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An approach to construct low resolution models of protein structure from sequence

information using a combination of di�erent methodologies is described. All pos-

sible compact self-avoiding C� conformations (� 10 million) of a small protein

chain were exhaustively enumerated on a tetrahedral lattice. The best scoring

10,000 conformations were selected using a lattice-based scoring function. All-

atom structures were then generated by �tting an o�-lattice four-state �/ model

to the lattice conformations, using idealised helix and sheet values based on pre-

dicted secondary structure. The all-atom conformations were minimised using

ENCAD and scored using a second hybrid scoring function. The best scoring 50,

100, and 500 conformations were input to a consensus-based distance geometry

routine that used constraints from each the conformation sets and produced a sin-

gle structure for each set (total of three). Secondary structures were again �tted to

the three structures, and the resulting structures were minimised and scored. The

lowest scoring conformation was taken to be the \correct" answer. The results of

application of this method to twelve proteins are presented.

1 Introduction

The prediction of protein three dimensional structure from sequence alone

with accuracy rivalling that of experiment is an unsolved problem. However,

for certain classes of small globular proteins, it is possible, in some cases,

to computationally generate low resolution models of a sequence (� 6 �A C�

root mean square deviation of the coordinates (cRMSD) from the experimental

structure)1;2. As electron microscopists have demonstrated, even low resolution

models can yield valuable insights about the function of a protein. Given the

large number of sequences being determined and the relatively slow progress of

protein structure prediction methods, low resolution models generated by cur-

rent approaches can be used to elucidate details about structure and function

for proteins whose atomic structure has not been determined experimentally.

aCorresponding author; E-mail: ram@zen.stanford.edu
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Exhaustively enumerate all possible
compact conformations of a protein
on a tetrahedral lattice (~10 million)

Select the best scoring 10,000 conformations
using a lattice−based scoring function

Construct all−atom models by fitting a four−state
off−lattice model to the lattice conformations, using
idealised helix and sheet phi/psi values for residues
predicted by PHD to be in helix and sheet secondary
structure

Minimise using ENCAD

Score using a combination of an all−atom distance
depedent Bayesian function (RAPDF), a residue−residue
contact function (Shell), and a hydrophobic compactness
function (HCF)

Use the 50, 100, and 500 best scoring conformations
(as ranked by the combined function) as input to a
consensus−based distance geometry routine that
produces one final structure for each set (total of
three)

The three structures are then re−fit using the
four−state off−lattice model with predicted secondary
structure, minimised, and scored with the RAPDF; the
best scoring structure is assumed to represent the
correct answer

Figure 1: Flow chart describing the methodology used in this work. Many of these steps can

be carried out in parallel via a pipeline.

In this work, we use a combination of approaches described in the litera-

ture, and primarily developed in-house, to construct tertiary models of protein

sequences that have the correct topological arrangement of secondary structure

elements (see Figure 1). A detailed description of the individual components

of the combined approach follows.

2 Methods

2.1 Lattice enumeration and scoring on-lattice

Protein topology is captured by a self-avoiding tetrahedral lattice walk where

each vertex represents 1-4 residues depending on the size of the protein, with a
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maximum walk length of 38. (For a full description, see Hinds and Levitt, 1992

& 1994 3;4.) Lattice spacing between vertices is scaled based on the mean C�-

C� distance obtained from a database of protein conformations. We enumerate

all possible lattice walks that �t within a prede�ned elliptical bounding volume

containing 20% to 50% more vertices than will be used by any particular

structure. We pick out lattice walks that are reasonably compact to have

radius of gyration of up to 1.14 times that of a sphere with the same volume.

To obtain a model, a lattice walk is threaded with the target protein

sequence such that no more than three residues are positioned between each

pair of lattice points along the walk and that each lattice point is occupied by

a speci�c residue. The score for this structure is evaluated using a residue-

residue contact function derived from pairwise amino acid contact frequencies

in a database of experimentally determined structures. We count residue-

residue contacts in a lattice structure in such a way that total numbers of

long-range contacts in lattice and actual structures are roughly similar.

For every compact lattice walk, an iterative dynamic programming pro-

cedure is used to identify one threading arrangement with residue assignment

to lattice points such that a locally optimal pattern of tertiary interactions is

formed. The score for this structure is calculated, and this procedure is re-

peated for all compact lattice walks. The 10,000 best scoring structures were

selected as templates for building all-atom models.

2.2 Secondary structure prediction

Sequences to be modelled were submitted to the PHD PredictProtein Server

(predictprotein@embl-heidelberg.de) 5 and the results returned from the

server were used as-is, without further tuning of the multiple sequence align-

ments or the predictions.

2.3 Secondary structure �tting and all-atom model generation

The low-resolution tetrahedral lattice model only captures overall protein chain

topology, and completely lacks �ne detail of secondary structures. In order to

build an all-atom model, we �t predicted secondary structures to the 10,000

best scoring lattice conformations using an o�-lattice four-state �/ model and

a brute force build-up algorithm 6.

The conformation for a given residue is speci�ed by a set of �,  , and �
angles. The �/ states used for the four-state model were taken from model

B in Park & Levitt, 1995 6: (-57/-47), (-129,124), (-36,108), (108,-36). The

� angles for side chains were �xed to those most frequently observed in a
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database of protein structures 7. All bond lengths and bond angles were set to

idealised values.

Residues predicted to assume helix or sheet with high con�dence (> 5)

were assigned idealised helix and sheet �/ values (the �rst two values in

the four-state model). For all other residues, starting at the N terminus of

the protein, we enumerated all possible conformations for the �rst ten non-

�xed residues using the o�-lattice model, saving 600 conformations which have

lowest cRMSD relative to the corresponding C� atoms of the lattice structure.

Then we added an additional residue at the C terminus of each of the 600

saved conformations in all four possible states (600� 4 = 2400 conformations)

and again saved the 600 conformations with the lowest cRMSD deviation from

the corresponding C� atoms of the lattice structure. This iterative procedure

was repeated for all residues until the entire lattice model was �tted.

2.4 O�-lattice scoring functions

We used a scoring function that combined scores produced by three di�erent

functions: an all-atom distance-dependent conditional probability discrimina-

tory function (RAPDF), a hydrophobic compactness function (HCF), and a

residue-residue contact function (Shell). The scores were combined after being

divided by the respective standard deviation calculated over 10,000 conforma-

tions.

Residue-speci�c all-atom probability discriminatory function (RAPDF)

The all-atom scoring function, RAPDF, was used to calculate the probability

of a conformation being native-like given a set of inter-atomic distances 8. The

conditional probabilities were compiled by counting frequencies of distances

between pairs of atom types in a database of protein structures b. All non-

hydrogen atoms were considered, and a residue-speci�c description of the atoms

was used, i.e., the C� of an alanine is di�erent from the C� of a glycine. This

resulted in a total of 167 atom types. The distances observed were divided into

1.0 �A bins ranging from 3.0 �A to 20.0 �A. Contacts between atom types in the

0-3 �A range were placed in a separate bin, resulting in a total of 18 distance

bins. Distances within a single residue were not included in the counts.

We compiled tables of scores proportional to the negative log conditional

probability that one is observing a native conformation given an an interatomic

distance for all possible pairs of the 167 atom types for the 18 distance ranges.

bA set of 312 unique folds from the SCOP database 9 was used.
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Given a set of distances in a conformation, the probability that the conforma-

tion represents a \correct" fold was evaluated by summing the scores for all

distances and the corresponding atom pairs. A complete description of this

formalism has been published elsewhere 8.

Hydrophobic compactness function (HCF)

The Hydrophobic compactness function (HCF) score for a given conformation

is calculated using the formula:

HCF =

PN

i (�x� xi)
2 + (�y � yi)

2 + (�z � zi)
2

N
(1)

where N is the number of carbon atoms in the protein, and x, y, and z are
the three-dimensional coordinates of those atoms. This measure is the square

of the radius of gyration of the carbon atoms.

Residue-residue contact function (Shell)

The Shell scoring function is described in detail elsewhere 10. Brie
y, it is a

simple pairwise contact function with the form:

E =
X

i=1

X

j>i+1

eabij (2)

where e is the contact score for residues i and j of types a and b, respec-
tively. eabij = eab if dij < 7.0 �A and zero otherwise. All inter-residue distances

dij were measured from an interaction center located 3.0 �A from the C� atom

along the C�-C� vector.

eab = � lnnabobs=n
ab
exp (3)

where nabobs is the number of residue types a and b within 7.0 �A in a database

of proteins. nabexp is the number of contacts expected in a random mixture of

residue types in the database:

nabexp =
X

p

Cp � 2Rab
p

(Np � 2)� (Np � 1)
(4)

For each protein p, Cp is the total number of contacts, R
ab
p is the number of

residue pairs of type a and b separated by at least two residues in the sequence,
and Np is the number of residues.

Pacific Symposium on Biocomputing 4:505-516 (1999) 



2.5 Consensus-based distance geometry

Restraints for metric matrix distance geometry were taken directly from the

best scoring conformation sets. Each inter-C� distance was measured and

stored in 1 �A bins. The upper and lower bounds for a given C�-C� distance

were determined by a jury process. Each distance received a weight equal to

the Boltzmann weight of the structure from which it was measured, i.e.

Wi =
exp(�Ei=kT )

Q
(5)

where E is the score of fold i, and Q is the partition function:

Q =
X

i

exp(�Ei=kT ) (6)

Here, kT was set to 10. In the jury process, the distance bin that received

the most Boltzmann-weighted votes was used to set the upper and lower bound

for a given C�-C� distance.

Distance geometry calculations were performed with the program distgeom

from the TINKER suite. Structures were generated using 10% random pairwise

metrization. E�cient metrization was achieved via a fast shortest path update

algorithm used to re-smooth the lower and upper bounds matrices every time

a trial inter-atomic distance is chosen. Trial distances were selected from ap-

proximately Gaussian distributions between the lower and upper bounds. The

center of the distribution between the upper and lower bounds is a function of

the number and type of input restraints and is consistent with the expected

radius of gyration of the structure. Following metrization, embedding and

majorization, the generated structure is re�ned via 10,000 steps of simulated

annealing against a set of penalty functions which enforce local geometry, chi-

rality, excluded volume, and the input distance restraints. A full description

of this method is given in Huang, et al 11.

2.6 Minimisation procedures and generation of �nal models

All-atom models generated after the �tting procedure were minimised for 200

steps using ENCAD 12;13;14;15. For each protein, the three structures from the

consensus-based distance geometry were minimised for 2000 steps after �tting

using both high con�dence and complete secondary structure assignments by

PHD, as described previously. The conformation with the lowest score, as

evaluated by the all-atom scoring function RAPDF, was taken to represent

the �nal selection.
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2.7 Handling mirror images

The lattice enumeration procedure only generates low resolution C� structures

with no secondary structure information, and as a result, for a given lattice

walk, a structure and its mirror image cannot be distinguished. Likewise,

the embedding of the distance matrix in three-dimensions has two possible

solutions: a structure and its mirror image. Since mirror images cannot be

distinguished by the lattice-based residue contact potential or by the distance

geometry procedure, for this particular work we chose the conformation that

has lower cRMSD compared with native structure (note that this procedure

cannot be used for \blind" prediction). However, further analysis showed that

in almost all cases, this structure was readily discernible by the handedness

of the �-helices or by the all-atom scoring function (RAPDF), since the local

environment is di�erent between right and left handed helices. This supports

the view that all-atom models of mirror image structures will have di�erent

local environments that can be distinguished by all-atom potentials, due to

handedness of amino acids and secondary structures.

2.8 Selection of a test set of proteins

A set of twelve small proteins (<= 110 residues) representing di�erent fold

classes was chosen as a test set. Half these proteins were targets for the second

meeting on the Critical Assessment of protein Structure Prediction methods

(CASP2), but the model building described in this work is not blind prediction.

The reason we used CASP2 proteins is because they are more realistic test

cases (for example, the secondary structure prediction accuracy for this set

of six proteins is generally lower compared to the other six and the sizes of

the proteins are generally larger). Table 1 lists the proteins that were used to

generate test sets, along with the results. All proteins involved in the test sets

were not used in compilation of the scoring functions, i.e., the procedure was

properly jack-knifed.

3 Results and discussion

3.1 Accuracy of model construction for twelve proteins

Table 1 gives the cRMSDs for the structure with the lowest score after passing

it through all the �lters. For �ve out of twelve proteins, we are able to identify

the correct topology of the protein and produce conformations that are � 6.0
�A to the experimental structure (see example in Figure 2). For nine out of

twelve proteins, we sample the conformational space adequately to ensure that
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Table 1: Results of application of the combined approach for ab initio structure prediction

to a set of twelve proteins. For each protein, the Protein Data Bank (PDB) 16 identi�er, the

length, the approximate class, and the three-state (helix, sheet, other) secondary structure

prediction accuracy (Q3) of the PHD prediction, relative to the DSSP 17 assignments is

given. Also shown are the range of cRMSDs for the 10,000 conformations after secondary

structure �tting, and the cRMSD for the �nal selection. Proteins that were targets for the

second meeting on the Critical Assessment of protein Structure Prediction methods (CASP2)

are indicated, but we emphasise that the model building described in this work is not blind

prediction. In general, the method fails on large mostly � proteins and works best on small

�-helical proteins.

Protein Size Class CASP2 Secondary cRMSD cRMSD

(PDB structure range (�A)

code) prediction (�A)
accuracy
(Q3/%)a

1fca 55 � 78.1 5.09 - 12.06 5.90

1pgb 56 �+ � 57.1 5.60 - 13.30 8.41

1trl-A 62 � 96.8 5.30 - 13.16 6.35

1fgp 67 � Y 65.7 7.80 - 14.40 10.93

1ctf 68 �+ � 72.0 5.45 - 13.54 5.75

1dkt-A 72 � 72.2 6.68 - 14.79 7.80

1sro 76 � Y 64.5 7.30 - 15.42 9.68

4icb 76 � 85.5 4.74 - 13.28 4.95

1nkl 78 � Y 78.2 5.26 - 14.23 5.70

1beo 98 � Y 54.0 6.96 - 15.94 11.13

1aa2 108 � Y 75.9 6.18 - 15.28 11.08

1jer 110 � Y 69.0 9.55 - 17.53 13.60

average 77 - - 72.4 6.32 - 14.41 8.44

a conformation representing the correct topology is available in the sample

space. The correct topologies are sampled and identi�ed even in cases where

the secondary structure assignments were not necessarily very accurate (Figure

3). There is no clear dependence of success on protein size, but it is notable

that the three failres (PDB codes 1fgp, 1sro, and 1jer) are all � class proteins.

3.2 Computation times

For small proteins (less than 80 residues), the computation time for each pro-

tein is approximately three CPU days on a 533 MHz alpha processor for the

entire process of building a model from sequence. The method is highly paral-

lelisable (via a pipeline) and a large number of proteins (for example, complete

small genomes) can be modelled using a farm of independent processors.
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Figure 2: Comparison of the experimental conformation (left) and the �nal model (right) for

4icb/Calbindin. The model on the right has a cRMSD of 4.95 �A relative to the experimental

structure.

1nkl ---HHHHHHHHHHHHHHH-----HHHHHHHHHHHHHH----HHHHHHHHHH-----HHHHH----HHHHHHH------

PHD -----HHHHHHHHHHH----------HHHHHHH------------HHHHHHHHHHHHHHH--------EEE-------

Figure 3: Comparison of the DSSP assignment for NK-Lysin (1nkl) and the high con�dence

PHD secondary structure prediction (H - �-helix; E - �-strand). The PHD assignments above

were used as is for the �tting of the 10,000 structures, resulting in sampled conformations as

low as 5.26 �A cRMSD, with a �nal selection of 5.70 �A. Conformations with these relatively

low cRMSD values are observed even though the residues in �nal helix in NK-Lysin are �xed

in �-stand conformation in the generated models.

3.3 Comparison to other methods

The results presented here are fairly promising for ab initio structure predic-

tion, given that low resolution models can provide important biological insights

into function and/or suggest further means of probing function. Recently, Or-

tiz et al 2 have reported interesting results for a set of twenty small proteins.

Based on a qualitative comparison, it would appear that the results presented

here are not as impressive as the results by Ortiz et al 2. However, the method

applied here is completely automated, is fairly tolerant of secondary struc-

ture prediction accuracy (see Figure 3), does not require multiple sequence

alignment information, and can be applied to be proteins as large as a hun-

dred residues or more. Further, it is di�cult to make a direct comparison as

the proteins for which �nal models were constructed by the two methods are

di�erent. In cases where both methods build a model for the same protein

(1nkl/NK-Lysin and 4icb/Calbindin), the C� cRMSDs are similar: 5.6 �A vs.
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5.7 �A and 4.5 �A vs. 4.9 �A respectively for the approach of Ortiz et al 2 and

the one described here.

Baker and colleagues 1 have reported on the ab initio generation of low

RMSD conformations for a set of six small proteins, but their scoring function

was not able to distinguish the conformation with the correct topology. For

the two proteins common to the studies (4icb/Calbindin and 1pgb/Protein G),

the best C� cRMSD values in the sample space are similar: 4.7 �A vs. 4.9 �A

and 6.3 �A vs. 5.6 �A respectively for the approach of Baker and colleagues 1

and the one described here.

It must be stressed that all the models constructed here are not \blind"

prediction. We are testing this method at the third meeting on the Critical

Assessment of Protein Structure Prediction (CASP3) which will enable us to

make a de�nitive statement on the utility of this approach, particularly in

comparison to other ab initio structure prediction methods.

3.4 Predictive power of this approach

The prediction quality of our method appears dependent on the secondary

structure content of the protein to be modeled. This method does worse on �
proteins, particularly if they are relatively large (over 100 residues). One reason

for this results from simplicity of the lattice representation used in this work.

Table 1 shows that the sampling range for the 10,000 structures for mostly

� proteins is not adequate for the scoring functions used to be su�ciently

discriminative. �+� proteins appear to have have mixed performance based on
the limited data in Table 1. On a positive note, the approach works fairly well

for helical proteins, both in terms of sampling and in terms of �nal selection.

With the current lattice scheme, we are limited by the degree of exhaustive

enumeration that is done. Further, it is not possible to justify modi�cation or

tuning of secondary structure predictions when the correct answer is known.

For the predictions at CASP3, we are exploring the conformational space to the

extent that computational limits will permit (using longer lattice walk lengths

and larger boundaries). We also use a consensus-based secondary structure

prediction approach, which should lead to improved accuracy. The 
ip side is

that most of the CASP3 targets are generally larger than 100 residues.

Even though the average model building accuracy is 8.44 �A cRMSD, the

average cRMSD for the best conformation in the 10,000 structures is 6.32 �A

for the twelve proteins. Thus better discrimination on the part of the scoring

functions could potentially lead to more folds being correctly identi�ed ab

initio.
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3.5 Availability of test sets and software

The best scoring sets of structures for the twelve proteins and the software for

�tting and scoring of these conformations is available via the Decoys 'R Us

database at <http://dd.stanford.edu/dd/>. The TINKER suite of pro-

grams is available at <http://dasher.wustl.edu/tinker/>.

Acknowledgments

We are extremely grateful to Patrice Koehl for providing us with e�cient

FORTRAN source code to construct protein models given a set of �/ /� angles
and to calculate the best-�t RMSD between conformations, and to Jay Ponder

for TINKER and helpful advice on its application. This work was supported

in part by a Burroughs Wellcome Fund Postdoctoral Fellowship awarded by

the NSF Program in Mathematics and Molecular Biology to Ram Samudrala,

a Howard Hughes Medical Institute Predoctoral Fellowship to Yu Xia, a Jane

Co�n Childs Memorial Fund Fellowship to Enoch Huang, and NIH Grant GM

41455 to Michael Levitt.

References

1. K.T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of

protein tertiary structures from fragments with similar local sequences

using simulated annealing and bayesian scoring functions. J. Mol. Biol.,

268:209{225, 1997.

2. A. Ortiz, A. Kolinski, and J. Skolnick. Fold assembly of small proteins

using monte carlo simulations driven by restraints derived from multiple

sequence alignments. J. Mol. Biol., 277:419{448, 1998.

3. D.A. Hinds and M. Levitt. A lattice model for protein structure pre-

diction at low resolution. Proc. Natl. Acad. Sci. USA, 89:2536{2540,

1992.

4. D.A. Hinds and M. Levitt. Exploring conformational space with a simple

lattice model for protein structure. J. Mol. Biol., 243:668{682, 1994.

5. B. Rost, C. Sander, and R. Scheider. Phd - an automatic mail server

for protein secondary structure prediction. Comput. Appl. Biosci.,

10:53{60, 1993.

6. B. Park and M. Levitt. The complexity and accuracy of discrete state

models of protein structure. J. Mol. Biol., 249:493{507, 1995.

7. R. Samudrala, E.S. Huang, and M. Levitt. Side chain construction on

non-native main chains using an all-atom discrimatory function. In

Pacific Symposium on Biocomputing 4:505-516 (1999) 



preparation, 1998.

8. R. Samudrala and J. Moult. An all-atom distance dependent conditional

probability discriminatory function for protein structure prediction. J.

Mol. Biol., 275:895{916, 1997.

9. T.J.P. Hubbard, A.G. Murzin, S.E. Brenner, and C. Chothia. Scop: a

structural classi�cation of proteins database. Nucleic Acids Res., 25:236{

239, 1997.

10. B. Park, E.S. Huang, and M. Levitt. Factors a�ecting the ability of

energy functions to discriminate correct from incorrect folds. J. Mol.

Biol., 266:831{846, 1997.

11. E.S. Huang, R. Samudrala, and J. Ponder. Distance geometry generates

native-like folds for small helical proteins using the consensus distances

of predicted protein structures. Protein Sci. (in press), 1998.

12. M. Levitt and S. Lifson. Re�nement of protein conformations using a

macromolecular energy minimization procedure. J. Mol. Biol., 46:269{

279, 1969.

13. M. Levitt. Energy re�nement of hen egg-white lysozyme. J. Mol. Biol.,

82:393{420, 1974.

14. M. Levitt. Molecular dynamics of native protein. J. Mol. Biol., 168:595{

620, 1983.

15. M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett. Potential energy

function and parameters for simulations of the molecular dynamics of

proteins and nucleic acids in solution. Comp. Phys. Comm., 91:215{

231, 1995.

16. F.C. Bernstein, T.F. Koetzle, G.J. Williams, E.E.J. Meyer, M.D. Brice,

J.R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tsumi. The protein

data bank: A computer-based archival �le for macromolecular structures.

J. Mol. Biol., 112:535{542, 1977.

17. W. Kabsch and C. Sander. Dictionary of protein secondary struc-

ture: Pattern recognition of hydrogen-bonded and geometrical features.

Biopolymers, 22:2577{2637, 1983.

Pacific Symposium on Biocomputing 4:505-516 (1999) 


