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1. Introduction

Understanding the function of biological macromolecules and their interactions is a grand
challenge of modern biology, and a key foundation for biomedical research.1,2 It is now evident
that the function of these molecules, in isolation or in groups, can be productively studied in
the context of evolution.3,4 Therefore, understanding how these molecules and their functions
evolve is an important step in understanding the specific events that lead to observable changes
in molecular and biological processes.

With the advent of high-throughput technologies and the rapid accumulation of molecular
data over the past several decades, the evolution of molecular function can be systematically
studied at multiple levels. This includes the evolution of protein structure, 3D organization
and dynamics, protein and gene expression, as well as the higher-level organization of function
contained within pathways.5–11 New experiments using the latest gene-editing technologies
(such as CRISPR-Cas9) have also made it possible to directly test hypotheses about function
in almost any organism.12 Combining these data with theory and computational tools taken
from evolutionary biology and related fields has led to an explosion in the study of how
function evolves.

2. Overview of Contributions

Our session includes four accepted papers covering a variety of the subjects in this field. The
papers address biological questions from metabolic processes to the evolution of duplicated
genes; they use computational methods ranging from learning functions on biological net-
works to the optimal way to choose clustering parameters to identify homologs. Bowerman
et al. investigate a set of about one hundred fully sequenced bacterial species mapped onto a
space of metabolic variants via a literature search. They subsequently use these data to learn
metabolic signatures among these species, an approach that can ultimately lead to a predic-
tive system of metabolic potential for any bacterial species. Cao and Cowen study protein
function transfer within a single species and ask under what conditions it leads to accurate
prediction. Several sequence, network, and evolutionary features were examined to conclude
that the level of sequence divergence is the major determinant of accurate function transfer
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among within-species paralogs in yeast. The paper relates to several earlier studies addressing
evolutionary relationships and functional similarity.13–17 Wang et al. present and evaluate a
new approach for protein function prediction. Their method is based on amino acid sequences
and protein-protein interaction networks over multiple species, integrated into a single hetero-
geneous network. Network integration is often challenging to formalize considering practical
problems such as missing data, sample selection bias, and noise in available protein-protein
interactions. Nevertheless, the approach showed good performance upon data integration and
provided the insight that the combination of data sources contributed to increased accuracy.
Finally, Wiwie and Röttger study the behavior and performance of several clustering algo-
rithms in the context of detecting protein families in similarity graphs. Protein clustering is
difficult owing to the unequal sizes of homologous families and the sensitivity of clusters to
the parameters of the algorithm. They show that the original data can, in principle, be used
to predict clustering performance but also highlight difficulties in finding optimal clustering
parameters.
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With continued rapid growth in the number and quality of fully sequenced and accurately 
annotated bacterial genomes, we have unprecedented opportunities to understand 
metabolic diversity. We selected 101 diverse and representative completely sequenced 
bacteria and implemented a manual curation effort to identify 846 unique metabolic 
variants present in these bacteria. The presence or absence of these variants act as a 
metabolic signature for each of the bacteria, which can then be used to understand 
similarities and differences between and across bacterial groups. We propose a novel and 
robust method of summarizing metabolic diversity using metabolic signatures and use this 
method to generate a metabolic tree, clustering metabolically similar organisms. Resulting 
analysis of the metabolic tree confirms strong associations with well-established biological 
results along with direct insight into particular metabolic variants which are most predictive 
of metabolic diversity. The positive results of this manual curation effort and novel method 
development suggest that future work is needed to further expand the set of bacteria to 
which this approach is applied and use the resulting tree to test broad questions about 
metabolic diversity and complexity across the bacterial tree of life. 

																																																								
*	To whom correspondence should be addressed.	
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1.  Introduction 

The metabolism of an organism relies on thousands of biochemical reactions, which comprise a 
network that allows the cell to grow, reproduce, and respond to changing environmental 
conditions. The set of metabolic reactions are defined by the genes the organism carries and dictate 
the metabolic properties of the organism. Developing an understanding of the metabolic reactions 
possible by an organism begins to coalesce into a coherent picture of the metabolic capability of 
the cell. With thousands of annotated genome sequences of microbial organisms available, it is 
now possible to analyze not only the metabolic properties of individual organisms, but also the 
patterns that are seen in metabolic networks across organisms. This includes analyses of the 
evolution of specific metabolic pathways [e.g., 1,2], analyses based on network topology and 
properties [e.g., 3–6], analyses of simulated metabolic networks [e.g., 7,8], and combinations of 
flux balance analysis based modeling of metabolic networks within the context of phylogenies  [9–
11]. Such analyses can lead to a deeper understanding of the metabolic landscape represented by 
microbial diversity. Further, sequence-based taxonomic surveys and metagenomic analyses of 
diverse environments are beginning to allow the systematic exploration of relationships between 
microbial diversity, functional diversity and environment [12–16]. 

Accurate annotation of sequenced genomes is foundational to downstream analyses of 
genomes and metagenome communities. We have reviewed [17] the rapid and accurate subsystem 
approach to genome annotation implemented in the SEED [18] and RAST [19] frameworks. 
Achieving highly accurate automated annotations of genomes in RAST is predicated upon a core 
set of manually curated subsystems in which an expert has catalogued the functional elements of 
a biological process (e.g., a metabolic pathway) and assigned genes to those functional elements 
for a large set of sequenced microbes. This ensures high quality annotation of each subsystem and 
the propagation of knowledge captured in the subsystem to all existing and newly sequenced 
genomes. One outcome of the subsystems approach is the declaration and discovery of metabolic 
variants, which are defined as different forms or combinations of forms of a functioning metabolic 
process [17,20,21]. By identifying patterns of genes comprising a variant, one can quickly assign 
an organism to a particular variant based on the pattern of genes found during the annotation 
process. Thus, an organism is assigned a variant code for each subsystem, which yields an 
abstraction of the metabolic capabilities and the forms of those metabolic functions. Further, a 
catalogue of functional variants that exist for a particular subsystem captures the diversity with 
which that biological process is performed among sequenced microbes. Such a catalogue 
represents a rich data set through which we can gain insight into the complexity and diversity of 
microbial metabolism. 

To enable these types of inquiries and to provide consistent descriptions of metabolic variants 
among sequenced microbes, we selected a representative set of 101 microbial genomes that were 
used to manually define and annotate metabolic variants in 139 distinct subsystems covering much 
of known metabolism. We used this resource to (i.) generate a metabolic signature for each of the 
101 organisms comprised of assigned variants for each of the 139 subsystems and (ii.) conduct 
comparative analyses of metabolic signatures of this diverse set of microbes. These variants and 
their definitions yield a set of high-confidence metabolic subsystems that have been used to aid 
the automated generation of genome-scale metabolic reconstructions [22], provide a framework 
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for automated recognition and propagation of variants to newly sequenced genomes, and allow for 
comparative studies of metabolic variation observed in sequenced microbes.  

2. Results 

2.1		Defining	Metabolic	Variants	for	Sequenced	Bacteria		

A metabolic variant can be described as a particular version of a metabolic process performed by 
an organism [21]. We will use the synthesis of isoprenoids (terpenoids) to illustrate the concept of 
metabolic variants and how particular variants are assigned to an organism. Isoprenoids (e.g., 
chlorophyll and cholesterol) are found in all organisms and are essential to survival. Key 
isoprenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are 
produced via two known biosynthetic pathways, the so-called mevalonate and non-mevalonate 
(DOXP) pathways [1]. The reactions in each pathway are catalyzed by non-homologous proteins, 
and represent two distinct routes to IPP and DMAPP for organisms. In considering the simplest 
case of defining metabolic variants for this metabolic process, each of these routes represent 
separate variants – alternative ways to accomplish the same function of producing precursors to 
isoprenoids. A third variant exists in the case of an organism containing the necessary genes for 
both of these pathways. A fourth variant indicates absence of this function through known 
metabolic pathways in an organism. For each variant (defined in this case as A, B, C and -1, 
respectively), the possible patterns of metabolic steps involved in each variant is generated, and a 
brief verbal description of the variant is given. Assignment of any one organism to a known variant 
of the pathway is accomplished by identifying genes in the organism’s genome that encode 
functions corresponding to the area of metabolism and matching the pattern of metabolic steps the 
organism is predicted to be capable of to one of the defined variants (see Supplemental Figure 1 
for additional details). 

We have implemented the approach of identifying variants, defining variants, and assigning 
variants to organisms in the framework of SEED subsystems [18]. This represents a significant, 
multi-year manual curation effort on the part of SEED annotators through the capture of known 
metabolic diversity described in the literature and the analysis of patterns seen in sequenced 
microbial genomes. We chose a set of 101 bacterial genomes, representing 14 bacterial divisions, 
and 139 subsystems in the SEED that maximized our coverage of metabolism represented in major 
metabolic databases (e.g., KEGG) and that facilitated the automated generation of metabolic 
models for bacteria [22]. We characterized a total of 846 metabolic variants in these subsystems 
that our set of organisms are capable of based on known information of each subsystem and the 
annotated function of genes in each genome. The outcome of this curation effort is a metabolic 
variant catalogue comprising descriptions of naturally occurring variations of central and 
intermediate metabolism for a phylogenetically diverse group of bacteria. Supplemental Figure 2 
and Supplemental Files 1-4 give detailed information on the organisms and variants selected and 
defined. 
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2.2  Analyses of Bacterial Metabolic Signatures 

In order to gain a more thorough understanding of metabolic diversity and how metabolic functions 
are distributed throughout Bacteria, we devised a measure of the metabolic distance, DFM, between 
two organisms based on the curated metabolic variant catalogue. For a given organism i, it is 
possible to summarize the metabolic capabilities as a binary vector, vi, of 846 0’s and 1’s, 
representing the absence and presence, respectively, of each of the 846 metabolic variants. In 
effect, v is a metabolic signature (or barcode) describing the metabolic capabilities of an organism. 
DFM measures the metabolic distance between two given organisms i and j by comparing the 
similarity of vi and vj to the likelihood of observing the similarity between the two vectors by 
chance. We utilized complete linkage hierarchical clustering of all pairwise DFM of organisms in 
our dataset to produce a dendrogram summarizing the relationships of the organisms based on 
metabolic distances (Figure 1). We used a false discovery rate (FDR) of 1 x 10-15 to identify 5 
distinct clusters of organisms (Clusters A through E in Figure 1). Each cluster represents a group 
of organisms with highly similar metabolic signatures. To assess the face validity of the resulting 
metabolic signature tree, we sought to confirm that the ordering seen in the tree met reasonable 
biological expectations. For instance, one would expect that closely related organism pairs are 
likely to be closely paired on the dendrogram – E. coli and Salmonella are nearest neighbors in the 
tree as are two representatives of the genus Shewanella. Furthermore, the four oxygenic 
photosynthetic organisms in the set form a tight cluster (FDR <1 x 10-60, Supplemental Figure 3a, 
organism names colored green). These observations, and many others not detailed here (for 
example, Supplemental Figures 3b and 3c), indicate that the metabolic distance metric reveals 
biologically meaningful patterns and gave us confidence that we could use the tree to address 
additional biological questions of interest. 

2.3  Contribution of Organism Characteristics to Bacterial Metabolic Signatures 

To provide a quantitative estimate of the ability of organism characteristics to explain the 
clustering observed in the metabolic signature tree, we produced a data set capturing 19 
characteristics for each of the 101 organisms, covering attributes such as phylogenetic grouping, 
environment classification, and oxygen utilization (Supplemental File 1). We performed a multiple 
regression analysis, using the 19 phenotypic characteristics to predict metabolic distance. The 
variables in our data set were able to explain 50% of the variance of metabolic distance (r2 = 0.50). 
The top four characteristics contributing to the clustering are genome size, metabolic mode, host 
association, and ability to survive in an intracellular environment, uniquely explaining 19.7%, 
9.6%, 7.5% and 7.2% of the overall variation in metabolic distance, respectively. All other 
characteristics contribute to ~5% or less of the overall r2. Phylogenetic distance ranked 11th of the 
19 characteristics, indicating that only a small fraction of the metabolic distance variance could be 
attributed to phylogeny. A phylogenetic tree of the organisms in this study annotated with 
metabolic signature cluster membership shows the clear mixing of related organisms throughout 
the 5 clusters (Supplemental Figure 2). A follow-up analysis which removed 14 organisms with 
small genomes (Cluster B), showed that there is a slight decrease in the ability to explain the overall 
variation in metabolic distance (r2 = 0.48) with the 19 phenotypes combined, and less predictive  
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Figure 1. Metabolic Signature Tree from complete linkage hierarchical clustering of DFM of organisms. 
Five clusters corresponding to an FDR of 1 x 10-15 are highlighted by shading – Clusters A-E; pink, blue, 
green, orange and yellow, respectively. Subclusters C1 and C2 are indicated by black bars. Organism 
names are colored according to phylogenetic classification: Actionomycetes, Tan; Firmicutes, Gray; 
Cyanobacteria, Green; Bacteroides/Chloribi, Blue; Other, Black; Proteobacteria: Alpha, Red; Beta, Purple; 
Delta, Orange; Epsilon, Brown; Gamma, Pink. 
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ability of genome size (from 19.7% to 6.7%). Full results are provided in Supplemental Figures 4a 
and 4b.  

2.4  Specific Phenotypes Associated with Individual Clusters 

In addition to characterizing the influence of phenotype on the global topology of the metabolic 
tree, it is possible to associate specific phenotypic characteristics with individual clusters of 
organisms in the metabolic tree. We assessed the distribution of each phenotypic characteristic 
within a cluster and compared this to the distribution of that phenotypic character in the other 
clusters to yield a statistical measure of the differential distribution of any one phenotypic trait 
among clusters (see Methods). Each of the clusters is characterized by a particular set of 
phenotypes as summarized in Table 1 that are over or underrepresented at a conservative measure 
of statistical confidence (p < 0.0006). As expected, the phenotypic characters with the lowest p-
values for each cluster correspond to initial observations seen with the overlay of phenotypic 
characters on the metabolic tree, while providing more specificity to the observations and 
highlighting characters that may not be otherwise apparent. Cluster A consists completely of Gram 
negative organisms that also tend to have large genomes (5.2 Mb vs 3.1 Mb average for entire 
dataset). All organisms are phylogenetically related, being members of the α, β, and γ 
Proteobacteria. However, these taxonomic groups are not identified as statistically significant due 
to the broad distribution of other members of these taxonomic groups throughout the clusters (i.e, 
B and E). This result is consistent with the diverse habitats and lifestyles associated with 
Proteobacteria. Cluster B contains organisms that tend to have small genome sizes, are classified 
as intracellular and obligate host associated, and have a low GC%. Obligate intracellular parasites 
tend to have smaller genomes as they require fewer genes due to obtaining resources from the host 
cell and smaller genomes tend to have lower GC content to facilitate evolution through an 
increased mutation rate. Cluster C consists of organisms that tend to be in the phylum Firmicutes, 
families Bacillales or Lactobacillales, are Gram positive, and are anaerobic. Cluster D contains an 
over-representation of Actinomycetes, Gram positive bacteria, and sporulating bacteria. Cluster E 
contains many phylogenetically unrelated organisms, a majority of organisms that have preferred 
metabolic modes other than chemoheterotrophy, and also contains a disproportionate number of 
Gram negative bacteria. 

2.5  Metabolic Variants Associated with Specific Clusters 

As a complementary approach to exploring organism characteristics associated with specific 
clusters, it is also possible to explore whether particular metabolic variants are over- or under-
represented in the specific metabolic clusters. As an example, we observed that Cluster C could be 
divided into two subgroups, C1 and C2. The organisms in Cluster C1 are low-GC Gram positive 
organisms in the phylum Firmicutes with the exception of Fusobacterium; the subcluster can be 
further divided by the oxygen requirement characteristic – the organisms in class Clostridia and 
Fusobacterium are all obligate anaerobes, whereas the organisms in class Bacilli are facultative 
(Figure 1, Supplemental File 1). We hypothesized that there should be specific metabolic variants 
(likely related to respiratory systems) that would distinguish these two groups. To investigate this 
and similar hypotheses, we used an approach that compared the frequencies of metabolic variants 
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in two groups of organisms (e.g., subgroups of Cluster C1) to highlight those variants that were 
the most different between the groups (see Methods for details). In the case of Cluster C1, there 
 

Table 1. Over- and under-representation of characteristics by cluster 

are 12 metabolic variants that are unequally distributed between anaerobic and facultative 
organisms (p-value ≤ 0.05) within the cluster (Supplemental File 5). These 12 variants represent 7 
unique subsystems associated with the synthesis of cofactors, vitamins, and isoprenoids. Three of 
these subsystems are associated with respiratory functions (heme and siroheme biosynthesis, sulfur 
related anaerobic respiratory reductases, and sodium translocating oxidoreductases). There is 
differential distribution between the anaerobic (4 of 5) and facultative (0 of 6) cluster members for 
the presence of sulfur reductases. Likewise, 4 of 5 anaerobic cluster members have an operon of 
rnf like genes encoding putative electron transport complexes associated with nitrogen fixation, 

Cluster Characteristic* 
Present Inside 
Cluster 

Present 
Outside 
Cluster p-value 

A 
Genome Size Mean = 5.2 Mean = 3.1 5.88 x10-6 
Gram Stain Negative 23/23 (100%) 43/78 (55%) 1.22 x10-5 
Gram Stain Positive 0/23 (0%) 26/78 (33%) 6.79 x10-4 

B 

Genome Size Mean = 1.1 Mean = 4 3.71 x10-24 
Intracellular Survival - Obligate Intracellular 8/14 (57%) 0/87 (0%) 1.49 x10-8 
Free Living/Host Associated - Obligate Host Association 12/14 (86%) 10/87 (11%) 3.96 x10-8 
Host Type - Arthropod/Insect 8/14 (57%) 2/87 (2%) 5.94 x10-7 
GC Content 35.5 51.6 1.47 x10-5 
Free Living/Host Associated - Free Living 0/14 (0%) 50/87 (57%) 4.35 x10-5 
Intracellular Survival - Not Applicable 0/14 (0%) 50/87 (57%) 4.35 x10-5 
Habitat Outside Host - Soil 0/14 (0%) 38/87 (44%) 8.39 x10-4 

C 

Taxonomic Class - Mixed Firmicutes 10/17 (59%) 7/84 (8%) 1.17 x10-5 
Gram Stain - Positive 12/17 (71%) 14/84 (17%) 2.25 x10-5 
Oxygen Requirement - Aerobe 1/17 (6%) 47/84 (56%) 1.09 x10-4 
GC Content Mean = 39.5 Mean = 51.4 1.24 x10-4 
Oxygen Requirement - Anaerobe 9/17 (53%) 8/84 (1%) 1.44 x10-4 
Gram Stain - Negative 4/17 (24%) 62/84 (74%) 1.47 x10-4 
Bacillales, Lactobacillales 6/17 (35%) 3/84 (4%) 5.98 x10-4 

D 

Taxonomic Class - Actinomycetes 8/18 (44%) 2/83 (2%) 7.96x10-6 
Gram Stain - Positive 12/18 (67%) 14/83 (17%) 5.73 x10-5 
Sporulation - Sporulating 8/18 (44%) 5/83 (6%) 1.67 x10-4 
Gram Stain - Negative 5/18 (28%) 61/83 (73%) 5.86 x10-4 
Sporulation - Nonsporulating 10/18 (56%) 76/83 (92%) 6.77 x10-4 

E 
Prefered Metabolic Mode - Chemoorganoheterotroph 14/29 (48%) 69/72 (96%) 1.29 x10-7 
Prefered Metabolic Mode - Photolithoautotroph 6/29 (21%) 0/72 (0%) 3.75 x10-4 
Gram Stain - Positive 1/29 (3%) 25/72 (35%) 7.92 x10-4 

*Genome Size given as average number of megabases in group; GC Content given as average percentage 
in group 
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whereas none of the facultative cluster members have this operon, which is consistent with the 
classical differentiation of Clostridia from Bacilli organisms in the low-GC Gram positive group. 

3. Discussion 

We have described a novel approach to examining the metabolic relationships among bacterial 
genomes that focuses on the collection of metabolic variants associated with an organism. The 
vector of metabolic variants succinctly describes the organism’s metabolic capabilities and allows 
for statistical comparison of vectors between organisms that is scalable to thousands of genomes. 
In the current study, we have provided a proof of concept with a phylogenetically diverse set of 
101 bacterial genomes, comprising 846 variants and covering much of known metabolism. The 
variant definitions are the result of a targeted manual curation effort in the framework of the SEED 
database [18], which breaks down bacterial metabolism into subsystems (defined as collections of 
functional roles necessary to perform a cellular function). In this study, 139 subsystems were 
individually examined to define the possible metabolic variants. The outcome of the manual 
curation effort is a set of curated metabolic variants that can be rapidly assigned to bacterial 
genomes and used to compare the metabolic capabilities present in the genomes. 

Many of the approaches to understanding the breadth, conservation and evolution of metabolic 
networks found in the bacterial domain have focused on properties of network architecture such 
as scale, network path length, network motifs, centrality, modularity and connectedness [3,4,23]. 
Common themes are observed in that metabolic networks have been shown to be scale-free and 
highly modular for most organisms. It has been shown that the complexity of a metabolic network 
can be associated with particular lifestyles/habitats. For example, obligate symbionts that 
experience relatively stable environments have less complex networks than organisms that are 
free-living and exposed to many environments. These approaches are highly granular in that they 
connect networks on the level of individual reactions, compounds and enzymes. An extension to 
network based approaches was introduced by Mazurie et al. [5] that compares higher level 
functional units called networks of interacting pathways. These were used to classify organisms 
into phenotypic categories. They observed similar trends with respect to the nature of the networks 
as seen with other network-based approaches and were able to assign functional pathways to 
organisms of particular phenotypes. For instance, free-living and host-associated organisms 
differed with respect to frequency of observed carbohydrate and energy metabolism pathways; 
motile and non-motile organisms differed with respect to xenobiotic degradation pathways. More 
recently, Pearcy et al. [6] introduced a method that produced vectors for an organism whose 
elements described individual network motifs. They analyzed 3 and 4 node motifs that are 
abstractions of specific compound and reaction connections and identified network motifs that 
were enriched for organisms with different habitats/lifestyles, such as aerobic/facultative vs. 
anaerobic. By looking at the reactions and compounds that made up the enriched motifs, it was 
possible to identify specific metabolites associated with the different lifestyles. Patterns such as 
these supported the assertion that environmental conditions shape the properties of metabolic 
networks that occur in organisms. In a departure from analyzing network properties, Poot-
Hernandez et al. [24] calculated linear enzymatic step sequences (ESS) found in metabolic maps 
in KEGG and defined core and peripheral metabolic pathways for 40 gamma proteobacteria 
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species. An analysis of the relationships of ESS vectors among organisms was not conducted. 
Mithani et al. [4] analyzed the presence/absence of enzymatic reactions in pathways of 
Pseudomonas species based on KEGG map reaction mining. They found interesting patterns of 
gains and losses associated with niche specific adaptations to host association. Their approach is 
limited by the restriction to KEGG maps and boundary effects (reactions that appear in more than 
one map do not get connected). Further, the authors noted that other information such as genome 
context could improve understanding of evolutionary processes. The approach that we describe 
here is fundamentally different than those employed to date in that the unit being analyzed – 
variants associated with an organism – is non-network based; implicitly incorporates genome 
context, paralogs, isoenzymes and non-orthologous replacements through manual curation; and 
allows for coverage of metabolic capabilities across the modular nature of networks and their 
representation as disconnected metabolic maps. Further, each variant represents a functioning 
biological process, allowing the succinct assertion of organism capabilities (both positive and 
negative attribution). The analysis of variant vectors and the patterns observed therein give rise to 
clusters of metabolic forms comprised of the organisms and their individual variants. It is then 
possible to attribute the influence of phenotypic characters and phylogenetic relationships to these 
clusters through standard statistical approaches. It would be instructive to map individual variants 
to data types analyzed previously (e.g., networks of interacting pathways, individual network 
motifs, and ESS) to enable systematic comparison of each of these approaches to the variant 
approach. 

We identified five main clusters of metabolically related organisms in our analysis (A-E in Fig. 
1), each of which share some phenotypic traits (Table 1). We also described a complementary 
approach to evaluate which variants are most differentially distributed between clusters on the tree. 
These analyses yield patterns that are consistent with the approaches mentioned above. For 
instance, Cluster B is comprised of organisms that are host-associated and found in relatively stable 
environments; the 144 variants that are significantly differentially distributed (p < 0.05) include 
the absence of functions in amino acid, purine and pyrimidine, and vitamin/co-factor biosynthesis 
pathways (Supplemental File 5). There are other cases where there are hints at what drives the 
members of a cluster together in metabolic space (e.g., Neisseria, Pelagibacter, Xylella, Leptospira 
– amino acid usage; Gluconobacter, Desulfovibrio, Carboxydothermus – extreme environments), 
but the current sampling of 101 organisms limits the statistical analysis of small clusters such as 
these. 

These types of problems will become tractable with the inclusion of new genomes that begin 
to fill out metabolic signature clusters. Importantly, the fundamental structure of the dendrogram 
will not change as new genomes are added given a constant set of defined variants (e.g., Cluster B 
will continue to contain organisms with small genomes/symbionts, Cluster C will contain most 
low GC Gram positive organisms, Cluster D will contain high GC organisms, and Cluster E will 
likely expand and subdivide as representation of metabolically diverse organisms increases). 
Organisms that do not follow these expectations may yield insight into novel combinations of 
metabolic capabilities; the current metabolic clusters represent a framework of hypotheses about 
relationships between suites of metabolic variants associated with any one organism. In contrast, 
as additional metabolic variants are identified, curated and assigned, the nature of the metabolic 
clusters may change. In short, as more well-annotated genomes are included, the statistical power 
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for this type of analysis increases, enhancing our ability to examine the metabolic relationships 
between organisms and what factors impact these metabolic commonalities.  

The proof of concept described in this work serves as a foundation for identifying metabolic 
signatures for all sequenced bacteria and associating those signatures with specific organism 
characteristics and metabolic variants. Analyses of correlations between metabolic variants 
observed across bacterial life will enhance our understanding of the nature of the metabolic space 
occupied by diverse organisms. 

4.  Methods 

4.1  Organisms and Features 

The 101 organisms chosen were representatives of 14 phylogenetic divisions of eubacteria (Supp 
Fig. 2), which provides a reasonable coverage of sequenced microbial diversity with complete 
genomes. Each of the 101 organisms were classified on 19 different phenotypic features based on 
information already present in the SEED and via literature review. The features considered here 
and summary statistics are provided as Supplemental File 1. In order to generate maximum 
likelihood phylogenetic distances for each pair of organisms, we selected a representative 16S 
rRNA sequence of each organism from the Silva SSU Reference Set Release 106 using the ARB 
environment  [25]. RaxML 7.0.4  [26] was then used to generate a set of maximum likelihood 
pairwise distances. Pairwise phylogenetic distances are included as Supplemental File 2. 

4.2  Creating a Metabolic Distance Measure 

We calculated a measure of metabolic distance, DFM, between organisms based on the vector vi, 
where i is the ith organism, of 0’s and 1’s, indicating the presence/absence of the 846 subsystem 
variants. In general, the metabolic distance between organisms i and j, will be a function that 
measures the dissimilarity of vectors vi and vj. While there are numerous options for measuring 
dissimilarity or similarity between two vectors (e.g., Euclidean distance, Pearson correlation), we 
chose to use a novel method based on Fisher’s exact test because of its robustness to the widely 
varying numbers of 0’s and 1’s observed in vector v, along with its ability to directly integrate a 
measure of statistical confidence into the distance measure, making DFM an indirect measurement 
of the likelihood of two organisms possessing the observed degree of overlap in metabolism ‘by 
chance.’ To generate DFM, first, for each of the 5050 (101 ∗ 100/2) pairs of organisms, a 2x2 cross 
tabulation table was created and a Fisher’s exact test p-value was generated. The Fisher’s exact 
test p-value (that is, the likelihood of observing pattern of metabolic consistency by chance) acts 
as a measure of metabolic similarity and is available for all pairs of organisms in Supplemental 
File 6. We transformed p-values using: DFM=300+ln(p) to yield a metric of metabolic distance, 
DFM, which is always greater than 0 in our dataset.  

4.3  Statistical Analyses 

Four main statistical analyses were performed on DFM. First, hierarchical clustering with complete 
linkage was conducted on the 101 organisms using DFM as computed between all 5050 pairs of 
organisms. A dendrogram was created and phenotypic features were overlaid on it to aid in 
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interpretation of subsequent analyses. Clusters of interest on the dendrogram were determined 
using a false discovery rate (FDR) based on the Fisher’s exact test p-values. Second, a multiple 
regression analysis was conducted to investigate the extent to which the metabolic distance, DFM, 
could be explained by the 19 phenotype features. We used a dataset comprising 19 phenotype 
features and metabolic distance for each of the 5050 pairs of organisms (supplemental file #2). 
Models regressed metabolic distance on each of the 19 phenotype features. Third, we conducted 
analyses designed to answer the question “Which phenotypes explain why this cluster (on the 
dendrogram) exists?” After ‘cutting’ the dendrogram by looking at all of the mutually exclusive 
clusters for which all pairs of organisms within the cluster have a certain level of association, we 
wish to compare two mutually exclusive clusters of organisms to attempt to identify phenotypic 
differences in the clusters which are likely candidates for why the organisms separated into two 
mutually exclusive clusters. For categorical phenotypes, a Fisher’s exact test is conducted which 
compares the proportion of organisms in cluster #1 with the phenotypic characteristic to the 
proportion of organisms in cluster #2 with the characteristic. For quantitative phenotypes, a two-
sample t-test is used. Full results for all phenotypes and clusters A, B, C, D, E1 and E2 are provided 
in Supplemental File 7. Lastly, we conducted the same analysis as just described to answer the 
question “Which metabolic variants associate with specific clusters?” by using the Fisher’s exact 
test approach on mutually exclusive clusters, evaluating association between metabolic variants 
and cluster memberships. Unless otherwise indicated, all analyses were conducted using R 
(www.r-project.org). 

Supplemental Files 

All supplemental files are available online at the following URL: 
http://homepages.dordt.edu/ntintle/metsig.zip  
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Current automated computational methods to assign functional labels to unstudied genes often
involve transferring annotation from orthologous or paralogous genes, however such genes can evolve
divergent functions, making such transfer inappropriate. We consider the problem of determining
when it is correct to make such an assignment between paralogs. We construct a benchmark dataset
of two types of similar paralogous pairs of genes in the well-studied model organism S. cerevisiae: one
set of pairs where single deletion mutants have very similar phenotypes (implying similar functions),
and another set of pairs where single deletion mutants have very divergent phenotypes (implying
different functions). State of the art methods for this problem will determine the evolutionary history
of the paralogs with references to multiple related species. Here, we ask a first and simpler question:
we explore to what extent any computational method with access only to data from a single species
can solve this problem.

We consider divergence data (at both the amino acid and nucleotide levels), and network data
(based on the yeast protein-protein interaction network, as captured in BioGRID), and ask if we can
extract features from these data that can distinguish between these sets of paralogous gene pairs.
We find that the best features come from measures of sequence divergence, however, simple network
measures based on degree or centrality or shortest path or diffusion state distance (DSD), or shared
neighborhood in the yeast protein-protein interaction (PPI) network also contain some signal. One
should, in general, not transfer function if sequence divergence is too high. Further improvements
in classification will need to come from more computationally expensive but much more powerful
evolutionary methods that incorporate ancestral states and measure evolutionary divergence over
multiple species based on evolutionary trees.

Keywords: protein function prediction, paralogs

1. Introduction

When new genes are sequenced and deposited into databases, a variety of manual and au-
tomated curation is involved in associating functional annotation to these genes. One of the
most common practices is to transfer functions based on some threshold of sequence similar-
ity.1 However, when this sequence similarity threshold results in automatically transferring
functional annotation between all pairs of orthologous and paralogous genes, this is deeply
problematic because there are cases when the functions of the genes have diverged.2

In this paper, we consider the question of transfer of functional annotation solely for paralo-
gous genes. It was widely believed that paralogs were more likely to acquire divergent functions
than orthologs (the so-called ortholog conjecture),3,4 but in recent years, this assumption has
been the subject of spirited debate.3–6 The present study requires neither a positive nor neg-
ative resolution of the ortholog conjecture, nor does it directly shed light on the conjecture
itself, since it focuses only on a practical problem in the field of automatic function prediction
artificially restricted to a single species: we ask whether any computational method with access
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to information based only on the single species in which the paralogs reside, can distinguish
the pairs whose functional roles are similar from those where functional roles are diverged.

We construct a benchmark dataset of two types of paralogous pairs of genes in the well-
studied model organism S. cerevisiae: one set of pairs where single deletion mutants have very
similar phenotypes (implying similar function), and another set of pairs where single deletion
mutants have very divergent phenotypes (implying different function). We are fortunate in
that there exist data in S. cerevisiae where the similarity of phenotypes of deletion mutants
has been categorized: in particular, the extensive phenotype data from Hillenmeyer et al.7

who look at the phenotypes of homozygous single gene deletion knockouts under 418 different
conditions such as depletion of certain amino acids or nutrients.

The Hillenmeyer et al data7 allows us to construct a gold-standard benchmark dataset of
paralogous yeast gene pairs, some with highly similar and some with highly dissimilar func-
tions, as follows. We consider two different datasets of paralogous gene pairs in S. cerevisiae.
The first dataset we construct from scratch by taking pairs of yeast genes with high sequence
similarity. The second dataset is derived from the study of the putative whole genome du-
plication event for S. cerevisiae by Kellis et al.8 who identify 450 paralogous gene pairs. For
each of the paralog pairs in the two datasets we compute a co-fitness score7 to represent to
what extent the two gene deletion knockouts have similar phenotypes. We choose a subset of
these paralogs with very high co-fitness score and a subset of these paralogs with very low
co-fitness score. The subset with the high co-fitness score are our same or conserved function
paralogs, and the subset with the low co-fitness score are our divergent function paralogs.
Note that Hillenmeyer et al.7 has already shown that when genes are clustered using such a
co-fitness score, they find clusters that are consistent with shared Gene Ontology annotations
for biological process and molecular functions. Gu et al.9 also uses fitness effect data to study
functional compensation among gene duplicates.

We note that a recent study of Plata and Vitkup10 also considered the genetic robustness
and functional evolution of gene duplicates in yeast, based on the same gene deletion knockout
set of Hillenmeyer et al. However, they considered a measure that is different than our co-fitness
score over the collection of gene deletion mutants. In particular, under the assumption that
paralogs with similar function could mutually compensate for each other whereas paralogs with
divergent function could not, they considered the average number of “sensitive” conditions (i.e.
conditions where a growth defect was observed with a P value cutoff of 0.01) between paralog
pairs. Paralogs with a small average number of conditions where there was a growth defect
(also alternatively, with a small average fraction of conditions where there was data, to deal
with missing data), they assumed meant that the paralogs were mutually able to compensate
for one another in the deletion mutant. We discuss how well this measure correlates with our
“similar function” co-fitness score below.

In addition to nucleotide and amino acid sequence similarity, we sought to investigate
whether simple features of the PPI network would also help distinguish same function from
divergent function paralogs. Mika and Rost11 showed that PPI interactions were better con-
served within species than across species: a sort of anti-ortholog conjecture for interlogs. Thus
it is reasonable to think that the interaction partners of a gene will be more similar for genes
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with similar functions; the problem is of course complicated by the fact that existing PPI data
is both noisy and also extremely incomplete. We consider some simple well-studied parameters
of this network, namely degree, shortest path distance, shared neighborhood, as well as our
diffusion-based DSD measure,12,13 which has been shown to be especially robust to noise and
missing data,14 to find out to what extent these are informative features for our problem.

2. Related work

The most related paper to the current one is the previously mentioned work of Plata and
Vitkup.10 In addition, there have been some previous studies that have tried to place paralo-
gous gene pairs into different functional categories based on a variety of information sources,
including the recent SIFTER2 which performed quite well in the past two Critical Assessment
of protein Functional Annotation algorithm (CAFA) experiments15 for automated function
prediction. Unlike the present study, SIFTER assumes access to information from ancestral
states, not just the species in which the paralogous gene pairs themselves reside, so they are
able to leverage the power of evolutionary information. Other work16–19 has used gene expres-
sion levels, the number of shared interacting partners, and shared Gene Ontology annotations,
in order to predict or assess which pairs are instances of conserved function, subfunctional-
ization, and neofunctionalization. In each of these papers, ground truth for the predictions
are assessed in different ways. Zeng and Hannenhalli16 compare tissue specific gene expression
levels from an ancestral gene (a single-copy gene from a closely related species) and the du-
plicated genes, where in the neofunctionalization case, for example, they assume the ancestral
gene’s expression level should be lower than that of both duplicates. In addition to this being a
somewhat controversial assumption, noise in measuring expression levels can impact their con-
clusions. Nakhleh’s group17 uses the yeast PPI network to study the problem of categorizing
different evolutionary fates of duplicate genes, but in their case, instead of using the structure
of the PPI network to assist in predicting the categories, they used the network to define their
ground truth gold standard for the categories. In particular, they define gene pairs as similar
and divergent in function based on comparing the number of known interacting partners of
the ancestral gene and the duplicated genes, a measure that will be very sensitive to noise
and incomplete data even in the relatively well-studied yeast interactome.20

Our method of determining ground truth for same and divergent functions is less noise
sensitive than either of these two other methods, but it is much more restrictive than the
methods of previous studies. First, it presents only two categories of functional similarity and
divergence. More importantly, it makes use of extensive phenotype data from single deletion
mutants: a dataset available for yeast but unavailable for most other species at this time.
Thus these other measures may be the only ones available in other species; conversely, if one
accepts that the single deletion phenotype data is the best measure of ground truth when
available for this problem, then the subject of this paper, namely, determining which other
more easily obtainable sequence and network measures best correlate with this standard,
might be the most important application to studying computational transfer of functional
annotation standards in other organisms of interest.

Finally, the most common way in the field to determine if paralogs share the same function
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is simply to look up the curated functional annotations in a database based on a human-created
ontology structure such as MIPS21 and GO22 to see if they are annotated with the same
functional labels. However, we note that in many databases, paralogs with nearly identical or
identical sequence are often annotated with the same functional labels, even if that annotation
comes from experiments with only one of the paralogs.

3. Materials and Methods

3.1. Physical interaction network

We download all the 141,327 physical interactions compiled from 7601 publications by
BioGRID, version 3.3.122 (date March 3rd, 2015), each interaction of which is experi-
mentally verified and associated with one of the following experimental evidence codes:
“Affinity Capture-Luminescence”, “Affinity Capture-MS”, “Affinity Capture-RNA”, “Affin-
ity Capture-Western”, “Biochemical Activity”, “Co-crystal Structure”, “Co-fractionation”,
“Co-localization”, “Co-purification”, “Far Western”, “FRET”, “PCA”, “Protein-peptide”,
“Protein-RNA”, “Proximity Label-MS”, “Reconstituted Complex”, “Two-hybrid”. While col-
lecting these physical interactions, we adopt the scoring scheme from Cao et al.13 and assign
real value confidence scores in (0, 1) as weights to interactions, where the scoring scheme
weights interactions as higher confidence when they are verified by experiments from multiple
publications, plus low-throughput experiments are deemed more reliable than high-throughput
experiments. Since we only consider interactions associated for genes in the list of 5091 veri-
fied ORFs (open reading frames) from the Saccharomyces Genome Database (download date:
April 11th, 2014), we exclude the interactions that are associated with non-verified ORFs.
Using the data above, we build an undirected weighted graph where a node is a protein, a
weighted edge between two nodes exists if and only if there is a physical interaction between
the two nodes and the weight on each edge is calculated as the confidence score. As a result,
we obtain a connected simple graph, involving 5043 nodes and 79594 edges, with diameter 5.

3.2. Duplicated gene pairs

We collect two sets of duplicated gene pairs in two ways. We construct the first set that we call
the “SequenceCover” or “SC” set based on sequence similarity using the following process:
We first collect the result from all against all BLAST searches over the 5043 proteins and
then build a sequence similarity graph where a node is a protein and an edge between two
proteins exists if and only if the sequence identity is at least 80% and the BLAST E-value is
below 10−5. We then find the maximal independent edge set using a naive heuristic algorithm
from the graph which satisfies two conditions: (1) if an edge (a, b) is chosen, none of a or b’s
neighbors will be chosen; (2) no more edges can be added to the set without violating (1).
Because these conditions together with the sequence similarity threshold settings are so strict,
we will generate edges for protein pairs that have very high sequence similarity and any two
of them in the set will not share a common node. Note that in order to analyze the gene pairs
using their fitness data, we exclude from the edge set the edges that are incident to nodes that
do not have fitness data available from Hillenmeyer et al.;7 as a result, we are restricted to
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the 3732 genes out of 5043 genes have fitness data available. However, we may find different
maximal independent edge sets if we choose different random seeds.

We randomly pick one of these independent maximal edge sets, which then defines our
first duplicated gene pair set. For the second set of duplicated gene pairs, we download all 450
WGD gene pairs from Kellis et al.8 The Kellis et al8’s gene pair set consists of gene pairs that
are believed to be paralogs derived from the whole genome wide duplication event, inferred
by both sequence mapping and gene locus. This data set has also been widely used by many
other groups studying function of paralogous genes.16–19,23 Again we restrict ourselves to the
subset of the WGD gene pair set where both nodes have fitness data from Hillenmeyer et al.7

Note that by restricting the SC set to gene pairs with a relatively high degree of sequence
similarity, it will miss some pairs of distant paralogs. However, since our focus is not on
the behavior of the landscape of all paralogs, but rather on the scenario where one might
computationally decide to transfer functional annotation based on sequence similarity, this is
a reasonable threshold.

3.3. Fitness profile

We download all the 1,982,156 fitness defect log ratio scores (where 188,642 scores are missing)
derived from the homozygous gene deletion experiments from Hillenmeyer et al.7 Each log ratio
score indicates the fitness defect for one of the 4769 homozygous gene deletion strains involving
4742 genes under one of the 418 different testing environments such as depletion of amino acids
or nutrients. With respect to a strain for one gene, Hillenmeyer et al.7 defines a fitness profile
as the 418-dimensional vector where each entry is the log ratio score corresponding to each
testing environment. Using the fitness profile, we then follow Hillenmeyer et al’s7 analysis and
calculate a co-fitness score for each pair of genes that captures the phenotype similarity based
on the growth defect under different testing environments. As a preprocessing step accounting
for the missing entries, we impute the missing value as follows: 1) when only one gene has
fitness values missing for a given environment, we use the same fitness value for both. 2) when
both genes have their fitness values missing for a given environment, we use the mean value
over all strains under that environment for both. We calculate the co-fitness scores between any
two genes as the cosine distance between the fitness profile vectors as defined in Hillenmeyer
et al.7 In total, we obtain co-fitness scores for 4769× (4769− 1)/2 = 11, 369, 296 unique pairs.

In order to provide statistical analysis on the co-fitness scores for our targeted duplicated
gene pairs, we define a z-score zcfs as a normalized co-fitness score: zcfs = cij−µ

σ , where cij is
the co-fitness score between gene i and gene j, µ is the mean co-fitness score over all pairs
and σ is the standard deviation over all co-fitness scores. Therefore our empirical p − value
is computed as the probability that we will see a result at the normalized co-fitness score
using the t−distribution with n− 1 degrees of freedom where n is the number of distinct pairs
of strains, namely 11,369,296. We report for each of our targeted duplicated gene pairs the
co-fitness score and their p−values, of which a higher value will indicate that the pair of genes
is less likely to share phenotype similarity and thus less likely to carry out the same biological
function. Since the problem we are trying to solve is to distinguish between paralogous gene
pairs with divergent functions and that with shared functions, we need to have two separate
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Fig. 1. Defining gene pairs with diverged functions and that with shared functions for the SC and WGD sets
using the co-fitness scores.

sets of gene pairs, one set that with high confidence includes gene pairs with divergent functions
and the other that with high confidence includes gene pairs with shared functions. We set the
thresholds {0.00, 0.50} to define the gene pairs as with divergent functions if the co-fitness
score is below 0.00 and the pairs to be with shared functions if the co-fitness score is above
0.50 as shown in Figure 1. Among the SC set where all genes in the 100 gene pairs have the
fitness data available, we define 12 gene pairs with diverged functions and 42 gene pairs with
shared functions; among the 450 WGD gene pairs where only 337 gene pairs have both genes’
fitness data available, we define 74 gene pairs with diverged functions and 45 gene pairs with
shared functions. The remaining unclassified gene pairs with co-fitness scores in the middle
range, we decline to classify as “shared” or “divergent”. Among the 54 classified gene pairs in
the SC set, 78% pairs are considered as shared function pairs, while among the 119 classified
gene pairs in the WGD set, only 38% pairs are considered as sharing function– this is not
surprising as the WGD set includes gene pairs whose duplication event was in the very far
past with a lot of evolutionary time to evolve mutations that could affect function.

Finally, we note that among the 119 pairs of paralogs that make up our WGD set, a total
of 7 pairs lie on the same yeast chromosome. Among the 54 pairs of paralogs that make up
our SC set, also a total of 7 pairs lie on the same yeast chromosome.

3.4. Sequence similarity

To measure amino acid similarity, for each of the classified gene pairs, we collect the BLAST
bit-score, BLAST alignment length and the percentage identity as the protein sequence simi-
larity measurements.

For nucleotide sequence similarity, for each of the classified gene pairs, we estimate the
Ka score, the non-synonymous substitution rate, and the Ks score, synonymous substitution
rate, as the nucleotide sequence divergence measurements.24 More specifically, we compute
the pairwise alignment for each gene pair using clustalw2,25 then we translate the protein
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alignment to a codon alignment and estimate Ka and Ks scores using the KaKs Calculator of
Zhang et al.26 with default parameters. In addition, we also compute the Ka/Ks ratio, which
is commonly considered as an indicator of selective pressure acting on a protein-coding gene.
We note that for the more distant pairs, these statistics do not give reliable indications of
expected evolutionary divergence, however, we can still calculate the values: we just need to
assume their correlation with true evolutionary divergence is weaker.

3.5. PPI network based measures

For each of the classified gene pairs, we compute a set of network based similarities (or dis-
tances): the number of shared interacting neighbors, the normalized shared neighborhood size,
the normalized degree difference, the normalized betweenness-centrality score difference, the
shortest-path distance and the diffusion state distance (as defined by Cao et al.13). In the
case of the normalized shared neighborhood size, degree difference and betweenness-centrality
score difference, we simply divide by the maximum of the quantities for each paralog to nor-
malize: i.e. to compute the normalized degree difference of paralogs A and B, we simply take
|deg(A)− deg(B)|/max(deg(A), deg(B)).

3.6. Problem formulation

For each of the measures defined above, we can rank the paralogous gene pairs according to
each measure. However, in order to appropriately set a cutoff for each measure, beyond which
we predict “conserved function” or “divergent function,” we need a training set of labeled
examples. First we report the predictive power of each measure described above using a leave-
one-out cross validation paradigm. Namely, we learn the optimal cutoffs for classifying pairs
as conserved or divergent based on all the data except the held out pair, and then classify the
held-out pair according to those thresholds, and report percentage accuracy.

Then we look at the power of some standard machine learning methods when given access
to all the features. In particular, we consider: decision trees, naive Bayes, support vector ma-
chines (with linear kernel), K-nearest-neighbor (with K=1), logistic regression, random forest,
multilayer perceptron, one rule method, and AdaBoost with decision tree, all implemented
in WEKA,27 and see their power on the task of distinguishing the same-function from the
divergent-function pairs also in leave-one-out cross validation.

4. Results

4.1. Classification using each individual similarity measurement

We assess the predictive power of each individual similarity/divergence measurement using
the leave-one-out cross validation paradigm. Specifically, per each measurement, for each par-
alogous gene pair, we learn a classification threshold based on all the other gene pairs where
we will classify pairs above (or below, as appropriate) the threshold as “similar function” and
below the threshold (or above) as “diverged function”. We then count the percent of pairs that
we classify correctly. This list is somewhat deceptive in measuring true performance because
of the unbalanced class sizes: but we find the nucleotide sequence-based scores uniformly more
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informative than the protein sequence-based scores that we measure. Moreover the Ka and Ks
scores remain good classifiers even if the thresholds are trained across the two datasets (see
Table 2): for example when the Ks threshold for best classification is trained on WGD and
tested on SC, and when the Ks threshold for best classification is trained on SC and tested
on WGD, the percent accuracies become 88.89% and 80.67%, respectively. Figure 2 presents
the scatter plot of the Ks score versus our co-fitness score.

None of the network measures perform as well as the sequence similarity measures, but
the best performing network measures were related to shared neighborhood size.

Table 1. Accuracies for individual measurements

Performance for leave-one-out-cross-validation (% Accuracy) SC WGD

Protein sequence measurements

AA percent identity 74.07% 78.99%
AA BLAST alignment length 87.04% 69.75%
AA BLAST bit-score 81.48% 63.03%
AA ClustalW length 83.33% 76.47%

Sequence measurements
Ka 90.74% 76.47%
Ks 88.89% 79.83%
Ka/Ks 79.63% 71.43%

Network measurements

degree-difference (normalized) 70.37% 61.34%
bc-difference (normalized) 72.22% 63.03%
shared neighborhood size (SNH) 75.93% 73.11%
normalized SNH 87.04% 72.27%
shortest path distance 81.48% 62.18%
DSD 74.07% 69.75%

Table 2. Cross-training performance accuracy

TrainOnWGDTestOnSC trainOnSCTestOnWGD

Ka/Ks 64.81% 57.98%

Ka 87.04% 79.83%

Ks 88.89% 80.67%

4.2. Common supervised learning methods for using all measurements

Motivated by the observation above, we place all the 13 measurements into one feature vector
for each gene pair and then try several common supervised learning methods. However, as
shown in Table 3, none of the learning algorithms obtain better performance than the best
performing individual measurement. Thus it remains an open question how to develop better
algorithms that can separate the same-function from divergent function yeast paralogs in our
set.

We also wondered whether our method of filling in missing data from the Hillenmeyer
et al.7 experiments contributed to the misclassification rates we saw. Recall that when data
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(a)	  WGD	  dataset	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (b)	  SequenceCover dataset
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Fig. 2. Scatter plot of Ks score v.s. co-fitness scores for paralog gene pairs

Table 3. Accuracies for different learning algorithms

Performance for leave-one-out-cross-validation (% Accuracy) SC WGD

Decision Tree 79.63% 78.15%

Näıve Bayes 90.74% 73.95%

Support Vector Machine (linear kernel) 83.33% 78.15%

k-nearest-neighbor 90.74% 68.07%

Logistic regression 85.19% 75.63%

Random forest 87.04% 78.15%

Multilayer perceptron 87.04% 68.91%

One-Rule 83.33% 75.63%

AdaBoost + Decision Tree 85.19% 70.59%

was missing from a phenotype experiment, we filled in artificial fitness values: if the value
was missing in only one of the paralogs, we matched the other paralog; if it was missing for
both paralogs, we utilized the mean fitness value over all the deletion experiments for that
phenotype for both paralogs. This would make yeast paralogs that are in fact divergent be
more likely to have co-fitness scores that would result in our classification as “same function”,
if at least one had many missing values.

This did, in fact, seem to underlie some of the bad classification results for the WGD
dataset in particular. For example, for the SC dataset, among the 48/54 pairs for which the
Ks feature results in the correct classification, the average missing ratio is .41, whereas among
the 6/54 pairs where the Ks feature results in incorrect classification, the average missing
ratio is .37, whereas, for the WGD dataset, among the 95/119 examples where the Ks feature
is correct, the average missing ratio is .12, whereas for the 24/119 examples where the Ks

feature is wrong, the average missing ratio is .45. Removing all examples with missing data
will result in too small a benchmark set; it thus remains an open question to find better ways
to deal with missing values in construction of the benchmark datasets.
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5. Some example paralog pairs

We looked in more detail at some of the pairs we classified as paralogs with divergent function.
Because S. cerevisiae is so well-studied, we thought that some of the paralog pairs that we
classified as divergent function, might have support from functional annotations in the SGD
database, or in the literature. We found the situation quite heterogeneous– for some of the
pairs we found support for functional divergence in the literature, for others, there seems to be
no annotation indicating that anyone has noted any functional divergence in the two paralogs.

For example, GPP1 and GPP2 are an example of a paralog pair where some functional
divergence is known. In particular, GPP1 and GPP2 seem to behave very similarly under
aerobic conditions but very differently under anerobic conditions.28 Another paralog pair where
functional divergence is documented is OAF1 and PIP2. Both genes are involved in fatty acid
induction of the peroxisomal β-oxidation machinery involving regulation by the oleate response
element, and form a heterodimer. But OAF1 binds fatty acids and PIP2 does not.29 GDH1
and GDH3 are both involved in glutamate biosynthesis, but their regulation indicates that
they are utilized under different growth conditions: expression of GDH3 is induced by ethanol
and repressed by glucose, whereas GDH1 expression is high in either carbon source.30 TPK1
and TPK3, together with a third gene, TPK2, are functionally redundant for cell viability, but
they have differing protein targets, and also recognize and affect the transcription of different
sets of gene targets.31 In each of these cases, manual inspection implies that functional labels,
at least at the top levels of MIPS or GO, would correctly transfer between paralogs, despite
these pairs having documented different roles within these broad functional categories.

On the other hand, the majority of the paralog pairs which we mark as “functionally
divergent” have no indication in the literature or SGD database that any functional diver-
gence between the paralogs is yet documented. ALK1 and ALK2 is a typical case. Despite a
low co-fitness score, this gene pair is currently annotated in a fashion very similar to “same
function” pairs: the summary description of ALK2 reads: Protein kinase; along with its para-

log, ALK1, required for proper spindle positioning and nuclear segregation following mitotic arrest,

proper organization of cell polarity factors in mitosis, proper localization of formins and polarity

factors, and survival in cells that activate spindle assembly checkpoint; phosphorylated in response to

DNA damage; ALK2 has a paralog, ALK1, that arose from the whole genome duplication; similar to

mammalian haspins. The description for ALK1 is identical except with the names interchanged.

6. Discussion

The problem of predicting when functional annotation terms should transfer between sequence
homologs and paralogs is a difficult but urgent one in the field of automatic prediction of pro-
tein function. Here, we have done a very simple study in a single, well-studied species without
leveraging the wealth of evolutionary information that is available in sequences. Clearly any
reasonable solution will have to leverage this evolutionary information in order to make more
accurate predictions.

One clue as to the difficulty of the task might come from the alternative definitions of
Plata and Vitkup.10 We sought to measure how our co-fitness score correlated with the genetic
robustness measures of Plata and Vitkup:10 for each duplicate pair, following their paper, the
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(a)	  WGD	  dataset	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (b)	  SequenceCover dataset
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Fig. 3. Scatter plot of average number of sensitive conditions v.s. co-fitness scores for paralog gene pairs.

number of “sensitive” conditions is measured for each deletion mutant, where a “sensitive”
condition is defined as a growth defect with p < 0.01. We report the number of sensitive
conditions, averaged over the two paralogs in the pair, and plot its correlation with our co-
fitness score. We find a negative correlation of -0.2046 (P < 1.49E−04) (WGD pairs) and a
negative correlation of -0.5484 (P < 2.74E−09) (SC pairs). A scatter plot appears in Figure 3.

We notice that in both datasets, there are small but distinct set of pairs with both a very
low number of average sensitive conditions, and a very high co-fitness score. For these pairs,
it is hard to tell if the paralogs are similar function, or if no phenotype is frequently observed
because there are third or fourth copy duplicate genes that can buffer both deletion mutants.
Thus full understanding of both our co-fitness and their sensitive condition scores may require
the consideration of higher order duplicates.

The SC and WGD benchmark datasets are available at bcb.cs.tufts.edu/paralogs
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Automated annotation of protein function has become a critical task in the post-genomic era.
Network-based approaches and homology-based approaches have been widely used and recently
tested in large-scale community-wide assessment experiments. It is natural to integrate network
data with homology information to further improve the predictive performance. However, integrat-
ing these two heterogeneous, high-dimensional and noisy datasets is non-trivial. In this work, we
introduce a novel protein function prediction algorithm ProSNet. An integrated heterogeneous net-
work is first built to include molecular networks of multiple species and link together homologous
proteins across multiple species. Based on this integrated network, a dimensionality reduction algo-
rithm is introduced to obtain compact low-dimensional vectors to encode proteins in the network.
Finally, we develop machine learning classification algorithms that take the vectors as input and
make predictions by transferring annotations both within each species and across different species.
Extensive experiments on five major species demonstrate that our integration of homology with
molecular networks substantially improves the predictive performance over existing approaches.

Keywords: protein function prediction, homology, molecular networks, dimensionality reduction,
data integration

1. Introduction

Comprehensively annotating protein function is crucial in illustrating activities of millions of
proteins at molecular level, which can further advance basic biological research and biomedical
sciences.1 Although massive annotations have been curated, such as popular Gene Ontology
(GO) annotations,2 current experimental approaches are infeasible to fully exploring protein
function annotations. As a result, computational approaches have become a more accessible
way to annotate protein function3,4 and help biologists prioritize their experiments.

Computational prediction of protein function has been extensively studied in the context
of molecular evolution. Homologous proteins have most likely evolved from a common ances-
tor. They often carry out similar protein functions, because functions are generally conserved
during molecular evolution. Consequently, computational approaches can predict the function
of query proteins by transferring those of their annotated homologs. In addition to automatic
annotations based on orthology or domain information or pre-existing cross-references and key-
words,5 a variety of machine learning algorithms6–12 have been proposed to extract annotations
based on sequence similarity-detection tools such as BLAST, PSI-BLAST,13 and phylogenetic
analysis.14,15 Despite the success of homology-based approaches, their major constraint arises
from a lack of annotated sequences.16 In fact, among over 65 million protein sequences in
publicly accessible databases,17 only 2 million of them are manually curated.18 Consequently,
the predictive power of homology-based methods has been limited due to the scarcity of an-
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notations. Furthermore, reliable homology relationships are sparse between distantly related
species, thus posing computational and statistical challenges when making faithful predictions.

Fortunately, the rapidly growing interactome data from high-throughput experimental
techniques allows us to extract patterns from neighbors in molecular networks19–21 in addition
to homologous proteins. This idea is supported by the established “guilt-by-association” prin-
ciple, which states that proteins that are associated or interacting in the network are more
likely to be functionally related.22 Recently, this “guilt-by-association” principle has become
the foundation of many network-based function prediction algorithms.23–30 Among them, Gen-
eMANIA31 and clusDCA32 are state-of-the-art network-based function prediction approaches.
In addition to incorporating network topology, clusDCA also leverages the similarity between
GO labels and obtains substantial improvement on sparsely annotated functions. GeneMA-
NIA uses a label propagation algorithm on an integrated network specifically constructed for
each functional label, and is currently available as a state-of-the-art web interface for gene
function prediction for many organisms.

Intuitively, integrating homology data with molecular networks can synergistically improve
function prediction results. On one hand, it enables us to transfer annotations from function-
ally well-characterized neighbors in the molecular network as well as from homologous proteins
with conserved similar functions. On the other hand, homology data can further mitigate the
incomplete and noisy nature of molecular networks through interologs,33 which states that
a conserved interaction occurs between a pair of proteins that have interacting homologs in
another organism.34

Nevertheless, integrating homology data with molecular networks is both computationally
and statistically challenging. Since they are heterogeneous data sources, it is likely sub-optimal
to integrate them in an additive way which simply averages the prediction results of either of
these two data sources. Moreover, we also need an efficient algorithm that scales to hundreds
of thousands of proteins from multiple species. One way to integrate these two heterogeneous
data sources seamlessly is to construct a multiple species heterogeneous network in which
both nodes and edges are associated with different types. With this network, we can predict
functions for query proteins based on annotations extracted from both their homologs and
their neighbors in molecular networks. Furthermore, information can also be transferred be-
tween two proteins that are neither homologs nor neighbors in molecular networks. Notably,
the only previous attempt to integrate these two heterogeneous data sources is using multi-
view learning.35 However, it does not scale to multiple species. In addition, they formulated
protein function prediction as a structured-output hierarchical classification problem whose
performance for sparsely annotated functional labels is far from satisfactory.32

In this work, we introduce ProSNet, a novel Protein function prediction algorithm which
efficiently integrates Sequence data with molecular Network data across multiple species.
Specifically, an integrated heterogeneous network is first constructed to include all molecular
networks of multiple species, in which homologous proteins across multiple species are also
linked together. Based on this integrated network, a novel dimensionality reduction algorithm
is applied to obtain compact low-dimensional vectors for proteins in the network. Proteins that
are topologically close in the molecular networks and/or have similar sequences are co-localized
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in this low-dimensional space based on their vectors. These low-dimensional vectors are then
used as input features to two classifiers which utilize annotations from molecular networks
and homologous proteins, respectively. In addition, ProSNet is inherently parallelized, which
further promises scalability. When compared to the state-of-the-art methods that only use
homology data or molecular networks, ProSNet substantially improves the function prediction
performance on five major species.

2. Methods

As an overview, ProSNet first constructs a heterogeneous biological network by integrating
homology data with molecular network data of multiple species. It then performs a novel di-
mensionality reduction algorithm on this heterogeneous network to optimize a low-dimensional
vector representation for each protein. The vectors of two proteins will be co-localized in the
low-dimensional space if the proteins are close to each other in the heterogeneous biological
network. A key computational contribution is that ProSNet obtains low-dimensional vectors
through a fast online learning algorithm instead of the batch learning algorithm used by pre-
vious work.23,32 In each iteration, ProSNet samples a path from the heterogeneous network
and optimizes low-dimensional vectors based on this path instead of all pairs of nodes. There-
fore, it can easily scale to large networks containing hundreds of thousands or even millions of
edges and nodes. After finding low-dimensional vector representation for each node, ProSNet
calculates an intra-species affinity score and an inter-species affinity score by transfering an-
notations within the same species and across different species, respectively. Finally, ProSNet
predicts functions for a query protein by averaging these scores and picking the function(s)
with the highest score(s).

2.1. Heterogeneous biological network

Definition 1. Heterogeneous Biological Networks (HBNs) are biological networks
where both nodes and edges are associated with different types. In an HBN G = (V,E,R), V
is the set of typed nodes (i.e., each node has its own type), R is the set of edge types in the
network, and E is the set of typed edges. An edge e ∈ E in a heterogeneous biological network
is an ordered triplet e = 〈u, v, r〉, where u ∈ V and v ∈ V are two typed nodes associated with
this edge and r ∈ R is the edge type.

Definition 2. In an HBN G = (V,E,R), a heterogeneous path is a sequence of compatible
edge types M = 〈r1, r2, . . . , rL〉, ∀i, ri ∈ R. The outgoing node type of ri should match the
incoming node type of ri+1. Any path Pe1 eL = 〈e1, e2, . . . , eL〉 connecting node u1 and uL+1 is
a heterogeneous path instance following M, iff ∀i, ei is of type ri.

In particular, any edge type r is a length-1 heterogeneous path M = 〈r〉. We show a toy
example of an HBN under our function prediction framework in Fig. 1.
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Fig. 1. An example of the heterogeneous biological network under our function prediction framework. The
node set V consists of four types, {“Human protein”, “Yeast protein”, “Mouse protein”, and “Gene On-
tology term”}. The edge type set R consists of five types, {“Sequence similarity”, “Protein function anno-
tation”,“Gene Ontology relationship”,“Experimental”, and “Co-expression” }. This HBN explicitly captures
interolog and transfer of annotation through heterogeneous paths across different species.

2.2. Low-dimensional vector learning in the heterogeneous biological
network

ProSNet finds the low-dimensional vector for each node through first sampling a large num-
ber of heterogeneous path instances according to the HBN. It then finds the optimal low-
dimensional vector so that nodes that appear together in many instances turn to have similar
vector representations. We first define the conditional probability of node v connected to node
u by a heterogeneous path M as:

Pr(v|u,M) =
exp(f(u, v,M))∑

v′∈V exp(f(u, v′,M))
, (1)

where f is a scoring function modeling the relevance between u and v conditioned on M.
Inspired from the previous work,36 we define the following scoring function:

f(u, v,M) = µM + pM
Txu + qM

Txv + xu
Txv. (2)

Here, µM ∈ R is the global bias of the heterogeneous path M. pM and qM ∈ Rd are local
bias d dimensional vectors of the heterogeneous path M. xu and xv ∈ Rd are low-dimensional
vectors for nodes u and v respectively. Our framework models different heterogeneous paths
differently by using pM and qM to weight different dimensions of node vectors according to
the heterogeneous path M.

For a heterogeneous path instance Pe1 eL = 〈e1 = 〈u1, v1, r1〉, . . . , eL = 〈uL, vL, rL〉〉 following
M = 〈r1, r2, . . . , rL〉, we propose the following approximation.

Pr(Pe1 eL |M) ∝ C(u1, 1|M)γ × Pr(Pe1 eL |u1,M), (3)

where C(u, i|M) represents the count of path instances following M with the ith node being
u. C(u, i|M) can be efficiently computed through a dynamic programming algorithm. γ is a
widely used parameter to control the effect of overly-popular nodes, which is set to 0.75 in
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previous work.37 We assume that each node on the path only depends on its previous node.
Then we have

Pr(Pe1 eL |u1,M) =

L∏
i=1

Pr(vi|ui, ri). (4)

Given the conditional distribution defined in Eq. (1) and (3), the maximum likelihood
training is tractable but expensive because computing the gradient of the log-likelihood takes
time linear in the number of nodes. Following the noise-contrastive estimation (NCE),38 we
reduce the problem of density estimation to a binary classification, discriminating between
samples from path instances following the heterogeneous path and samples from a known
noise distribution. In particular, we assume these samples come from the following mixture.

1

θ + 1
Pr+(Pe1 eL |M) +

θ

θ + 1
Pr−(Pe1 eL |M), (5)

where θ is the negative sampling weight and Pr+(Pe1 eL |M) denotes the distribution of path
instances in the HBN following the heterogeneous path M. Pr−(Pe1 eL |M) is a noise distri-
bution, and for simplicity we set

Pr−(Pe1 eL |M) ∝
L+1∏
i=1

C(ui, i |M)γ . (6)

We further assume noise samples are θ times more frequent than positive path instance
samples. The posterior probability that a given sample D came from positive path instance
samples following the given heterogeneous path is

Pr(D = 1|Pe1 eL ,M) =
Pr+(Pe1 eL |M)

Pr+(Pe1 eL |M) + θ · Pr−(Pe1 eL |M)
, (7)

where D ∈ {0, 1} is the label of the binary classification. Since we would like to fit Pr(Pe1 eL |M)

to Pr+(Pe1 eL |M), we simply maximize the following expectation.

LM =EPr+
[

log
Pr(Pe1 eL |M)

Pr(Pe1 eL |M) + θ · Pr−(Pe1 eL |M)

]
+ θ · EPr−

[
log

θ · Pr−(Pe1 eL |M)

Pr(Pe1 eL |M) + θ · Pr−(Pe1 eL |M)

]
.

(8)

The loss function can be derived as

LM ≈
∑

Pe1 eL
following M

log σ(

L∑
i=1

f(ui, vi, ri)) +

∑θ
j=1 EPj

e1 eL
∼Pr−|u1,M

[
log
(
1− σ(

∑L
i=1 f(uji , v

j
i , ri))

)]
,

(9)

where σ(·) is the sigmoid function. Note that when deriving the above equation we used
exp(f(u, v,M)) in place of Pr(v|u,M), ignoring the normalization term in Eq. (1). We can do
this because the NCE objective encourages the model to be approximately normalized and re-
covers a perfectly normalized model if the model class contains the data distribution.38 Follow-
ing the idea of negative sampling,37 we also replaced

∑L
i=1 f(ui, vi, ri)− log

(
θ ·Pr−(Pe1 eL |M)

)
with

∑L
i=1 f(ui, vi, ri) for ease of computation. We optimize parameters xu,xv,pr,qr, and µr

based on Eq. (9).
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2.3. Runtime improvements through online learning

Like diffusion component analysis,23 the number of pairs of nodes 〈u, v〉 that are connected by
some path instances following at least one of the paths is O(|V |2) in the worst case. This is too
large for storage or processing when |V | is at the order of hundreds of thousands. Therefore,
sampling a subset of path instances according to their distribution is the most feasible choice
when optimizing, instead of going through every path instance per iteration. Thus, our method
is still very efficient for networks containing large numbers of edges. Based on Eq. (3), we
can sample a path instance by sampling the nodes on the heterogeneous path one by one.
Once a path instance has been sampled, we use gradient descent to update the parameters
xu,xv,pr,qr, and µr based on Eq. (9). As a result, our sampling-based framework becomes a
stochastic gradient descent framework. The derivations of these gradients are trivial and thus
are omitted. Moreover, since stochastic gradient descent can generally be parallelized without
locks, we can further optimize via multi-threading. Decomposing a heterogeneous network
with more than sixty thousand nodes and ten million edges into a 500-dimensional vector
space takes less than 30 minutes on a 12-core 3.07GZ Intel Xeon CPU through this online
learning framework.

2.4. Function prediction

After using the above framework to find the low-dimensional vector for each protein in the
HBN, ProSNet transfers annotations both within the same species and across different species
to predict for a query protein.

To transfer annotations within the same species, ProSNet first uses diffusion component
analysis23 on the Gene Ontology graph2 to find low-dimensional vector yi for each functional
label i. It then uses a transformation matrix W to project proteins from the protein vector
space to the function vector space, which allows us to match proteins to functions based on
geometric proximity. Let y

′

i be the projection of the protein vector xi:

y
′

i = xiW. (10)

We define the intra-species affinity score zij between gene i and function j to be used for
function prediction as:

zij = xiWyT
j . (11)

A larger zij indicates that gene i is more likely to be annotated with function j. We follow
clusDCA32 to find the optimal W.

Since proteins from different species are located in the same low-dimensional vector space,
ProSNet is able to use the annotations across different species as well. Instead of using the
annotations from all the other proteins, ProSNet only considers the k most similar proteins
based on the cosine similarity between their low-dimensional vectors. It then calculates the
inter-species affinity score sij between gene i and function j as:

sij =
∑
g∈Bi

cos(xi,xg) · 1(g ∈ Tj), (12)
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where Bi is the set of k most similar proteins of i and Tj is the set of genes that are annotated
to function j in the training data.

After obtaining the intra-species affinity score z and inter-species affinity score s, ProSNet
normalizes them by z-scores. It predicts functions for a query protein by averaging these two
normalized affinity scores and picking the function(s) with the highest score(s)

3. Experimental results

3.1. Construction of heterogeneous biological network for function
prediction

To construct the heterogeneous biological network (HBN), we obtained six molecular net-
works for each of five species, including human (Homo sapiens), mouse (Mus musculus),
yeast (Saccharomyces cerevisiae), fruit fly (Drosophila melanogaster), and worm (Caenorhab-
ditis elegans) from the STRING database v10.20 These six molecular networks are built from
heterogeneous data sources, including high-throughput interaction assays, curated protein-
protein interaction databases, and conserved co-expression data. We excluded text mining-
based networks to avoid potential confounding. Each edge in the molecular networks has
been associated with a weight between 0 and 1 representing the confidence of interaction.
Next, we obtained protein-function annotations and the ontology of functional labels from the
GO Consortium.2 We only used annotations that have experimental evidence codes including
EXP, IDA, IPI, IMP, IGI, and IEP. As a result, annotations that are based on an in silico
analysis of the gene sequence and/or other data are removed to avoid potential leakage of
labels. We built a directed acyclic graph of GO labels from all three categories [biological
process (BP), molecular function (MF) and cellular component (CC)] based on “is a” and
“part of ” relationships. This graph has 13,708 functions and 19,206 edges. We set all edge
weights of protein-function links to 1 and all edge weights between GO labels to 1. Finally, we
extracted amino acid sequences of all proteins in our five-species network from the STRING
database and the Universal Protein Resource (Uniprot).17 To construct homology edges, we
performed all-vs-all BLAST13 and excluded edges with E-value larger than 1e-8. We then used
the negative logarithm of the E-values as the edge weights and rescaled them into [0, 1]. We
showed the statistics of our HBN in Tab. 1. For simplicity, all edges are undirected. Note that
we excluded the protein-function annotation edges that are in the hold-out test set in the
following experiments for rigorous comparisons. Our heterogeneous network is similar to the
example network in Fig. 1, except that our network has five species and six different types of
molecular networks.

3.2. Experimental setting

We used 3-fold cross-validation to evaluate the methods of interest. For a given species for
evaluation, we randomly split proteins of the species into three equal-size subsets. Each time,
the GO annotations of proteins in one subset were held out for testing, and the annotations
of the other two subsets were used for intra-species classification training. For inter-species
training, we used all experimental GO annotations from the other four species, ensuring no
leakage of label information in the training data. To evaluate the predictive performance, we
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Table 1. Statistics of our heterogeneous network

Human Mouse Yeast Fruit fly Worm
#proteins 16,544 16,649 6,307 11,261 13,469
#co-expression edges 1,319,562 1,406,572 628,014 2,466,234 2,774,840
#co-occurrence edges 28,334 29,472 5,328 17,962 14,678
#database edges 275,860 347,406 66,972 116,748 69,948
#experimental edges 492,548 672,326 439,956 380,046 298,684
#fusion edges 2,678 3,994 2,722 4,026 4,336
#neighborhood edges 78,440 77,962 91,220 69,934 49,890
#human homology edges 0 525,221 55,884 202,993 159,481
#mouse homology edges 525,221 0 52,916 188,729 151,408
#yeast homology edges 55,884 52,916 0 26,950 28,269
#fruit fly homology edges 202,993 188,729 26,950 0 75,831
#worm homology edges 159,481 151,408 28,269 75,831 0
#annotations 77,950 66,238 28,668 32,259 21,655

measured the extent to which the predicted ranked list was consistent with the ground truth
ranked list by computing the receiver operating characteristic curve (AUROC). We used the
macro-AUROC as the evaluation metric following previous work.31,32 The macro-AUROC is
calculated by separately averaging the area under the curves for each label. We set the vector
dimension d = 500, the number of nearest neighbors k = 2000, and the negative sampling weight
θ = 5 in our experiment. We observed that the performance of our algorithm is quite stable
with different d, k, and θ values. We included all edge types in the predefined heterogeneous
path set. Additionally, we added “transfer of annotation” to the predefined heterogeneous
path set (Fig. 1).

To show the improvement from integrating homology data with molecular networks of mul-
tiple species, we compared our method with three existing state-of-the-art function prediction
methods: GeneMANIA,31 clusDCA,32 and BLAST.13 GeneMANIA and clusDCA integrate
protein molecular networks within a given species. Neither of them is able to integrate infor-
mation across different species. We used the latest released code and the suggested parameter
settings for these two methods. BLAST uses bit score to rank annotations from significant
hits by BLAST. We used the same datasets (i.e. annotations, proteins, and networks) and the
same evaluation scheme for every method we tested.

3.3. Molecular network data and homology data are complementary in
function prediction

We first studied whether information extracted from homology and from molecular networks
are complementary. We compared the predictive performance of three different data sources:
1) molecular networks, 2) homology, 3) both molecular network and homology (integrated).
We used clusDCA to predict function annotations based on molecular networks. We used
BLAST to make predictions of function annotation based on homology. We summarized how
many functions can be accurately annotated (AUROC>0.9) by each data source (Fig. 2). We
notice that there are many functions that can only be accurately predicted by homology or
network. For example, on mouse MF with 3-10 labels, 9% of functions (difference between
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Fig. 2. Comparison of using different data sources for function prediction

yellow bar and green bar) can be accurately predicted only by homology but not by network.
In the same category, another 21% of functions (difference between blue bar and green bar)
can be accurately predicted only by network but not by homology. This suggests that these
two data sources are complementary, and integrating them can synergistically improve the
function prediction results. To this end, we integrated homology and network data by simply
taking average of the z-scores of predicted annotations from these two data sources. We found
that the predictive performance using both molecular network data and homology data is
significantly better than only using one in all categories on both human and mouse. For
example, on human MF with 101-300 labels, using both network data and homology data
accurately annotates 60% of functions, which is much higher than 4% of only using network
data and 26% of only using homology data. Notably, we only use the homology data from five
species here. When including homology data from more species in the future, homology data
may further boost the function prediction performance.

3.4. ProSNet substantially improves function prediction performance

We performed large-scale function prediction on all five species to compare our method to
other state-of-the-art function prediction approaches. The results are summarized in Fig. 3
and Supplementary Fig. 1 (Supplementary Data). It is clear that our approach achieved the
best overall results in all five species. When comparing with homology-based methods, we
found that ProSNet significantly outperforms BLAST on both sparsely annotated and densely
annotated labels (data not shown). For example, ProSNet achieves 0.8690 AUROC on human
BP labels with 3-10 annotations, which is much higher than the 0.6326 AUROC by BLAST.

Furthermore, we compared ProSNet to existing state-of-the-art network-based methods, in-
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Fig. 3. Comparison of different methods

cluding clusDCA and GeneMANIA, which only integrate molecular networks of single species.
We found that the overall performance of our approach is substantially higher than that of
both of these methods. For instance, in human, our method achieved 0.9211 AUROC on MF
labels with 3-10 annotations, which is much higher than 0.8673 by GeneMANIA and 0.8794
by clusDCA. In mouse, our method achieved 0.8523 AUROC on BP labels with 31-100 anno-
tations, which is much higher than 0.8078 AUROC by GeneMANIA and 0.8299 AUROC by
clusDCA.

To evaluate the integration of homology and network data, we developed a baseline ap-
proach that simply merges predictions made from homology data and sequence data, sepa-
rately. This additive approach takes the average z-scores of the annotation score of clusDCA
and BLAST to rank functional labels for each protein. We note that this baseline approach
outperformes both GeneMANIA and clusDCA, indicating that integrating homology with
molecular networks can substantially improve the function prediction performance. We then
compared this additive approach to our method. We found that ProSNet also outperforms
the additive approach. For instance, in human, our method achieves 0.9129 AUROC on MF
labels with 11-30 labels, which is higher than 0.8956 AUROC by the additive approach. The
improvement of our method in comparison to the additive approach demonstrates a better
data integration by constructing a heterogeneous network and finding low-dimensional vector
representations for each node in this network.

The improvement of ProSNet over existing network-based approaches is more pronounced
on sparsely annotated functions. Since very few proteins are annotated to these functions,
it is very easy to overfit any classification algorithm if we only use the data from a single
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species. With the integrated heterogeneous biological network, ProSNet successfully transfers
annotations from other species to have a more robust and improved predictive performance
on sparsely annotated functions.

4. Conclusion

In this paper, we have presented ProSNet, a novel protein function prediction method which
seamlessly integrates homology data and molecular network data. ProSNet constructs a het-
erogeneous network to include molecular networks from all species and homology links across
different species. We have designed an efficient dimensionality reduction approach which only
takes 30 minutes to decompose a heterogeneous network containing hundreds of thousands
of proteins. We have demonstrated that ProSNet outperforms state-of-the-art network-based
approaches and homology-based approaches on five major species. Furthermore, ProSNet has
achieved improved performance over an additive integration approach that simply adds predic-
tions from network and homology data. This result supports our hypothesis that constructing a
heterogeneous network and then finding low-dimensional vector representations for each node
in this network is a better data integration approach. In the future, we plan to study how to
annotate proteins of species that have very sparse molecular networks or even no molecular
network. In addition, we plan to pursue further improvement by integrating networks and
homology data from a complete spectrum of reference species.

Supplementary Data:
http://web.engr.illinois.edu/~swang141/PSB/ProSNetSupp.pdf
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Over the last decades, we have observed an ongoing tremendous growth of available sequencing
data fueled by the advancements in wet-lab technology. The sequencing information is only the
beginning of the actual understanding of how organisms survive and prosper. It is, for instance,
equally important to also unravel the proteomic repertoire of an organism. A classical computational
approach for detecting protein families is a sequence-based similarity calculation coupled with a
subsequent cluster analysis. In this work we have intensively analyzed various clustering tools on
a large scale. We used the data to investigate the behavior of the tools’ parameters underlining
the diversity of the protein families. Furthermore, we trained regression models for predicting the
expected performance of a clustering tool for an unknown data set and aimed to also suggest optimal
parameters in an automated fashion. Our analysis demonstrates the benefits and limitations of the
clustering of proteins with low sequence similarity indicating that each protein family requires its own
distinct set of tools and parameters. All results, a tool prediction service, and additional supporting
material is also available online under http://proteinclustering.compbio.sdu.dk.

Keywords: Protein Classification, Protein Evolution, Clustering

1. Introduction

With current wet-lab technology, we are producing a vast amount of genomic data at an ever
increasing pace.1 The knowledge of the very sequence of the organism is only one part of the
complex puzzle of how organisms survive, reproduce and adopt to changing environmental
conditions.2 In order to benefit from the genomic data of an organism the data needs to be
analyzed in an efficient and automated manner.

Of fundamental importance is the identification and classification of protein families fos-
tering insights in the functional diversity of homologous proteins allowing to investigate the
evolutionary history of the proteins.3,4 Several, hand-curated databases exist providing infor-
mation on protein family classification, e.g., SCOP5 or PFAM.6 Even though these databases
are impressive in size, the number of known protein families is still growing with every se-
quenced organism.7 Therefore, it is of importance to have reliable and automated means of
classifying proteins in families, which can generally be separated into three groups:8,9 pairwise
alignment algorithms, generative models, and discriminative classifiers. Here, we are focusing
on the common approach of pairwise alignments using NCBI BLAST10 followed by a cluster
analysis. There exists a myriad of clustering tools, all of them require different parameters
and can only be used efficiently with a profound understanding of the underlying algorithm.
Furthermore, as every clustering approach uses a different way of determining its optimal
clustering, there is no universal best performer suiting all data sets equally well.11

There have been several studies comparing the performance of various clustering ap-
proaches for this task, discussing the problem from various points of view. For example, the

Pacific Symposium on Biocomputing 2017

39



study of Chan et al.12 compares the performance of two clustering tools on three different
genomes in order to assess the sensitivity of these tools towards the C+G content. The main
limitation of this study is the small number of data sets and tools utilized. In a different study
by Bernardes et al.3 a larger-scale attempt was taken to compare the general performance
of four different clustering approaches on data sets similar to our setting. The main focus of
the paper was to demonstrate the limitations of sequence-based similarity functions compared
to their novel profile based similarity function. Nevertheless, this work applied the tools in
question only to the entire SCOP data set (with various levels of sequence identities) and
clustered them into families and superfamilies. This approach neglects the variety within the
protein families but gives a good overview of the general performance of the tested tools.

In contrast to previous works, we create several hundred data sets comprising smaller
subsets of the SCOP data set in order to strategically assess the variance of the different
protein families and their consequences to the different clustering tools. Further, we clustered
each of our hundreds of data sets with extensive parameter training (1,000 parameters per
data set per tool) using seven popular clustering approaches which have already demonstrated
to work well on protein data sets.11 This approach allows for a more detailed evaluation of
the performances and limitations of the clustering tools. We further use the massive database
of 100 of thousands clustering results generated during this work in order to conduct a meta
learning approach, comparable to the work of De Souto et al.,13 for the prediction of the
expected clustering performance and thus a tool ranking. We also suggest the parameter
settings for the tools, as we can identify the most similar data set in our database together
with the best parameters.

To summarize, we present an in-depth analysis of protein clustering and the inherent
variability of the data sets. We intensively investigated the performance of the tools on 202
different data sets with 1,000 different parameter settings each. We investigated the behavior
of the tools and their parameters, reflecting the diversity of the different protein families. With
a meta-learning approach we aim to predict the expected performance of the clustering tools
on unseen data sets. We utilized intrinsic properties of the data sets (e.g., matrix rank or the
cluster coefficient) and used them as features of a regression model for the prediction. We also
provide the performance predictor as a web-service together with all results, the source code of
the predictor, and additional information at http://proteinclustering.compbio.sdu.dk.

2. Materials

2.1. Data sets

We based our work on the Astral SCOPe 2.06 data set with less than 40% sequence identity.5

This scenario is very challenging for clustering tools as the alignment scores fall into the so-
called twilight zone when the sequence identity drops below 35%.14 The data set provides
a gold standard classification derived from the SCOP database which we utilize in order to
assess the cluster quality. The Astral data set classifies each protein into a hierarchy of class,
fold, superfamily and eventually family.

For our goal of predicting the expected performance of the clustering tools we require
a multitude of data sets. Therefore, we have created sub-samples of the Astral data set by
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splitting it into classes and folds, i.e., we have created a single data set for each class, containing
only the sequences of the one class and one data set for each fold in the same fashion. In the
remainder we will refer to them as the class data sets and the fold data sets. This serves
two purposes: (1) we received a sufficient number of data sets and (2) we were able to assess
the diversity of the protein families and their impact on the clustering tools. We calculated
pairwise BLAST10 hits (E-value cut-off 100) between all protein sequences and converted them
into similarities using the ”Coverage BeH” method by Wittkop et al.15 (coverage factor f = 20,
cut-off 100, 000).

Given these data sets, we cluster each of them into the corresponding families, leading
to the following two scenarios : Class → Families and Fold → Families. We performed a
final filtering process by excluding all those data sets containing only one cluster, e.g., a fold
containing only one family. We excluded them because they are trivial to cluster and would
hugely distort the parameter prediction. After this final step we created seven class data sets
and 195 fold data sets.

2.2. Clustering Tools

Table 1. Overview of the chosen clustering methods. We assign an abbreviation to
each of the tools. We optimized the denoted parameters for each of the tools.

Abbreviation Name Optimized Parameter(s)
CDP Clusterdp16 Kernel radius dc ∈ [∧,∨]
HC(linkage) Hierarchical Clustering17 Number of clusters k ∈ [2, n]
MCL Markov Clustering18 Inflation I ∈ [1.1, 10]
PAM Partitioning Around Medoids19 Number of clusters k ∈ [2, n− 1]
TC Transitivity Clustering20 T ∈ [∧,∨]

We based our tool selection on the top performers (using the F1-score21) of a previous large-
scale performance comparison of various clustering approaches,11 summarized in Table 1. The
F1-score is defined as the harmonic mean of precision and recall when comparing a cluster
result with a gold standard. Generally, external validity indices (i.e., measures comparing
against a gold standard) evaluate a result with regard to the purity of individual clusters and
the completeness of the clusters.11,21 In that context, the F1-score is a comprehensive measure
that takes both of these into account by combining two external measures (precision and
recall). The F1-score is the quasi-standard in clustering evaluation and has already proved
useful in many biomedical contexts.11,21 All considered clustering tools performed very well
with an average F1-score of over 0.7 in the original study. We excluded tools which return
overlapping clusters, as the F1-Score is undefined for such clusterings. We treat hierarchical
clustering as three tools, depending on the linkage function used (single, complete, average).

3. Methods

3.1. Data Statistics & Clustering

For each data set, we calculated 25 data statistics (see Table 2). We selected these statistics
to reflect a wide variety of properties of the data sets. Note, that some of the statistics are
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2. a) Cluster Data Sets
(Clustering Methods)

1. Analyze Data Sets
(Data Statistics)

3. Prediction Model Selection
(Linear Regression with CV)

2. b) Cluster Validation
(F1-Score)

Outcome

New Data Set

Prediction Model

4. Clustering Method Suggestion 5. Parameter Suggestion

Features

Fig. 1. Overview of the workflow of the presented method. (1) We calculate the features for the models,
(2a) perform a clustering of all data sets and (2b) evaluate their quality. (1) and (2) are used to (3) train a
regression model. (4) This model is used to predict the expected performance of each tool and suggests (5)
the parameters.

correlated; this fact and the influence on the models is discussed in Section 3.2. The ranges
of all statistics except Minimal Similarity, Maximal Similarity and Number Samples were
normalized to [0, 1] to avoid biases in the trained regression models due to differences in the
value ranges.

We utilized ClustEval11 to execute each clustering tool with 1,000 different parameter sets
as indicated in Table 1 and validated the results using the F1-Score. The maximal execu-
tion time of any tool per clustering was limited to 15 minutes as we occasionally observed
degenerated execution times depending on the used parameters.

3.2. Regression & Feature Selection

For each clustering tool we selected an ordinary, Lasso and Ridge regression model. We used
the R functions lm, glmnet (α = 1) and glmnet (α = 0) to train ordinary, Lasso and Ridge
regression models respectively. The data set statistics used as features for the regression models
are potentially correlated and thus might be troublesome for regression models. For this reason,
we perform a feature selection for the ordinary linear regression. Lasso and Ridge regression
already have an intrinsic feature selection, thus they were not subject to an additional feature
selection.

We trained each of the three regression models per tool using the data statistics as feature
variables. The outcome variables are either the best achieved F1-Score of each tool on each
data set, or the parameter leading to the best result; depending on whether we want to predict
the F1-Scores or the parameters. To assess the quality of the prediction, we used the mean
absolute error (MAE) to measure error rates: MAE(ŷ, y) = 1

N

∑N
i=1 |ŷi−yi| where ŷi denotes the

prediction, yi the real value for data set i, and N the total number of data sets. Using MAE
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Table 2. Overview of the calculated data statistics. The Absolute Z-Score, Assortativity and Similarity Per-
centiles are parameterized, i.e., we calculate the same statistic multiple times for different parameters. The
brackets behind the statistic name denotes the number of parameters used.

Data Statistic Name Description
Absolute Z-Scores (4) The fraction of all object pairs having a similarity within {1,2,3,4} stan-

dard deviations from the mean.
Assortativity, un/weighted22 (2) The preference for vertices with same degree to connect to each other in

the similarity graph.
Clustering Coefficient, avg.23 The ratio of fully connected triplets of nodes to connected triplets of

nodes in the similarity graph.
Graph Adhesion24 The number of edges to remove such that the similarity graph falls into

several connected components.
Graph Density25 The ratio of the number of edges and the number of possible edges in

the similarity graph.
Graph Diversity, avg.26 The average scaled Shannon entropy of the weights of the incident edges

on each vertex in the similarity graph.
Graph Min-Cut25 The sum of edge weights to remove such that the similarity graph falls

into several connected components.
Matrix Rank The number of independent rows in the similarity matrix.
Maximal Similarity The largest similarity in the similarity matrix.
Minimal Similarity The smallest similarity in the similarity matrix.
Number Samples The number of objects in the input data set.
Similarity Percentiles (10) The fraction of all object pairs having a similarity within the {[0-10],[10-

20],. . .,[90-100]} similarity percentile.

allows for easy interpretation of the error-rate compared to other measures such as the root
mean squared error (RMSE).27

3.2.1. Cross Validation

In order to estimate prediction errors for a trained model we utilize a 10-fold cross validation.
We repeated the cross validations 100 times with different folds to minimize the influence of
a single fold. Note that the Astral data set has only seven classes, thus when only using the
class data sets, a Leave-one-out cross validation (LOOCV) was performed instead.

3.2.2. Feature Selection for Ordinary Regression Models

We utilized a greedy forward feature selection approach coupled with 10-fold cross validations
to select features and thus models with small prediction error while trying to avoid overfitting.
In each step of the process, we successively added that feature to the model which lead to the
smallest cross validation prediction error estimate.

During this feature selection procedure, we generate models of increasing complexity, i.e.,
using more features. Thus, both training and testing errors of the cross-validation will decrease
in the beginning. However, with increasing number of features, the model will overfit the
training data which is indicated by a growing prediction error. The moment we observe a
growing prediction error, we stop adding features and report the current model as the final
model. A similar feature selection procedure was previously published in Pahikkala et al .28

Pacific Symposium on Biocomputing 2017

43



4. Results & Discussion

4.1. Data Statistics
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Fig. 2. The distributions of data statistic values for the class and fold data sets. We normalized data statistics
using the theoretical maxima where available. The statistics Minimal Similarity, Maximal Similarity and
Number Samples are not normalized.

Figure 2 summarizes the calculated data statistics for both class and fold data sets. Gener-
ally, some statistics such as Graph Min-Cut, Graph Density or Clustering Coefficient empha-
size the sparsity of the pair-wise similarity matrix of the protein sequences. This is due to the
fact that the proteins in the Astral data set do not have large sequence similarities resulting
in many protein pairs without any significant BLAST hit. Further, we want to highlight two
interesting observations:

(1) There is a clear difference in the statistical properties between the class and fold data
sets. Again, this is due to the many protein pairs without any BLAST hit. The ratio of these
pairs is larger in the class data sets which contain even more distantly related proteins. This is
most clearly seen on Statistics such as Average Graph Diversity, Clustering Coefficient, Graph
Density, Similarity Percentile 10/20 and Absolute Z-Score 0-1/1-2 which are very sensitive
to this proportion.

(2) Even data sets of the same type (i.e., fold or class) vary hugely. This demonstrates the
variety of the different protein families. This is even more pronounced in the fold data sets as
they contain fewer families and thus are more susceptible to ”outlier” families whereas in the
class data sets, the variety of the different statistics is generally more balanced.

4.2. Clustering Tool Performances

We clustered all data sets into protein families using the clustering tools summarized in Ta-
ble 1 to all previously mentioned class and fold data sets. The resulting F1-Scores are de-
picted in Figure 3. Generally, the selected clustering methods perform well on the data sets.
HC(complete), MCL and PAM perform on average slightly worse than their competitors. The
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Fig. 3. The best tool performances as F1-Scores for the two scenarios: Clustering class (C) or fold (Fold) into
families (Fam).

performance of PAM on class data sets might be due to our execution time limit of 15 minutes
per clustering. For k-parameter values close to the real number of clusters in the classes, the
algorithm does not finish in time. On the other hand, we only have seven of those data sets
in this study, so the effect on the performance should be limited. None of the other methods
were affected by the time limit. The general trend is that fold data sets can be clustered
better (on average) than class data sets which can be explained by the fact that the class data
sets are sparser. When ranking the tools by their F1-Score performance for each data set it
shows that there is no best performer across all data sets, as expected. Rather, several tools
alternate in taking the top ranks. The lack of a universal best performer and the variance in
the rankings emphasize that performances and rankings are highly data set dependent. This
further motivates the demand of a predictor based on data statistics.

4.3. Clustering Tool Parameters
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We compared the best parameters of each tool for the two scenarios. Figure 4 summarizes
our findings. Clearly, when clustering a fold data set we can observe a considerably larger
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variety for all tools. Parameters directly reflecting the desired number of clusters, i.e. k, have
been normalized with the number of objects in the data set. Please note, that we cannot
use the mean k parameter as a general ”rule-of-thumb” as this value entirely depends on the
average family size in the data set which is determined by the way we created the data sets.
Nevertheless, the variance in the k parameters certainly demonstrate the variance in protein
families. The only outlier with respect to the k parameter is PAM, again likely due to the
runtime restriction.

Interestingly, the parameters of CDP and MCL have different means when clustering
classes compared to clustering folds. This has practical implications, as for an unknown data
set it is impossible to determine whether it is comprised of a class, a fold or a mixture. The
threshold T of TC remains stable regardless of the data set type, with a larger variance for
the fold data sets, including some significant outliers. Overall, this indicates that a naive
parameter suggestion for arbitrary protein data sets is not feasible at least it does not do
justice to the variety present in different protein families.

4.4. Predicting Tool Performance

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●●●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●
●

●●●

●
●

●
●

● ●

●

●

●

●●●●●

●
●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●

●

●

0.00

0.05

0.10

0.15

0.20

CDP

HC(a
ve

ra
ge

)

HC(c
om

ple
te

)

HC(s
ing

le)
M

CL
PA

M TC

Clustering Method

M
A

E

Model
ordinary

lasso

ridge

naive

All−>Fam: Prediction Errors of Best Models In 100 x 10 Folds of CV

Fig. 5. The tool performance prediction errors for the final models of each tool when trained on all data
sets. The prediction errors were estimated with 100×10-fold cross validations. The yellow boxes represent the
performance of the naive model.

Figure 5 compares the tool performance prediction errors of the final models for all tools
when trained on all data sets. We also calculate a naive predictor serving as baseline which
predicts the average performance of each tool over all training data sets.

Generally, our final models outperform the naive models for all clustering tools except
MCL (difference in MAE of ≥ 0.025). Note that prediction errors are relatively low for both
kinds of models as all clustering tools performed well on the selected data sets. On average,
the predictions of the naive models have an MAE ≈ 0.1, while those of our final models show
an MAE ≈ 0.075. Ordinary models generally outperform Lasso and Ridge regression models
in terms of MAE. The general trend is MAE(ordinary) < MAE(lasso) < MAE(ridge). However,
the differences between ordinary, Lasso and Ridge regression are very small.
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Fig. 6. This figure depicts the features and their average value in the different regression models for tool
performance prediction. The features are sorted according to how often they have been selected by all models.
We treated features with zero coefficient as not being in the model. The small number above each box indicates
how often the feature was selected by the model represented by the box. Please note that the feature Minimal
Similarity was never selected and thus is omitted from the figure.

Here, we want to point out the limitations of the models presented. A meaningful prediction
is only possible in case the features of the unknown data set are in the same range as the
features of the training data sets. We have chosen the ASTRAL data set with only up to 40%
sequence similarity as we expected to observe here the most extreme feature distributions
compared to data sets with higher sequence similarity.

Therefore, we have also tested the performance of the prediction with data sets not used
for training. For that we have used the SCOP data set with proteins having 95% or less
sequence identity; we proceeded as with the original data set and separated it also into the
different classes. The error for the predicted F1 score with 0.083 for Lasso and 0.084 for Ridge
regression was still remarkably small. Only the ordinary regression model showed a clear drop
in performance with an average error of 0.191. This indicates that the ordinary regression is
the most sensitive model with respect to unseen feature values. We will constantly update
the model with new clustering results in order to further improve the quality and robustness
of the models over time. To this point, the presented models should rather be regarded as a
proof-of-concept.

Furthermore, we compared which data statistics have been chosen as features in the dif-
ferent types of models (see Figure 6). Features that have been chosen by all models clearly
have predictive power for the tool performances. Examples for such features are the [10, 20]-
Similarity Percentile, Assortativity, Maximal Similarity and Weighted Assortativity. The coef-
ficients of the maximal similarity are very small compared to the other features, as this feature
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is not normalized and thus takes large values across the data sets.
The Graph Diversity measures whether a node in the similarity graph is very similar to only

few other nodes (low diversity) or is equally similar to many nodes (high diversity). All model
types chose this statistic as a predictor with negative impact on the tool performance. This
might be explained by the fact that a very high diversity implies equal similarities between
all nodes, leading to the lack of an actual cluster structure.

Interestingly, the selected Similarity Percentile statistics indicate that details of the simi-
larity distribution have a large predictive power for the tool performance. For example, many
pairwise similarities between the [10 − 20]-Similarity Percentile indicate a better tool perfor-
mance while fewer pairwise similarities between the [90 − 100]-Similarity Percentile have the
opposite effect.

Surprisingly, the Clustering Coefficient does not enter many models with a large coefficient.
Equally surprising, given the performance difference between the class and fold data sets, is
that the data set size is only very rarely chosen as a feature.

4.5. Predicting Tool Parameters
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All−>Fam: Prediction Errors of Best Models In 100 x 10 Folds of CV

Fig. 7. The prediction performances for clustering tool parameters when trained on all data sets. Note that
the various k parameters are summarized in one common plot and are normalized by the data set size.

As already previously discussed, a simple parameter suggestion valid for all data sets is
not feasible due to the large variance in the protein families. Therefore, we applied the same
pipeline as for the quality prediction to the parameters of the tools as well.

The results are summarized in Figure 7 and show a more mixed quality. We do not out-
perform the naive predictor for the threshold parameter T of TC and the Inflation parameter
of MCL. We clearly outperform the naive predictor in the case of the dc parameter of CDP
as well as the k parameters of all tools using such a parameter. Nevertheless, as discussed
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earlier, the k parameter is highly dependent on the way we have sampled the data sets, thus
the predictive power has to be taken into account with care. Overall, the results indicate that
an automated parameter prediction is not reliably possible with the presented simple models
and may require more test data and more sophisticated models. In practice, the user has to
resort to other methods for finding suitable parameters.29

5. Conclusion

With this work, we have thoroughly investigated the performance of seven well-known and
established clustering tools and have particularly investigated the behavior of the tools’ pa-
rameters. We have observed that all tools perform quite well on these data sets. Nevertheless,
the good performance can only be reached when exhaustive parameter finding by means of
a comparison against a gold standard is performed. In practice, such gold standards are not
available and consequently the parameters need to be retrieved by different means. When
investigating the behavior of the parameters, we cannot suggest the user a single parameter
for all data sets due to the high variance of the protein families. Only TC shows a consistent
behavior of a parameter which is not directly dependent on the number of clusters. Overall, a
single fixed parameter cannot account for the potential variety in the data sets. Even though
the k parameter also shows a consistent behavior, it is not suitable for any recommendations
as this behavior results from the way we have sampled our data sets which cannot be expected
in practice.

Given this massive repository of clustering results at hand, we utilized it for learning
regression models for predicting the expected performance of the investigated tools on pre-
viously unseen data sets. The presented model does outperform the naive model. Especially
when considering that all clustering tools performed constantly well, the achieved prediction
accuracy is notable. We also tested the models on data sets which have not been part of
the training process. This can be seen as a strong indicator that it is generally possible to
identify data sets suitable for a particular tool in an automated fashion. We have created a
web-service where the user can upload a data set and receive the expected performance of
the different tools. Please be advised that the model might fail when presented with data sets
whose feature values are outside of the range of values the model was trained on. The web
service also presents the features of the most similar training data set for comparison. The
service is available under http://proteinclustering.compbio.sdu.dk. We will constantly
enhance the model with additional data in order to cover a broader variety of data set features
and thus creating more reliable predictions.

More generally speaking, the study shows that state-of-the-art clustering tools, when pre-
sented only with sequence similarities, have limitations with capturing the high diversity of
protein families and require a specific parameter for every data set which cannot be easily
provided in practice. Nevertheless, the performance achieved by the tools is certainly good
enough to render this approach a viable one; probably the biggest limitation is due to the
rather simple similarity function only using sequence data. Fed with more sophisticated simi-
larity functions, these tools might be able to capture the nature of the data set even better.
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