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Globular proteins have highly compact structures and the corresponding packing interactions
are widely considered as the principal determinant of the native structure. It is therefore
important that theoretical approaches to protein design explicitly take in account packing,
which requires that a full atomic representation of the designed protein is maintained. As a
first step towards this goal, we have developed in this report an inverse folding algorithm with
the aim of specifically designing amino acid sequences which optimise sidechain packing for
a given protein fold. The design is performed by a global Monte Carlo optimisation in
sequence space, with constant amino acid composition and a full-atom representation of the
various protein models. Packing is defined by a Lennard-Jones potential. The program was
tested by designing stable sequence variants for the chymotrypsin inhibitor fold. The final
protein models showed an increase in intramolecular atomic contacts and a decrease in the
overall volume compared to the native structure. Starting from the backbone only of the
target structure, the algorithm did gradually retrieve reliable though limited sequence
information. Higher compatibility might be achieved by improving the potential, however our
results suggest that packing interactions are an essential element of a yet-to-be-defined
successful energy function for protein design.

1. Introduction

It is the ability of proteins to fold into unique three dimensional structures that
allows them to exert their biological function. Hence, comprehending how the
amino acid sequence is related to the 3D conformation in the native state is essential
to an understanding of biological processes. The direct approach to this problem
consists of finding the folded conformation of a protein based on its sequence.
Although considerable theoretical as well as experimental efforts have been made in
recent years, the attainment of this ultimate goal does not appear imminent. An
alternative approach is the inverse protein folding problem, which consists in
identifying which sequences are compatible with a given foldl (for recent reviews see
2-4). Elaboration of this alternative view is not only theoretically interesting but is
also important for protein design and engineering. This paper focuses on sequence
design.

Several global protein sequence design methods have been developed either
using lattice models5- 7 in which a systematic search of all possible sequences is
tractable (see for example 8), or only considering mainchain and CB atoms9-11
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using simplified pairwise potentials in order to compensate (to a certain extent) for
the missing information, such as packing. However, none of these methods can
capture detailed atomic interactions and need to be expanded such that they maintain

a complete all-atom representation of thedesi~ned protein structure. In the earlywork on sequence design, Ponder and Richards 1 provided the first step towards this
goal. Under the assumption that residues in the. interior of a protein are the most
important in determining its fold, they tested systematically combinations of
sidechains fitting in the cores of small proteins, based on steric overlaps, hydrogen
bonding and packing density criteria. The number of residues included in the
combinatorial search was however limited for practical computing reasons. The same
problem was encountered in more recent applications which limited the search in
sequencespace to residuesin the core of the protein13-16. .

Because exposed residues also contribute to the structure and activity of native
proteins, they ought to be included in the sequence design process. In this paper, we
propose a global protein sequence design algorithm which maintains an all-atom
representation. The optimisation procedure is based on a Monte Carlo procedure is
sequence space, where random moves are either accepted or rejected using the
Metropolis criterion 17. At each step of the calculation, a chimeric protein based on
the known backbone structure and the current designed sequence is built, using our
recent fast method for sidechain placementl8. The internal Van der Waals' energy of
this model protein is used to evaluate the compatibility of the sequence with the
desired protein fold. As such the strategy is set up to select sequences with optimised
sidechain packing within a given 3D framework. It was tested on the compact
structure of the chymotrypsin inhibitor of barley seed, PDB 19 code 2CI2. We
compared the properties of the corresponding designed sequences with properties of
the native sequence, in order to assess the extent to which protein sequences are
determined by VdW packing interactions.

Optimisation in sequence space such as that proposed here requires special care,
since the only physical competition existing in the actual folding process is between
different structures for one sequence. In the procedure described here, we try in fact to
mimic natural evolution, which explores different sequences in the framework of one
3D structure, with the difference that this exploration is done at the DNA level, and
not directly at the 3D structure level. This difference between folding and sequence
design raises the problem of specificity, i.e. the incompatibility of the designed
sequences with folds different from the specified one. This is discussed below.

2. Methods

A good strategy for protein design requires that the designed sequence shows a high
compatibility with the desired structure while at the same time exhibiting low
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compatibility with alternative structures, i.e. the "design in" and "design out"
procedures proposed by Yue and Di1l5. A thorough discussion on this issue was
recently presented by Jones3. To alleviate this problem we use in this study the
approach described by Shakhnovich and Gutin20 in which the sequence composition
is maintained during the sequence optimisation. This sequence constraint was also
added to account for the fact that the amino acid composition of a protein is known
to be highly dependent on its folding class21.

Most methods which try to solve the protein folding problem or inverse protein
folding problems have two components, i.e. an optimisation algorithm, and a
procedure that measures sequence-structure fitness:

2.1 Monte Carlo optimisation in sequence space

Optimal sequences with a given amino acid composition can be obtained through a
Monte Carlo simulation in sequence space, following the strategy described by
Shakhnovich and Gutin20. Starting from a random sequence SO with the required
composition, whose energy is EO, two positions are chosen at random, and the
corresponding amino acid types are exchanged. The energy E 1 of the new sequence
S 1 is calculated, and the move is accepted or rejected according to the Metropolis
acceptanceprobabilitygiven by17 :

{

EI-EO

P{SO ~ SI} = e Tmc if El- EO> 0
1 otherwise

where Tmc is a parameter usually referred to as the temperature of the Monte Carlo
simulation.

(1)

2.2 Sequence structure fitness

The coordinates of the backbone atoms (including CB) of the desired target structure
are given as input to our programs. For residue positions occupied by glycine in the
target structure, a CB is built using standard geometry when required. The current
sequence during the Monte Carlo simulation is threaded on this backbone, and
sidechains are positioned using our approach based on an iterative self consistent
mean field theory 18. Sidechain conformations are selected from a fixed set of
rotamers22, and the selection is based solely on a Lennard Jones potential for VdW
interactions; no full energy minimisation is performed at the end to remove possible
clashes between rotamers, for sake of computing efficiency. The Lennard-Jones
potential of the final model is used to score the compatibility of the corresponding
sequence with the target fold.
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2.3 Implementation for computing efficiency

Our sidechain placement technique is based on a fixed set of sidechain positions.
Since the backbone of the protein is maintained rigid, all possible sidechain-
sidechain interactionscan be calculated once, for all types of amino acids, yielding a
large but efficient energy matrix which can be used at each cycle, both for the mean
field optimisation (see 18 for details), as well as for estimating the energy of the
model proteins. A complete Monte Carlo simulation over 50000 cycles for a 65
residue protein required 7 hours of CPU time on an IBM 43 P computer.

3. Results

3.I Designing protein sequences by optimising sidechain packing

The sequence design procedure was tested on the chymotrypsin inhibitor of barley
seed (PDB code 2CI2; 65 residues). The Monte Carlo simulation was run over
50000 cycles, with Tmc chosen such that the final acceptance ratio is 20% (Tmc =
1). The initial sequence was chosen to be a random reshuffling of the native
sequence. The evolution of the VdW energies of the protein models built from the
designed sequences is shown in Figure 1.

200

100

;>.,
e? 0
~
s::
~

~
~ -1O0~I~ Enat

-200

-300
0 0.5 1 1.5 2 2.5

MC step
3 3.5 4 4.5 5

x 104

Figure 1 : Evolution of the VdW energies of the various sequences threaded on the backbone
of chymotrypsin inhibitor 2CI2 in the course of the Monte Carlo simulation is sequence space.
Enat shows the energy (-110 Kca1/Mol)with which the natural sequence of 2CI2 is fitted into
its own tertiary structure.
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Clearly, the procedure improves packing as defined by Lennard-Jones
interactions, yielding proteins with VdW energies much lower than the native
protein. It should be mentioned that in all these protein models, the position of the
sidechains are approximate, and correspond to discrete conformations derived from a
rotamer library. To test the influence of this approximation on our sequence design
procedure, protein models were selected in the course of the simulation and energy
minimised in vacuo using CHARMM23 version 24bl, based on an all atom force
field. A shifted cut-off for non bonded interaction of 13A and a distance dependent
dielectric factor (e=4R) were used. Results are shown on Figure 2.

-260

-270

-280

~-290
~c
~-300
~
:>-310

-320

-330

-340
0

-60

-70

'f\
I \ *./

I \ ././

I 'x./

VdW nat.

---~--------
-80 ;:....

~
~

-90 5
u
~

-100 ri3

Elec. nat. ~ -110

4.5 5 -120

x 104
0.5 1 1.5 2 2.5

MC step
3 3.5 4

Figure 2 : CHARMM VdW energies (0) and electrostatic energies (x) of protein sequence
variants of 2CI2 selected from the full set of structures derived from the Monte Carlo
simulation shown in Figure 1 and energy minimized, versus the corresponding Monte Carlo
step number. Points were joined by full lines for VdW data and dashed lines for electrostatics
data, for sake of clarity. The VdW energy (-313 KcaVMol) and electrostatics energy (-112
KcallMol) of the native 2CI2 are shown as arrows.

The total energy of the final protein model (+437 KcallMol) is higher than the
total energy of the native protein (+420 KcallMol). However we confirm that our
sequence design procedure improved packing as measured by VdW interactions, and
even designed proteins with slightly better VdW energies than the native protein
(Figure 2). The electrostatic potential, which was not included for sidechain
placement or in the scoring function for the Monte Carlo procedure, is not refined
but remains negative and reasonable (Figure 2).

Improving sidechain packing yields highly compact protein models. This was
monitored by measuring the decrease of the accessible surface areas (ASA) and of the
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volumes of some of the model proteins generated during the Monte Carlo sequence
design. Results are shown on F,igure 3.
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Figure 3 : Evolution of the accessible surface areas (0 joined by full lines) and volumes (x
joined by dashed lines) of selected protein variants of 2CI2 derived from the Monte Carlo
simulation shown in Figure 1, versus the corresponding Monte Carlo step number. ASAnat

(4707 A2) and Vnat (11878 A3) are the ASA and volume of the nativejrotein, respectively.
Surface areas were calculated using the method of Shrake and Rupley2 implemented in our
program ENVIRON25, and an approximate protein volume was derived from the method
proposed by Hao et a126.The ASA and the volume of the final model protein are 12% lower
than the corresponding parameters of the native protein.

3.2 Comparing designed and natural sequences.

An interesting feature of our sequence design procedure is that it succeeds in
gradually retrieving information concerning the native sequence (Figure 4). An
alignment of the final model sequence (bottom) with the native sequence (top) is
given below:

NLKTEWPELVGKSVEEAKKVILQDKPEAQIIVLPVGTIVTMEYRIDRVRLFVDKLDNIAEVPRVG

I II I I I I I I

AGRLIWVIEVGETDLIDLLEIRQFEPVTVDKRNPEGKANVPVVLPVEVIEKKVATMLSKIKDYRQ

9 residues are identical between the two sequences: W6, V10, 011, 121, Q23,
P26, P34, 036 and V48, all located within secondary structures of the protein except
for the first tryptophan. Surprisingly, both core and exposed residues are present:
W6, 121 and V48 are buried, while all six others have a high fraction of their surface
area accessible to solvent. Most of the exposed conserved residues are small. Both
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011 and 036 have positive phi values. Interestingly, L2, which has a positive phi
value of 1550 in the native structure of 2C12, has been replaced by a glycine in the
optimised model protein.

If the Monte Carlo simulation is repeated at infinite temperature (i.e. all
mutations are accepted), the generated sequences are on average 8% identical to the
native sequence, which corresponds to the information contained in the constraint of
constant amino acid composition.
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Figure 4 : Sequence identity between the native sequence of 2CI2 and the sequences
optimized in the course of the Monte Carlo simulation shown in Figure 1. This information
was calculated every 100 cycles, for computing efficiency.

3.3 Specificity of the designed sequence

With our definition of the energy, the sequences we designed are the most stable for
the given chymotrypsin inhibitor fold. But will these sequences fold to this
structure, i.e. are they incompatible with other protein folds? To address this
question "hide-and-seek" computer experiments were performed27 ,28. In this
procedure, the target structure X for a given sequence S is hidden among a large
number of non-native folds C, and the task is to retrieve X using an energy criteria.
Success is achieved if the energy of S threaded on X, E(S,X), is lower than any
E(S,C). A measure of this success is provided by a z-score29, 30 :

E(S, X) - (E(S, C)z=
(J

where <> stands for the average over all conformations C, and 0' is the
corresponding standard deviation.

(2)
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optimised sequence (-3.12) is even lower than the correspondingz-score for the
native sequence (-2.12).

VdW interactions however only des'cribe one aspect of protein structures. Using

a more general energy function such as the potentials of mean force of PROSAII, we
observe that the sequences designed to increase packing density within the framework
of 2CI2 are not specific to this structure.

4. Discussion

Considerable experimental and theoretical efforts have been directed toward de novo
protein design. Though most experimentally designed proteins contain significant
amounts of secondary structures and appear to fold into an approximately correct
topology, they generally lack a well-defined and uniquely structured folded state. A
common suspicion is that these designed proteins lack the specific dense packing
interactions observed in structures of natural proteins. Hence it is important that
theoretical approaches to protein design explicitly take in account packing, which
requires that a full atomic representation of the designed protein is maintained. As a
first step towards this goal, we have developed in this study an all-atom inverse
folding algorithm with the aim of specifically designing amino acid sequences which
optimise sidechain packing for a given protein fold. The design is performed by a
Monte Carlo optimisation in sequence space, with constant amino acid composition.
Packing is defined by a Lennard-Jones potential. Using this program, we have
designed highly compact variants of the chymotrypsin inhibitor 2C12. The final
protein model had better van der Waals packing interactions than the native structure.
Its density was higher, as observed by smaller total accessible surface areas, as well
as by a smaller overall volume, when compared with the native fold. Similar results
(not shown) were obtained with chicken triosephosphate isomerase (PDB code
1TIM; 245 residues).

At this stage, our algorithm succeeded in optimising sidechain packing. Can
this be of some use for protein design? Starting from the backbone only of the
target structure, the algorithm gradually retrieved sequence information. In the case
of 2C12, the final optimised sequence was only =:14% identical to the native
sequence. Interestingly, the algorithm imposed glycines in position where they are
favoured due to steric hindrance. No constraints were imposed on the phi angle of

prolines, hence distorted prolines were certainly constructed. This could easily be
corrected by adding an energy term to constrain prolines. These two remarks
illustrate the positive aspects of working with an all-atom representation of the

protein. Though it was not expected that the algorithm would jredict the native
sequence exactly (proteins are known to be tolerant to mutations3 , we did expect to
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find sequences bearing significant resemblance to the native sequence, and this was
not found to be the case. It is not clear however that we could expect much better:
-first, the potential energy function which measures the fitness of a sequence with a
given structure is based on VdW interactions only and is clearly incomplete for a
reliable sequence design algorithm. It does not include for example electrostatics, nor
a potential to estimate hydrophobic interactions. These extra terms might not be
required if the core only of the protein was considered, but are compulsory for a
global sequence design procedure, if we want to maintain patterns of hydrophobic
residues in the core, and hydrophilic residues at the surface of the protein.
- second, native structures do not always privilege sidechain packing: it was shown
recently that local packing in the vicinity of B-sheets are not optimal in order to
preserve the backbone-to-backbone hydrogen bond patterns within the secondary
structures35. It should be mentioned that even if we had used the (yet unknown) true
complete potential, we might not have achieved the native sequence since nature
designs sequences not only for stability but also for function. Natural proteins are
usually not optimal: their stability can be improved when for example buried polar
groups are replaced by hydrophobic residues or when exposed hydrophobic residues
are made polar34. These considerations will be difficult to include in any protein
design scheme.
- finally our procedure may not infer specificity to our sequences. A sequence is
optimal for a given fold if, in addition to being fit to the target fold, it is
incompatible with all other possible folds. A commonly used approach consists in
maximising the so-called 'energy gap', defined as the difference in energy between
the native state and either the best non native conformation36, 37, or the mean
energy of all non native states38, 39. The energy gap condition was found to be
necessary and sufficient for a 27 mer HP model40. It can be included explicitly39, or
implicitly by imposing'the amino acid composition20. Our approach is based on the
latter, and we have shown that by considering VdW interactions only, it did improve
specificity (figure 5). The fact that the sequences we designed reached levels of
specificity better than the native sequence within the framework of VdW
interactions, but were shown to bear no specificity when using another more
complete potential may be related to the problem of the definition of the energy
function mentioned above. This is in agreement with the conclusion reached by Behe
et a141, i.e. that packing' is not the principal cause of conformational specificity.

The procedure itself might be 1uestioned : it was shown to fail in the process of
designing large HP sequences4 . Imposing the amino acid composition introduces
another limitation: a given protein may not include all twenty amino acids, and the
missing ones will never be considered in the sequence design procedure.

The method proposed here can be seen as a framework for a global sequence
design procedure based on a full atom representation of proteins. There is room for
improvement, including the testing of various potential energy functions that would
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provide better estimates of structure-sequence fitness than VdW interaction alone..
Other limitations of our method are related to the constraint of using an overly
precise structural template. Crystallographic studies have shown that both backbone
and sidechain adjustments occur when residues within protein cores are mutated (for
review, see 34). We are currently working on including backbone flexibility, using
multiple copies of the backbone, as described in our earlier work43. The self
consistent mean field approach itself can be improved to include dynamics44.
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