of LGG Patients

Fig. 5: Characterization of Patient Groups (A) Comparison of patient groups with current subtypes
and clusters. (B) Relationship between patient groups and significant gene mutations. (C) Methylation of
MGMT promoter and mutation of TERT promoter ordered by patient groups.

iterations) generated a heatmap ordered by clustering dendrogram, revealing 5 patient groups exhibiting
distinct subnetwork state patterns (Figure 3). Validation of the consensus clustering approach using unsu-
pervised self-organizing map a�rmed unbiased clustering (Figure 3B).

To annotate subnetworks, we performed consensus clustering on subnetwork vectors, identifying 8 sub-
network groups (SNG1⇠8). Genes within each group were divided into 2 clusters by correlations. Notably,
SNG3 and SNG4 were enriched in cancer driver genes, with SNG4 housing 4 oncogenes associated with the
p53 pathway. Protein classes and biological processes analysis further revealed significant associations with
specific subnetwork groups, illuminating potential biological implications (Supplementary Table S2-S3).

Additionally, we explored the correlation between subnetwork vectors and clinical attributes like Karnof-
sky performance score and telomere length (Supplementary Table S6). Remarkably, SNG5 and SNG8 were
significantly correlated with Karnofsky scores (p�value < 8.5e�06 and p�value < 5.0e�03, respectively).
Further, gene cluster 2 of SNG5 contained driver genes linked to mental illnesses (Supplementary Table S7).
Telomere length showed significant association with SNG3, SNG6, and SNG8 (p� value < 0.021), reinforc-
ing links between chromatin remodeling and telomere regulation. Notably, NIPBL and KALRN emerged as
promising gene candidates correlated with distinct patient subgroups, emphasizing their potential roles in
promoter regulation and neuropathological disorders.

3.2 LG3: A Previously Unidentified Patient Group with Distinct Features

A comparison of our patient groups with TCGA subtypes and clusters demonstrated LG1-3’s alignment with
known LGG subtypes. However, LG3 defied such classification, signifying a novel patient group unnoticed in
prior TCGA studies (Table S5). Intriguingly, LG3 exhibited a unique clinical profile and subnetwork state
pattern.

LG4 exhibited the highest proportion of grade-3 tumors and the oldest mean age (Figure S3A-B),
accompanied by the worst Karnofsky performance score (Table S6). LG2 included relatively younger patients
compared to LG1, LG3, and LG5. Telomere length analysis showcased pronounced shortening in LG4,
consistent with previous research (Figure S3C) [42]. Notably, LG3 displayed a distinct advantage with the
highest proportion of patients exhibiting high Karnofsky scores (� 90).
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Survival analysis further underscored the significance of LG3, presenting improved survival compared to
other groups, including LG1, LG2, and LG4, which mirrored IDHmut-codel, IDHmut-non-codel, and IDHwt

subtypes (Figure 4). Decision tree modeling unveiled key subnetworks (SNG4 and SNG5) driving LG3’s
unique clinical outcome (Figure S4).

Methylation analysis elucidated distinct genomic characteristics of LG3, marked by a scarcity of EGFR,
NF1, and PTEN mutations, which could potentially contribute to its favorable prognosis. Additionally,
supervised learning revealed methylation of NIPBL and KALRN as distinguishing features of LG3, o↵ering
novel insights into regulatory mechanisms and neuropathological associations.

3.3 Comparison with existing methods

First, we employed K-means clustering, hierarchical clustering, Principle Component Analysis and Consensus
Clustering to determine subtypes of diseases based on mRNA gene expression profiles alone. While the groups
had significant survival di↵erences, the clusters did not follow any particular pattern and the number of genes
was extremely high to discover any particular pattern from these analysis (Figure S5).

We also compared our method to sample classification from gene expression data by the method of
nearest shrunken centroids [29]. We were able to stratify the samples into four distinct classes by utilizing
sample di↵erences based on correlation analysis. This classification informed the selection of an optimal
gene inclusion threshold through a rigorous cross-validation procedure (PAMR package in R). Subsequently,
we refined our original genomic matrix to incorporate only these curated genes. A tailored Protein-Protein
Interaction (PPI) subnetwork was generated. This started with integrating the genomic expression matrix
with the PPI network, followed by node pruning and edge filtration. High-correlation edges were selected using
a stringent threshold to create subnetworks, revealing gene pairs with potential interconnected functionalities.
While consensus-based clustering for both the PAMR-refined matrix and the PPI subnetwork yielded Kaplan
Meier Plots with statistically significant survival di↵erences, (Figure S6), the clusters had no discernible
feature to study (Figure S7).

3.4 Validation of LGG Patient Groups

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (Days)

Pr
op

or
tio

n 
Su

rv
iva

l

CGGA Survival Curves
p = 1.8e−07

Group 1
Group 2
Group 3
Group 4
Group 5

Fig. 6: The Kaplan Meier Plot shows the survival analysis
for the CGGA patient groups based on TCGA prognostic
network. The p� value < 1.8� e07 show that groups have
distinct survival patterns in this secondary data as well.

To ascertain the robustness of our patient
groups, we validated our findings using an in-
dependent dataset, CGGA693. Through this
validation, we verified the consistent cluster-
ing of LGG patients into LG1-5, confirm-
ing the existence and preservation of distinct
subnetwork-based patient groups across di↵er-
ent datasets and platforms. Further survival
analysis validated the prognostic significance
of these patient groups (Figure 6).

The subnetwork feature vectors from the
TCGA dataset retained their ability to char-
acterize the CGGA693 dataset (Figure 7), so-
lidifying the robustness and generalizability
of our approach. The relationship between
TCGA groups (LG1-5) and CGGA groups fur-
ther confirmed the concordance between these
datasets. Importantly, the conserved survival traits of LG1-5 across datasets validated the clinical relevance
of our patient groups, o↵ering a promising avenue for refined LGG prognosis and treatment strategies.

4 Discussion

Many researchers have proposed subtypes of LGG over the last decade. Classification based on genetic
features rather than histological features has been demonstrated to be more biologically relevant. The most
widely accepted classification is based on molecular subtypes, which classify LGG patients into three clusters
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Fig. 7: The CGGA patient groups are based on the random forest model trained by the 92 prognostic networks
of TCGA data. The 257 lower-grade glioma patient samples (filtered by WHO grade) were clustered into
5 groups (group 1⇠5) by consensus clustering using Euclidean distance and the same 92 network measures
calculated from the expression data provided. The barplot shows clinical features reported by CGGA [35–37].
Note that IDH1 wildtype group is identified as LG4 in this unsupervised approach once more.

based on IDH mutation and chromosome 1p/19q co-deletion. However, recent studies have challenged this
classification by suggesting that TERT may play an important role in glioma development. Despite the
increasing specificity of LGG classification, the underlying mechanisms of these biomarkers remain unclear.
For instance, patients with IDH wildtype genotype experience the worst survival outcomes. However, if
they have both TERT and IDH mutations, their survival length is significantly extended, forming the best
survival group. This suggests the existence of synergistic relationships among driver genes in LGG.

In this context, our developed algorithm, nSEA, o↵ers insight into characterizing these tumors by
capturing dysregulation within pathways. Unlike common bioinformatics approaches that focus on mutations,
methylation, and copy-number variation, our approach employs a di↵erent methodology. By scanning over
nearly thirty million 4-node subnetworks, we provide a comprehensive view of subnetwork states within
LGG. Through feature selection based on clustering statistics, we identify 92 subnetworks that categorize
LGG patients into 5 groups. Three of these groups can be mapped to the general subtypes, demonstrating
the ability of our algorithm to capture biologically significant signals. Additionally, we uncover one patient
group, LG3, which not only exhibits distinct subnetwork states but also holds clinical significance. We further
validate these patient subtype groups using a second cohort, showing that survival traits are conserved even
across di↵erent patient populations.

Further analysis reveals that compared to other groups, LG3 demonstrates the best survival and Karnof-
sky performance score. The decision tree model trained on LG3 suggests that SNG4 and SNG5, enriched
with oncogenes and associated with mental disorders respectively, can e↵ectively distinguish LG3 from other
patients with high accuracy. Mutation analysis indicates that LG3’s improved clinical performance may be
attributed to the absence of mutations in EGFR, NF1, and PTEN. Moreover, a tree model based on methy-
lation data highlights NIPBL and KALRN as two genes responsible for the primary and secondary splits of
the tree respectively. Apart from their roles in transcription regulation through promoters, NIPBL has been
linked to various types of cancers [43], suggesting its potential importance in gliomagenesis. The protein
encoded by KALRN, Kalirin, belongs to the RhoGEF protein family, several members of which have been
identified as cancer driver genes [44]. The Dbl-homologous domain of this protein could potentially become
a target for future drug development [45].

The unsupervised nSEA approach also identified high percentages of cancer driver genes in each sub-
network group. These networks underscore the biological significance of the subnetworks captured by nSEA.
The synergistic nature of driver genes has been extensively studied in the past, and nSEA networks provide
insights into how driver genes synergistically contribute to tumor progression. Our findings o↵er valuable
insights based on correlation analysis. However, it is imperative to establish causative relationships in order
to gain a deeper understanding of each subtype. Driver mutations and epigenetic events warrant further
investigation to delineate these causative relationships. While our approach involved feature selection to cat-
egorize patients into groups, numerous driver genes that could di↵erentiate patient groups were identified.
Any drivers not included could be further explored using nSEA networks to better understand their roles in
gliomagenesis.
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