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Imaging genomics is an emerging research field, where integrative analysis of imaging and omics data
is performed to provide new insights into the phenotypic characteristics and genetic mechanisms of
normal and/or disordered biological structures and functions, and to impact the development of
new diagnostic, therapeutic and preventive approaches. The Imaging Genomics Session at PSB 2017
aims to encourage discussion on fundamental concepts, new methods and innovative applications in
this young and rapidly evolving field.

1. Introduction

Imaging genomics1–9 is an emerging research field that arises with the recent advances in
acquiring high throughput omics data and multimodal imaging data. Its major task is to
perform integrative analysis of genomics data and structural, functional and molecular imaging
data. Bridging imaging and genomic factors and exploring their connections have the potential
to provide important new insights into the phenotypic characteristics and genetic mechanisms
of normal and/or disordered biological structures and functions, which in turn will impact the
development of new diagnostic, therapeutic and preventive approaches.

Binformatics strategies for imaging genomics, which is a relatively young field,1–4 have
been rapidly evolving. Early studies started with the simplest strategy to examine pairwise
univariate associations10,11 between genetic markers and imaging phenotypes. To identify more
flexible associations involving multiple genetic markers and multiple imaging phenotypes,
recent studies employed multiple regression and multivariate models,12 sometimes coupled with
powerful machine learning approaches13 and valuable prior knowledge14 to discover relevant
imaging and genomic features. To increase statistical power and reduce false positives, meta-
analysis studies15,16 were performed to quantitatively synthesize imaging genomic findings
from multiple independent analyses. To hunt for “missing heritability”, epistatic studies17

were performed to examine genetic interaction effects on imaging phenotypes. To identify
biologically meaningful findings with increased statistical power, imaging genetic enrichment
analysis18 was proposed to mine set level associations in both imaging and genomic domains.

The topic of imaging genomics has recently been addressed in several medical imaging
and bioinformatics conferences. The most focused one is the International Imaging Genetics

Pacific Symposium on Biocomputing 2017

51



Conference (IIGC, http://www.imaginggenetics.uci.edu/), which is an annual meeting orga-
nized at the UC Irvine since 2005. The MICCAI Workshop on Imaging Genetics (MICGen,
http://micgen.csail.mit.edu/) has been held twice in conjunction with the major medical im-
age computing conference MICCAI in 2014 and 2015. An educational course on “Introduction
to Imaging Genetics” has been offered at the annual meeting of the Organization for Human
Brain Mapping (OHBM) since 2009. The topic of imaging genomics has also been covered in
the following two events in the bioinformatics field: (1) ACM BCB 2015 Workshop on The
Computational Pathology: Linking Tissue Phenotypes with Genomics and Clinical Outcomes,
and (2) ICIBM 2015 Tutorial in Bioimage Informatics and Integrative Genomics.

As the field of imaging genomics contains a significant genomics (or omics in general) com-
ponent in addition to biomedical imaging, we feel that it is timely for a major bioinformatics
conference such as PSB to address this important, relevant and emerging topic. We believe
that PSB offers an ideal and timely opportunity to bring together people with different exper-
tise and shared interests in this rapidly evolving field. Specifically, the computational biology
and bioinformatics expertise of the PSB and ISCB communities can provide important new
perspective, complementary to the expertise of the IIGC, MICCAI, OHBM, ACM BCB and
ICIBM communities, and thus can help contribute new concepts, methods, and applications
to the analysis of emerging imaging and genomic data.

The scale and complexity of multidimensional imaging and omics data provide us un-
precedented opportunities in enhancing mechanistic understanding of complex disorders such
as neurological diseases19–21 and cancers,22,23 which can benefit public health outcomes by
facilitating diagnostic and therapeutic progress. However, due to the extremely high dimen-
sionality and complex structure of these data sets, this field is facing major computational and
bioinformatics challenges. The technological advance in this field is urgently needed and has
the potential to significantly contribute to multiple national health priority areas including
the Precision Medicine Initiative,24 the Brain Initiative,25 and the Big Data to Knowledge
Initiative.26

The objective of this Imaging Genomics Session at PSB 2017 is to encourage discussion on
fundamental concepts, novel methods and innovative applications. We hope that this session
will become a forum for researchers to exchange ideas, data, and software, in order to speed up
the development of innovative technologies for hypothesis testing and data-driven discovery
in Imaging Genomics.

2. Session Summary

This session includes an invited lecture and five accepted presentations with peer-reviewed
papers. Three presentations will be delivered as platform talks and the other two as posters.

2.1. Invited Talk

Our invited lecture will be given by Dr. Paul Thompson, a world renowned pioneer in imag-
ing genomics. Dr. Thompson is from the University of Southern California (USC). At USC,
he is a Professor of Neurology, Psychiatry, Radiology, Pediatrics, Engineering, and Ophthal-
mology, the director of the USC Imaging Genetics Center, and the director of the ENIGMA
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Center for Worldwide Medicine, Imaging & Genomics – an $11M NIH Center of Excellence
in Big Data Computing. Dr. Thompson’s major contributions to the field of imaging ge-
nomics and to the science in general can be summarized by the following text quoted from
http://keck.usc.edu/faculty/paul-m-thompson/:

Paul Thompson directs the ENIGMA Consortium, a global alliance of 307 scien-
tists in 33 countries who conduct the largest studies of 10 major brain diseases –
ranging from schizophrenia, depression, ADHD, bipolar illness and OCD, to HIV
and addictions on the brain. ENIGMA’s genomic screens of over 31,000 people’s
brain scans and genome-wide data (published in Nature Genetics, 2012; Nature,
2015) have brought together experts from 185 institutions to unearth genetic
variants that affect brain structure, disease risk, and brain connectivity. Collabo-
rating with imaging labs around the world, Dr. Thompson and his students have
published over 1,300 publications (h-index: 116) describing novel mathematical
and computational strategies for analyzing brain image databases, for detecting
pathology in individual patients and groups, and for creating disease-specific
atlases of the human brain.

2.2. Papers

In Integrative analysis for lung adenocarcinoma predicts morphological features associated with
genetic variations, Wang et al. analyzed an imaging genomic data set downloaded from the
TCGA portal, containing 201 patients with lung adenocarcinoma (LUAD). The data includes
clinical information, mRNA expression profiles, and histopathologic whole slide images of
the patients. On the imaging end, the authors calculated 283 morphological features from
histopathologic images, and identified features strongly correlated with patient survival out-
come. On the genomic end, the authors constructed the gene co-expression network and ex-
tracted gene co-expression clusters. To relate imaging with genomics, the authors regressed the
outcome-relevant morphological feature on multiple co-expressed gene clusters using Lasso.
The study identified gene clusters highly associated with DNA copy number variations. These
observations may lead to new insight on lung cancer development, suggesting biological path-
ways from genetic variations, gene transcription, cancer morphology to survival outcome.

In Identification of discriminative imaging proteomics associations in Alzheimer’s disease
via a novel sparse canonical correlation model, Yan et al. analyzed an imaging proteomic
data set downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Participants include 42 healthy controls, 67 patients with mild cognitive impairment (MCI),
and 67 patients with Alzheimer’s disease (AD). The data includes clinical information, mag-
netic resonance imaging (MRI) scans, and expression data of 229 proteomic analytes (83 from
cerebrospinal fluid and 146 from plasma). The authors developed a novel machine learning
model, called discriminative sparse canonical correlation analysis (DSCCA), and applied it to
the joint analysis of imaging, proteomic and diagnostic data. This analysis yielded a strong
imaging proteomic association so that the identified imaging and proteomic components had
also high discriminative power. Such an outcome-relevant imaging proteomic pattern has the
potential to improve mechanistic understanding of the disease.
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In Enforcing co-expression in multimodal regression framework, Zille et al. analyzed an
imaging genomic data set collected by Mind Clinical Imaging Consortium (MCIC). Partic-
ipants include 116 controls and 92 schizophrenia patients. The data includes clinical infor-
mation, functional MRI (fMRI) scans, and genotyping data. The authors developed a new
machine learning model, called MT-CoReg, by combining sparse regression with canonical
correlation analysis; and applied it to the analysis of the MCIC data. The analysis identified
imaging and genomic markers that not only induce a strong imaging genomic association but
also can jointly predict the outcome.

In Adaptive testing of SNP-brain functional connectivity association via a modular net-
work analysis, Gao et al. analyzed an imaging genomic data set downloaded from the ADNI
database. Participants include 162 ADNI subjects: 73 with no APOE E4 allele, 67 with one
copy of the APOE E4 allele, and 22 with two copies of the APOE E4 allele. The authors ana-
lyzed the resting-state fMRI data to identify modular structures in brain functional networks,
using a weighted gene co-expression network analysis (WGCNA) framework, coupled with
topological overlap matrix (TOM) elements in hierarchical clustering. After that, they em-
ployed an adaptive association test based on the proportional odds model to identify distinct
modular structures in brain functional networks in relation to different APOE E4 groups.

In Exploring brain transcriptomic patterns: a topological analysis using spatial expression
networks, Kuncheva et al. analyzed whole genome whole brain gene expression data down-
loaded from the Allen Human Brain Atlas (AHBA). Participants include six AHBA donors.
The authors focused on 16,906 genes selected based on a previous study, and 105 brain regions
where at least one measurement in all 6 brains were available. A Spatial Expression Network
(SEN) was extracted for each gene to quantify co-expression patterns amongst several anatom-
ical locations. After that, network similarity measures were computed and used to quantify
the topological resemblance between pairs of SENs and identify naturally occurring clusters.
The analysis identified three stable clusters, including one with genes specifically involved in
the nervous system, and the other two representing immunity, transcription and translation.

2.3. Discussion

Most of these studies were facilitated by and conducted using the Big Data resources available
in the open science domain, including TCGA analyzed in (Wang et al.), ADNI analyzed in
(Yan et al. & Gao et al.), and AHBA analyzed in (Kuncheva et al.). The imaging data
investigated by these studies ranged from histological whole slide images of cancer specimens
in (Wang et al.), structural MRI scans in (Yan et al.), functional MRI scans in (Zille et al.
& Gao et al.), to images of mRNA expression levels across the brain in (Kuncheva et al.).
The omics data examined in these studies were also diverse, including DNA genotyping data
in (Zille et al. & Gao et al.), mRNA expression profiles in (Wang et al. & Kuncheva et
al.), and proteomic expression profiles in (Yan et al.).

These studies were performed to better understand the brain transcriptomic patterns in
healthy controls (Kuncheva et al.), the brain imaging genomic or imaging proteomic patterns
in Alzheimer’s disease (Yan et al. & Gao et al.) or schizophrenia (Zille et al.), and biolog-
ical pathways from gene transcription, tissue morphology to survival outcome in lung cancer

Pacific Symposium on Biocomputing 2017

54



(Wang et al.). As to the bioinformatics strategies, a variety of machine learning methods
were employed or newly developed in these studies, including network analysis and clustering
models used in (Wang et al., Gao et al. & Kuncheva et al.), regression models used in
(Wang et al.), an adaptive association test used in (Gao et al.), an integrative regression
and canonical correlation analysis model used in (Zille et al.), and an outcome-regularized
sparse canonical correlation analysis model used in (Yan et al.).

While Gao et al. studied functional brain network as an innovative imaging phenotype,
Kuncheva et al. aimed to identify gene clusters using whole brain spatial expression net-
works. The remaining three studies (Wang et al., Yan et al. & Zille et al.) shared a
common theme to examine the relationship among three levels (i.e., omics features, imaging
phenotypes, and clinical outcomes). This suggests a promising future direction to integrate
imaging genomics with systems biology, which attempts to model complex and interactive
multilevel biological systems using multimodal imaging and multidimensional omics data sets.
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ADAPTIVE TESTING OF SNP-BRAIN FUNCTIONAL CONNECTIVITY
ASSOCIATION VIA A MODULAR NETWORK ANALYSIS

CHEN GAO, JUNGHI KIM and WEI PAN∗, for the Alzheimer’s Disease Neuroimaging Initiative∗

Division of Biostatistics, School of Public Health, University of Minnesota
∗E-mail: weip@biostat.umn.edu

Due to its high dimensionality and high noise levels, analysis of a large brain functional network
may not be powerful and easy to interpret; instead, decomposition of a large network into smaller
subcomponents called modules may be more promising as suggested by some empirical evidence.
For example, alteration of brain modularity is observed in patients suffering from various types
of brain malfunctions. Although several methods exist for estimating brain functional networks,
such as the sample correlation matrix or graphical lasso for a sparse precision matrix, it is still
difficult to extract modules from such network estimates. Motivated by these considerations, we
adapt a weighted gene co-expression network analysis (WGCNA) framework to resting-state fMRI
(rs-fMRI) data to identify modular structures in brain functional networks. Modular structures are
identified by using topological overlap matrix (TOM) elements in hierarchical clustering. We propose
applying a new adaptive test built on the proportional odds model (POM) that can be applied to
a high-dimensional setting, where the number of variables (p) can exceed the sample size (n) in
addition to the usual p < n setting. We applied our proposed methods to the ADNI data to test for
associations between a genetic variant and either the whole brain functional network or its various
subcomponents using various connectivity measures. We uncovered several modules based on the
control cohort, and some of them were marginally associated with the APOE4 variant and several
other SNPs; however, due to the small sample size of the ADNI data, larger studies are needed.

Keywords: aSPU test; brain functional connectivity; functional MRI; proportional odds model;
single nucleotide polymorphism; weighted gene co-expression network analysis; WGCNA.

1. Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) is gaining popularity in studies
of brain functional connectivity with applications to detection of subtle network reorganiza-
tions in Alzheimer’s disease.1 Disruption of connectivity in the brain functional network is
related to many pathological conditions in the brain, such as Alzheimer’s disease,2 schizophre-
nia,3 or autism.4 This necessitates the development of methods for modelling the brain func-
tional network its statistical inference.

A network is comprised of nodes and edges connecting the nodes. Based on functional
MRI data, a popular choice of nodes are brain regions of interest (ROIs) while the edges are
connectivities reflecting statistical dependencies between ROIs. An important network model,
the scale-free network,5 assumes that most nodes in a network are sparsely connected with the
exception of a few “hub” nodes that are densely connected with other nodes. In the scale-free
network model, new connections are more likely to occur for those hub nodes with already-high

∗Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/howtoapply/ADNIAcknowledgementList.pdf.
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connectivity. There has been empirical evidence supporting this model for brain functional
networks,6 though it is still debatable. In addition, the scale-free network model also admits
a modular topological structure, which can be extracted for more efficient analyses for human
brains.

Methods for drawing statistical inference to distinguish brain connectivity for different
groups of subjects are still under development. The first question encountered is how to define
brain functional connectivity. Ref. 7 discussed the choice between Pearson’s marginal correla-
tion coefficient and partial correlation coefficient as a network connectivity measure, though
other measures are possible and it is yet unclear which one is best. To reduce dimensionality
and to reach sparseness, graphical lasso is often used for estimating networks for different
groups. Since an estimated network with the imposed sparsity penalty may not demonstrate
modular structures, a better approach is to directly discover the modules in a network. A
general framework for estimating scale-free networks and detecting modules is proposed in
Ref. 8 for gene network analysis, which has gained tremendous popularity in genomics.9 It
starts by defining a similarity measure between two nodes in a network, called adjacency, using
the marginal correlation coefficient. Soft-thresholding is then applied, leading to a weighted
network. The soft-thresholded adjacency is further transformed to a topological overlap ma-
trix (TOM) element, which is converted to a dissimilarity measure for hierarchical clustering,
grouping closely connected nodes together as modules in the network. The above framework
not only provides multiple network connectivity measures, but also carries out modular struc-
ture identification. The connectivity measures and identified modules in the brain functional
network may help statistical inference and offer biological insights.9

In this paper, for the first time, we adapt the use of WGCNA for gene expression data to rs-
fMRI data, constructing weighted brain functional networks and identifying their subnetworks
or modules using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data. We explored
using the adjacency matrix element and TOM element, in addition to the marginal correlation
or covariance, to characterize connectivity in brain functional networks. Taking advantages
of detected network modules, we conduct association analysis of genetic variants with not
only the whole brain functional network, but also its various subcomponents, including its
modules, which aims to not only improve statistical power, but also offer better biological
interpretation. We propose applying a new adaptive association test based on a proportional
odds model (POM) accounting for the ordinal nature of the SNP genotype. We found evidence
of associations between several network modules and the APOE4 variant, which is by far the
most significant genetic risk factor for Alzheimer’s disease.

This paper is organized as follows. We first review the method of WGCNA, including its
module identification, then introduce the adaptive test based on a POM. We demonstrate
the application of our methods to the ADNI data before summarizing our findings and future
research directions in the discussion section.

Pacific Symposium on Biocomputing 2017

59



2. Methods

2.1. Module detection via weighted gene co-expression network analysis

In this section, we briefly review the work in Ref. 8 on the weighted gene-coexpression network
analysis (WGCNA) framework for network construction and module identification.

2.1.1. Adjacency matrix

The first step of the WGCNA framework is to define a similarity measure between gene
expression profiles; in the current context, we use the BOLD signals in each of multiple ROIs
from one or more subjects to calculate a similarity between any two ROIs. The similarity
measure is required to take values between 0 and 1. A typical choice of this similarity measure
is the absolute value of the Pearson correlation coefficient suv = |cor(u, v)|, for nodes u and v.
Another choice, which preserves the sign of correlation, is defined as suv = [1 + cor(u, v)]/2. We
refer the first one as unsigned similarity measure, and the second one as the signed similarity
measure. From our experience of applications to the ADNI data, the identified modules have
negligible differences using either unsigned or signed similarity measure. We used the unsigned
similarity measure throughout this paper.

Once the similarity measure is computed, the next step is to transform the similarity
matrix S = [suv] into an adjacency matrix using an adjacency function. Hard thresholding
is often used to yield a binary or unweighted network with a 0/1 adjacency indicating no-
connection/connection and thus possible loss of information, though a more efficient multi-
scale approach with multiple thresholds yielding a set of binary networks has been proposed.10

Soft thresholding is a simple and popular alternative with more flexibilities. One choice is the
power adjacency function

auv = power(suv, δ) ≡ |suv|δ (1)

with parameter δ, which is chosen as the smallest integer such that the scale-free network
model fitting is above a certain threshold.

2.1.2. Topological overlap matrix

Instead of using only the adjacency matrix, Ref. 11 advocated a topological overlap matrix
Ω = [ωuv] with its element as a potentially more useful measure that reflects the relative
interconnectedness of two nodes u and v after accounting for their shared neighbors. The
topological overlap matrix element is defined as

ωuv =
luv + auv

min{ku, kv}+ 1− auv
(2)

with ku =
∑

v auv and luv =
∑

q auqaqv. For a binary network with auv = 0 or 1, ku is the
connectivity of node u representing the number of its direct neighbors, while luv equals the
number of nodes that connect both nodes u and v; ωuv = 0 if the nodes u and v are not
connected and they are not connected to the same neighbors; in contrast, ωuv = 1 if the nodes
u and v are connected and the neighbors of the node with fewer edges are also connected to
the one with more edges. For any network, 0 ≤ auv ≤ 1 implies 0 ≤ ωuv ≤ 1.
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2.1.3. Module identification

To identify modules in a network, we need to have a dissimilarity or distance measure. An
intuitive way is to convert a similarity measure. Based on the topological overlap matrix
element ωuv, we can simply define the dissimilarity measure as dωuv = 1−ωuv. The TOM-based
dissimilarity dωuv is used as the input for average linkage hierarchical clustering. The output
from hierarchical clustering is a dendrogram composed of branches and leaves. In a brain
functional network, each leaf corresponds to a ROI. The hierarchical clustering algorithm
groups the closest ROIs and forms the branches. By cutting the branches of the dendrogram,
closely related ROIs are identified as a module. Among the several methods for cutting the
branches of the dendrogram, the default used in the WGCNA framework is Dynamic Tree
Cut from the R package dynamicTreeCut.

Once modules are identified, one can calculate an intramodular connectivity

ω.inu =
∑
v∈M

ωuv (3)

for each node u in its module M . Ref. 8 pointed out that intramodular connectivities ω.in may
represent important features of the nodes (i.e. ROIs).

2.2. An adaptive association test based on the proportional odds model

Let Yi = 0, 1, 2 denote the count of the minor allele for subject i for a given SNP of interest,
then Yi has J = 3 ordered categories. The logistic regression model cannot be applied in this
situation, because it only allows the response variable to be binary. A popular choice for
ordinal data is the proportional odds model (POM),12 which we will briefly describe here.

Suppose subject i has p network connectivities denoted by Xi = (xi1, . . . , xip) and l covari-
ates denoted by Zi = (zi1, . . . , zil). For the proportional odds model, we define the regression
coefficients β = (β1, . . . , βp)

′ for the network connectivities and δ = (δ1, . . . , δl)
′, and a vector of

intercepts α = (α0, . . . , αJ−2)′. The proportional odds model is

logit[Pr(Yi ≤ j)] = αj + Ziδ +Xiβ, j = 0, 1. (4)

The likelihood for equation Eq. 4 can be derived based on the multinomial distribution for
the categorical variable Yi, from which maximum likelihood estimates and statistical inference
can be obtained as implemented in R package MASS or VGAM. However, numerical issues such
as non-convergence arise when p, the dimension of β, is relatively large as compared to the
sample size n.

Here we propose applying a class of tests that are applicable to the high-dimensional
setting with p > n, from which an adaptive test is constructed to summarize information
across the tests. No that most existing tests cannot be applied to the case p > n. To test the
null hypothesis H0 : β = (β1, β2, . . . , βp)

′ = 0, we can use the score vector derived in Ref. 13,

Uβ =

n∑
i=1

J−2∑
j=0

(1− r̂i(j−1) − r̂ij) · I(Yi = j) ·Xi (5)

where r̂ij = exp(α̂+Ziδ̂)/[1 + exp(α̂+Ziδ̂)] comes from the fitted null model of Eq. 4 (i.e. with
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β = 0); α̂ and δ̂ are estimated by the polr function in the R package MASS. Let Uk denote the
kth component of the score vector Uβ = (U1, . . . , Up)

′. The SPU(γ) test statistic is defined as

TSPU(γ) =

p∑
k=1

Uγk , (6)

where γ ≥ 1 is an integer. As the parameter γ increases, a connectivity with a larger absolute
value of the score gains a higher weight. In the extreme situation, when γ → ∞ as an even
integer, SPU(∞) takes only the maximum component of the score vector, i.e., TSPU(∞) =

maxpk=1 |Uk|.
The p-values of the SPU tests are computed by permuting the residuals from the null

model B times, and the p-value can be calculated as

PSPU(γ) =
(
∑B

b=1 I[|T (b)
SPU(γ)| ≥ |TSPU(γ)|] + 1)

(B + 1)
, (7)

where T
(b)
SPU(γ) is the SPU(γ) statistic based on the bth set of permuted residuals. Since the

value of γ that yields highest power cannot be determined a priori, an adaptive SPU (aSPU)
test is introduced to combine the evidence across multiple SPU tests,

TaSPU = min
γ∈Γ

PSPU(γ), (8)

where PSPU(γ) is the p-value of SPU(γ) test statistics and Γ is a set of integers for the power
of aSPU test. In the numerical examples throughout this paper, we chose γ from the set
Γ = {1, 2, . . . , 8,∞}. To calculate the p-value of TaSPU , we can use the same permutation
scheme as used for calculating the p-values of TSPU ’s. For each permuted residual set b, after
calculating T

(b)
SPU(γ) and its p-value p

(b)
γ = (

∑
b1 6=b I[T

(b1)
SPU(γ) ≥ T

(b)
SPU(γ)] + 1)/B. Then we can

obtain T
(b)
aSPU = minγ∈Γ p

(b)
γ , and the p-value of TaSPU is

PaSPU =
(
∑B

b=1 I[T
(b)
aSPU ≤ TaSPU ] + 1)

(B + 1)
. (9)

A step-wise procedure is used to gradually increase B if needed. We can start with B = 103

initially, then increase to B = 105 (or bigger) if a p-value is smaller than 5× 10−3 (or smaller).
The test is implemented in R package POMaSPU to be available on CRAN.

3. Results

3.1. ADNI Data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). We included all subjects from
the normal and Alzheimer’s disease (AD) groups in the ADNI data. We applied motion cor-
rection and global signal regression to reduce noises.

Here we used the power adjacency function auv = power(suv, β) = |suv|β (equation (1)). β
was selected as the smallest β such that the scale-free model fitting R2 was above a pre-set
threshold 0.85.
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3.2. Distinct modular structures in brain functional networks based on
APOE4 SNP genotype scores

For the ADNI data, we grouped the subjects based on the APOE4 SNP (rs429358) minor allele
counts (0, 1, 2). APOE4 plays a major role in the pathogenesis of Alzheimer’s disease.14,15 The
APOE4 variant is a major risk factor for both early- and late-onset Alzheimer’s disease.14,15

We removed those subjects with a missing rs429358 value, resulting in a total of 162 subjects.
Among them, 73 subjects have no minor allele at rs429358, whereas 67 subjects have one
minor allele and 22 subjects have two. In order to establish possible modular structures in
brain functional networks in the normal condition, we first applied the WGCNA framework
to the rs-fMRI data of the control subjects only. Specifically, for each ROI, we concatenated
the BOLD time series of all the control subjects, which were used to calculate the similarity
between any two ROIs (i.e. the absolute value of Pearson’s correlation between any two BOLD
time series), then conducting the subsequent analyses in the WGCNA framework. At the end,
we identified four modules based on the data from the control cohort (Figure 1).

Based on the modules identified, we continued to explore them for each APOE4 SNP geno-
type group. To measure the network connectivities, we used the correlation matrix, covariance
matrix, and the topological overlap matrix (TOM). The rows and columns are ordered in the
same way as in Figure 1. Distinct modular structures seem to be present in the correlation,
covariance and TOM plots across the APOE4 genotype groups (Figure 2).

3.3. Adaptive testing for SNP-module associations

Using the APOE4 SNP (rs429358) minor allele counts as the response in a POM, we tested
the association between the APOE4 SNP and the network connectivities. Covariates including
age, gender and years of education were adjusted. Using the aSPU test, we found that the
covariance matrix elements were marginally associated with the APOE4 SNP (P = 0.033,
Table 1). We further decomposed the whole network connectivities into two exclusive subsets:
connectivities within the four modules and those between the modules. Both the between-
modular covariance and TOM were associated with the APOE4 SNP with P < 0.05.

Next we focused on the network connectivities in each individual module, and tested
their association with the APOE4 SNP (Table 2). The network connectivities defined by
the correlations in the yellow module showed evidence of association with the APOE4 SNP
(P = 0.017). In addition, the network connectivities defined by covariance matrix elements in
the blue and yellow modules were also associated with the APOE4 SNP (P = 0.034, P = 0.011).

Finally we tested for association between each module-specific intramodular connectivity
ω.in and the APOE4 SNP. Only the yellow module showed a significant association with
P = 0.007.

There are 30 and 19 ROIs in the blue and yellow modules, respectively. The ROIs identified
in the yellow modules includes left/right sides of posterior cingulate cortex, angular gyrus,
superior frontal cortex, middle frontal cortex, and inferior frontal cortex. For comparison,
Ref. 13 identified 18 nodes related to the default mode network (DMN), including left/right
sides of superior frontal cortex, medial prefrontal cortex, ventral anterior cingulate cortex,
posterior cingulate cortex, parahipppocampal cortex, inferior parietal cortex, angular, middle
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Fig. 1. TOM plot of the whole brain functional network and its modules for normal subjects. The rows and
columns are the ROIs, ordered by their distance in the tree.

temporal gyrus, and inferior temporal cortex.16–18 We found that 15 ROIs in the yellow module
are also related to the 18 nodes in the DMN. For example, the posterior cingulate cortex plays
a pivotal role in the default mode network of the brain.19,20 The posterior cingulate cortex
is linked to cognitive functions such spatial memory, configural learning, and maintenance of
discriminative avoidance learning and.21,22 It is shown in the DMN that Alzheimer’s disease
affects the posterior cingulate cortex.20 Angular gyrus is another region found in both DMN
and the yellow module. Loss of grey matter volume in angular gyrus has been associated
with dementia and progression to Alzheimer’s disease.23 The association between the APOE4
variant and the network connectivity measures in the yellow module also uncovers some key
brain regions in DMN that were found to be affected in Alzheimer’s disease.

The ROIs in the blue module includes the left/right sides of hippocampus, lingual gyrus,
cuneus, calcarine fissure and superior occipital gyrus, cerebellum and vermis. Hippocampus is
well known for its key role in memory.24 Hippocampal neuronal loss and structural change have
been connected with Alzheimer’s disease.25,26 Alzheimer’s disease patients have also demon-
strated neuronal and glial loss and structural changes in cerebellum and vermis.27 Lingual
gyrus, cuneus, calcarine fissure and superior occipital gyrus are located in the occipital lobe,
which are mainly related to vision processing.28 In addition, lingual gyrus plays an important
role in the identification and recognition of words.29 The association between the APOE4
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SNP and the network connectivity measures may reflect the pathological changes of the brain
functional network in Alzheimer’s disease.

3.4. GWAS scan with individual modules

We tested for associations of the SNPs across the whole genome with the functional connec-
tivity measures in the yellow and blue modules respectively. For genotype data, we included
all SNPs with a minor allele frequency (MAF) ≥ 0.05, genotyping rate ≥ 90%, and passing
the Hardy-Weinberg equilibrium test with a p-value > 0.001. After filtering with the above
criteria, we obtained 579,382 SNPs.

The genome-wide scan showed that among the SNPs associated with the network connec-
tivities (measured by Pearson’s correlation) in the yellow module, rs17114690 on chromosome
14 was the only SNP that had a p-value smaller than 10−3. Three SNPs were founded to be
associated with the network connectivities (correlations) in the blue module, with p-values
smaller than 10−3. They are located on chromosome 1 (rs7536105, rs11265187) and chromo-
some 2 (rs17498117). rs7536105 is located in the chromatin interactive region, while rs11265187
is located in the enhancer region of gene olfactory receptor family 10 subfamily J member 9
pseudogene (OR10J9P).

The genome-wide scan also identified 5 SNPs associated with the intramodular network
connectivity ω.in for the yellow module, with P < 10−5. They are located on chromo-
some 1 (rs6656071, rs12043216), chromosome 7 (rs1178127, rs12674460), and chromosome 13
(rs2819239). SNP rs1178127 is a missense variant in gene histone deacetylase 9 (HDAC9),30 an
important gene with function in transcriptional regulation and cell cycle in the Wnt signalling
pathway.

4. Discussion

In this paper we adapted WGCNA for network construction and module detection to rs-fMRI
data. Based on the identified modules, we also proposed applying a new adaptive association
test for single SNP association with the connectivities of the whole network or its components
in a proportional odds model. While the whole network was not associated, some module-
based connectivities were significantly associated with the APOE4 SNP rs429358. Given the
major role of APOE4 in the pathogenesis of Alzheimer’s disease, our finding seems plausible,
suggesting its possible use for genome-wide scans to detect SNP variants associated with
altered brain networks and AD. Although none of the associations was highly or genome-wide
significant, it was perhaps due to a too small sample size; larger studies are needed. Our use
of modules, with either various ROI-to-ROI connectivities (e.g. TOM in addition to standard
correlations) or some module-based node measures (such as intramodular connectivity), not
only may reduce the dimension and thus improve the statistical power, but also can enhance
result interpretation, highlighting where is the association if any. In particular, we found that
intramodular connectivities showed more significant associations with more SNPs, possibly
due to their lower dimensions (i.e. p1 in a module with p1 ROIs as compared to p1(p1 − 1)/2

of ROI-to-ROI connectivities) and/or higher information contents.
The multiple traits used in this paper, including various network connectivity measures in
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the whole network or its various subcomponents, differ from most of the previous neuroimaging
studies,31 in which the focus was on some direct measures on ROIs, not their connectivities as
shown here. These phenotypes are often high dimensional with dimension exceeding the sample
size. Many software packages cannot handle such a situation with p > n, which limits their use.
The adaptive association test used in this paper can be applied to such high-dimensional traits.
It can be a useful and powerful method for identifying associations between high-dimensional
neuroimaging traits and SNPs. In this paper, we have focused on the study of the association
between neuroimaging phenotypes and SNP genotype scores; however, other ordinal outcomes
such as a disease status (e.g. normal, MCI and AD in the ADNI data) can be tested for their
associations with neuroimaging and other endophenotypes.
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SNP Count = 0 SNP Count = 1 SNP Count = 2

Network heatmap plot, APOE4 SNP = 0, w/o GS Network heatmap plot, APOE4 SNP = 1, w/o GS Network heatmap plot, APOE4 SNP = 2, w/o GS

Cov heatmap plot, APOE4 SNP = 0 Cov heatmap plot, APOE4 SNP = 1 Cov heatmap plot, APOE4 SNP = 2

Cor heatmap plot, APOE4 SNP = 0 Cor heatmap plot, APOE4 SNP = 1 Cor heatmap plot, APOE4 SNP = 2

Fig. 2. TOM plot (top), covariance matrix plot (middle) and correlation matrix plot (bottom) of the brain
functional networks for the three genotype groups based on APOE4 SNP (rs429358) (with its minor allele
counts equal to 0, 1 or 2 from left to right).
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Characterizing the transcriptome architecture of the human brain is fundamental in gaining an
understanding of brain function and disease. A number of recent studies have investigated patterns of
brain gene expression obtained from an extensive anatomical coverage across the entire human brain
using experimental data generated by the Allen Human Brain Atlas (AHBA) project. In this paper,
we propose a new representation of a gene’s transcription activity that explicitly captures the pattern
of spatial co-expression across different anatomical brain regions. For each gene, we define a Spatial
Expression Network (SEN), a network quantifying co-expression patterns amongst several anatomical
locations. Network similarity measures are then employed to quantify the topological resemblance
between pairs of SENs and identify naturally occurring clusters. Using network-theoretical measures,
three large clusters have been detected featuring distinct topological properties. We then evaluate
whether topological diversity of the SENs reflects significant differences in biological function through
a gene ontology analysis. We report on evidence suggesting that one of the three SEN clusters consists
of genes specifically involved in the nervous system, including genes related to brain disorders, while
the remaining two clusters are representative of immunity, transcription and translation. These
findings are consistent with previous studies showing that brain gene clusters are generally associated
with one of these three major biological processes.

Keywords: Spatial gene expressions; Biological networks

1. Introduction

The human brain is a complex interconnected structure controlling all elementary and high-
level cognitive tasks1. This complexity is a result of the cellular diversity distributed across
hundreds of distinct brain anatomical structures2,3. One of the main tasks of the neuroscience
community in the past decade has been to connect the underlying genetic information of
the anatomical structures to their underlying biological function3–5. A useful data source for
such studies is the Allen Human Brain Atlas (AHBA)3, which provides microarray expression
profiles of almost every gene of the human genome with emphasis on an extensive anatomical
coverage across the entire human brain.
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In this paper, we make use of the experimental data provided by the AHBA project
to study the spatial microarray variability at the single gene level. Analyzing the complete
transcription architecture of the human brain in this way may be informative of the impact
of genetic disorders on different brain regions that would otherwise not be apparent due to
the coarse resolution.

To gain new insights into the expression patterns of the human brain and identify po-
tentially important biomarkers, many studies involving the AHBA data explore gene to gene
relationships3,4. Each gene is represented by its expression levels across anatomical locations.
Genes with correlated expression profiles are grouped together based on an appropriate sim-
ilarity measure. The analysis of the resulting gene co-expression networks provides evidence
that transcriptional regulation relates to anatomy and brain function2–4. There are also studies
that consider the genetic similarity between pairs of regions, and show that transcriptional
regulation varies enormously with anatomic location3,4,6,7. These findings indicate the neces-
sity to adopt a new representation of a gene’s transcription activity that explicitly captures
the pattern of spatial co-expression across different anatomical brain regions.

We propose a new and unexplored way to model the spatial variability at the single gene
level. For each gene, we create a spatial expression network, or SEN. Each node of the network
corresponds to a pre-defined brain region for which we have sufficient transcriptomic data, and
each edge weight represents the similarity in gene expression levels, for that gene, between two
brain regions. Applying this procedure to genes that have been found to be stably expressed
across specimens gives rise to a population of approximately 17, 000 gene networks, each one
representing a brain-wide spatial pattern of gene expression. Using this representation, we
investigate whether the topological similarity of the SENs reflects the biological similarity of
genes through an integrative analysis based on network clustering and gene ontologies. Our
hypothesis is that, if clusters of topologically similar SENs can be identified, the corresponding
genes within each cluster may also share similar biological properties.

A robust cluster analysis of all SENs has indicated the presence of three large and stable
clusters of SENs, each one having significantly different topological features as well as different
biological function. In particular, one of the clusters has been found to be uniquely enriched
for brain-related terms, neurological diseases and genes with enriched expression in neurons.
Overall, our analysis provides evidence supporting the notion that topological proximity of
spatial gene networks is indicative of similar biological function.

2. Materials and Methods

2.1. Spatial Expression Networks (SENs)

The Allen Human Brain Atlas (AHBA)3,8 is a publicly available atlas of the human brain with
microarray-based genome-wide transcriptional profiling of specific brain regions spanning all
major anatomical structures of the adult brain. The data set includes transcriptional profiling
data from more than 3500 samples comprising approximately 200 brain regions in 6 clinically
unremarkable adult human brains. The Agilent 4 × 44 Whole Human Genome platform was
used for gene expression extraction. Two donors contributed samples representing approxi-
mately 1000 structures across the whole brain, while the other four approximately 500 samples
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from the left hemisphere. Our analyses is based on 16, 906 pre-selected genes from a previous
study5. We use the normalized expression levels, which were normalized across samples and
across different brains as in previous analyses9.

Fig. 1. Anatomical maps of the 105 brain regions used to construct the SENs. The maps show the brain regions
as seen from inferior, lateral and superior views, from left to right. All regions are in the left hemisphere and
they are located in the Thalamus, Cerebellum, Pons, Midbrain, Medulla and Cerebral cortex. Coloring of the
regions is consistent with anatomical tissue and is obtained from AHBA ontology atlas.8

For each of the 16, 906 genes, we constructed an individual spatial expression network
(SEN) representing patterns of expression variability in the brain. Only brain regions with
at least one measurement in all 6 brains were included in the analysis resulting in a total of
N = 105 regions from the left hemisphere, as shown in Fig. 1.

The mean expression level for a gene in brain region i is denoted by gi. The distribution of
the mean and median values for each brain region over all genes were not found statistically
different (Kolmogorov-Smirnov test10; all p >> 0.05). Furthermore, for more than 97% of all
region samples across all genes, the standard deviation of the expression values is less than 20%

of the mean value, indicating that the mean can be taken as representative of the expression
values at a given region for a given gene.

Formally, we define a SEN as a fully connected network G = (V,E) with node set V = {i :

i = 1, 2, ..., N} indicating the brain regions and weighted edge set E = {Eij : i, j = 1, 2, ..., N ; i 6=
j}. Each edge weight Eij ∈ [0, 1] quantifies the similarity in gene expression between regions
i and j. The maximum value is reached when the mean expression levels in the two brain
regions are equal. We impose that Eij monotonically decreases with an increasing absolute
difference between mean expression levels; accordingly, the edge weights are defined as

Eij :=
1

1 + |gi − gj |
.

This network representation allows us to capture the interconnected variability of gene ex-
pression across the brain at the gene level.

Pacific Symposium on Biocomputing 2017

72



2.2. Clustering SENs

In order to address our hypothesis that topological similarity may reflect biological similarity,
initially we set out to explore whether SENs form naturally occurring clusters. For this we first
required an appropriate measure of topological dissimilarity between pairs of SENs. We first
mapped each SEN G to a N -dimensional feature vector d = (d1, d2, ..., dN ) with each elements
representing the node degree, i.e. di =

∑N
j=1Ei,j. The degree for each node captures the global

transcriptomic similarity of the corresponding brain region to all other brain regions for a
given gene. If the node degrees for two SENs are very different, then the corresponding genes
have very different global transcriptomic patterns. The dissimilarity between two SENs, Gl

and Gk, was taken to be the Euclidean distance between the corresponding feature vectors, dl

and dk.
Three different clustering algorithms were used – partitioning around medoids (PAM)11,

k-means12 and fuzzy C -means13 – all providing a partition of all the SENs into k different clus-
ters. To determine an appropriate number of clusters k using each one of these algorithms we
performed a stability analysis12. The k clusters are deemed “stable” if random changes in the
SEN configurations generate almost identical k clusters. To introduce random changes in the
networks, we use a randomization strategy by which the observed networks in network space
Γ are perturbed slightly. For this analysis we used two different randomization procedures: (a)
vertex permutations, i.e. we permuted the node labels of a random subset of networks so as
to preserve the node degrees but not their order, (b) edge perturbation, i.e. we perturbed the
edge weights of a random subset of networks so as to make the cluster robust against white
noise.

To obtain a measure of cluster instability, we use the following steps: First, we generate
perturbed versions Γb (b = 1, 2, ..., bmax) of Γ, and cluster the networks in Γb into k clusters
thus obtaining Cb(k). In addition, we randomize the cluster assignments14 in Cb (k) to obtain
random clustering Cb,rand (k) . Second, for b, b′ = 1, 2, ..., bmax, we compute the pairwise distances
[1−NMI(Cb(k), Cb′(k))] between the clusterings Cb(k) and Cb′(k), and between the randomized
clusterings Cb,rand(k) and Cb′,rand(k). The normalized mutual information (NMI) is used as a
similarity measure between partitions15. The cluster instability index is defined as the mean
distance between clusterings Cb(k), i.e.

I(k) =
1

b2max

bmax∑
b,b′=1

[1−NMI(Cb(k), Cb′(k))] . (1)

We use the normalized instability index, Inorm(k) := I(k)/Irand(k), which corrects for a scaling14

of I(k) with an increasing number of clusters k. We choose number of clusters k that gives the
lowest Inorm(k).

2.3. Topological characterization of SEN clusters

To characterize the topological properties of SENs in each cluster, we use global topological
measures that capture different aspect of the network such as its density, the tendency of its
nodes to cluster and form communities, the presence of central and hub nodes. Overall, we use
eight such different measures: average node degree16, average closeness centrality16, weighted
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diameter17, global clustering coefficient for weighted networks17, number of non-overlapping
communities, average authority score18, the number of nodes with authority score > 0.95, and
the number of nodes with authority score < 0.05. All measures were computed for all SENs
within each cluster. To test for statistically significant differences in network topology across
clusters, we performed a multivariate ANOVA test19.

Furthermore, for each SEN we derived a measure of community structure20. In our con-
text, the presence of a community in a given SEN indicates that there is a set of highly
interconnected brain regions whose gene expression similarity is higher compared to the rest
of the network. For this analysis we used the Fast Greedy algorithm21, which is based on the
optimization of the modularity function that sums the edge weights within a community and
corrects for the expected edge weights by chance. The algorithm is discriminative of small
edge weight differences and can yield sensitive separation of brain regions into communities.
Genes with similar community structures indicate the presence of similar local coherent tran-
scriptomic patterns for groups of brain regions.

For each cluster, we quantify the similarity of a pair of brain regions using the communities
detected in all the SENs by counting the number of times the two regions fall within the same
community. This count is then divided by the total number of SENs in the cluster in order
to obtain an index lying in the [0, 1] range, which we call the “coherence index”. Values close
to 1 indicate high coherency between the two brain regions, i.e. the average tendency to fall
within communities of highly interconnected brain regions.

2.4. Biological characterization of SEN clusters

In order to investigate whether naturally occurring clusters formed by SENs can be related
to distinct biological function, we require a procedure which assigns representative biological
terms to each cluster. For this purpose we use a Gene Ontology (GO) enrichment analysis
pipeline which first collects broad GO information for the biological context of genes in each
of the main clusters, and then reduces this information to representative GO terms for final
interpretation of the clusters.

Each SEN cluster was first annotated for significantly enriched Biological Process (BP)
terms using a standard hypergeometric test for over-represented terms (p < 0.001) imple-
mented in the GOstats R package22. Using a clustering methodology implemented in the tool
REVIGO23, we group semantically similar GO terms based on the established SimRel measure.
The algorithm finds a representative term for each group based on the enrichment p-values,
with a bias away from very general parent GO terms. The size of the resulting summary list is
controlled by setting the threshold for the SimRel similarity measure at 0.5. Results are sum-
marized by retaining the cluster representatives for each GO term that can reveal underlying
function of these clusters.

Genes in each of the clusters were also annotated for disease enrichment using the We-
bGestalt tool24, which interfaces with the GLAD4U platform25 to retrieve and prioritize
disease-gene links from publications, using a hypergeometric test with multiple testing correc-
tion and the genome as background.
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3. Experimental results

3.1. Topologically different SEN clusters

Spectral Embedding Multidimensional Scaling

●

●

●

Cluster 1: 9045 genes

Cluster 2: 4413 genes

Cluster 3: 3448 genes

Fig. 2. Two-dimensional visualization of all SENs using two different dimensionality reduction algorithms:
spectral embedding26 (left) and multidimensional scaling27 (right). The color scheme indicates the cluster
membership as determined by the PAM algorithm. Both visualizations indicate three main clusters.

All SENs were clustered into up to six clusters using the procedures outlined in Sec. 2.2. The
two instability analyses were each performed using bmax = 500. Using the first randomization
scheme, 5% of networks were randomly sampled for node permutation, while in the second
procedure 20% of networks were randomly sampled and white noise was introduced by adding
±20% to each edge weight. The results for all three clustering procedures, Tab. 1, show that
PAM clustering has the lowest instability followed by fuzzy C -means. Furthermore, for all three
clustering methods grouping data into two and three clusters leads to the lowest instabilities.

Table 1. Different stability analyses for three different clustering al-
gorithms using two randomization strategies (vertex and edge permu-
tation).

Vertex permutation Edge perturbation

Inorm(k) PAM Cmeans k-means PAM Cmeans k-means

Inorm(2) 0.016 0.020 0.065 0.009 0.015 0.065
Inorm(3) 0.018 0.023 0.076 0.010 0.016 0.071
Inorm(4) 0.023 0.031 0.092 0.019 0.033 0.180
Inorm(5) 0.026 0.038 0.171 0.025 0.030 0.191
Inorm(6) 0.031 0.080 0.187 0.027 0.086 0.208
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The PAM algorithm was chosen to generate the final partitions as it yields the lowest
instability index. As an additional validation to support the choice of three PAM clusters, we
used three internal validation measures: the Sillhouette width28, the Dunn index13 and the
within-cluster variance29. The Dunn index and Silhouette width support the presence of two
to three clusters, see Tab. 2. However, the intra-cluster variance, which is known to be more
sensitive to the existence of sub-clusters30, shows that grouping data into two clusters leads
to high within-cluster variability compared to a higher number of clusters. By taking all these
criteria into account, we have chosen to consider k = 3 since this leads to the lowest instability
and within-cluster variability whilst having as high as possible Dunn and Sillhouette scores.

Table 2. Cluster validation measures for cluster-
ing SENs into k clusters using PAM.

k Dunn Silhouette Within-cluster Variance

2 2.20 0.66 0.276
3 1.20 0.44 0.225
4 0.61 0.30 0.215
5 0.63 0.23 0.223
6 0.48 0.18 0.211

In an attempt to visually assess whether this choice seems appropriate, we used a distance-
preserving projection of all 16906 SENs into a 2D-dimensional space using two different di-
mensionality reduction procedures: spectral embedding26 and multidimensional clustering27.
The resulting projections can be found in Fig. 2. All three clusters – 1 (turquoise), 2 (blue)
and 3 (brown) – appear well-separated.

3.2. Topological differences amongst SEN clusters

To validate that the three SEN clusters have distinct topological structure, we used the eight
global network measures outlined in Sec. 2.3. The frequency distribution of the topological
measures for each cluster is summarized in Fig. 3 where a clear mean difference can be ob-
served for each individual measure across clusters. Using a MANOVA test, we reject the null
hypothesis of equality of topological features across clusters (p < 2.2e−16; Wilk’s Λ = 0.3589).

We have found that Cluster 1 mostly consists of SENs with the highest node degree,
centrality measures, diameter, authority score and number of nodes with high authority score,
while there are only a few number of communities and few nodes with low authority score.
These properties imply coherent expression levels across all brain regions. On the other hand,
Cluster 2 comprises of SENs with the lowest node degree, centrality measures, diameter,
authority score and number of nodes with high authority scores, and the highest number
of communities and nodes with low authority score. This indicates that most SENs within
this cluster are sparse, and that there is high variability between expression levels across
brain regions. Finally, Cluster 3 consists of SENs with medium ranged values for all network
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Fig. 3. Distribution of topological network measures in the three clusters obtained using the PAM algorithm.
High node degrees imply high edge weights with fewer low-weighted shortest paths and fewer discrepancies
in edge values. This leads to high transitivity and closeness values, simultaneously reducing the number of
communities SENs are partitioned into. Higher node degrees lead to more nodes having high authority scores
thus increasing both the average authority scores and the number of nodes with high authority. Low node
degrees signify sparseness of the SENs and more low-weighted shortest paths. This results in more nodes being
grouped in their own communities, in addition to low closeness and transitivity. Sparse networks and low node
degrees result in lower authority scores and fewer nodes with high authority score.

measures, implying moderate variability between expression levels across brain regions.

3.3. Biological differences amongst SEN clusters

We investigated the local transcriptomic patterns within each of the three clusters using the
“coherence index” defined in Sec. 2.3. The three clusters have different transcriptomic patterns,
Fig. 4, and comparing heatmaps of the three clusters to one for all 16906 genes shows that
Cluster 1 is closest to the genome-wide global patterning, while Cluster 2 and Cluster 3 are
carriers of imposed heterogeneity. The patterns of the 16906 genes are also consistent with
existing work, and largely replicate previous findings3,4,6. In particular, homogeneity within
the Neocortex and Cerebellum, and increased heterogeneity in the Basal Ganglia, have been
previously reported. Cluster 2 has few coherency patterns in the Basal Ganglia regions and
Cerebellum. Cluster 1 exhibits high homogeneity within the Cerebellum and the Neocortex,
and between subdivisions of the subcortical structure and the Hippocampus. Cluster 3 appears
to have coherent patterns in the Cerebellum and the Neocortex but increased variability in
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the Basal Ganglia.

Fig. 4. Heatmaps representing the “coherence index” between pairs of brain regions in each of the three
SEN clusters and across all 16906 genes. Each pixel on the heatmap is the “coherence index” between the
two corresponding brain regions. Each heatmap is accompanied by a color key, where higher values indicate
high homogeneity of expression levels and lower values indicate heterogeneous expression levels. The 105 brain
regions are mapped to 17 major brain structures using the AHBA ontology atlas8 and abbreviated as indicated
in Fig. 1.

Obtaining detailed annotation as described in Sec. 2.4 revealed that all three clusters are
significantly enriched (p < 0.001) for a variety of GO BP terms. We reduced these large sets
of GO terms to smaller non-redundant sets by applying REVIGO23.

The BP representative terms selected on the basis of enrichment p-values and semantic
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similarity indicate that Cluster 1 genes can be described primarily by “RNA processing” and
“ribonucleoprotein complex biogenesis”. Cluster 2 genes are predominantly involved in immu-
nity including “immune system process”, “leukocyte proliferation” and “G-protein coupled
receptor signaling pathway” terms primarily associated to the immune system, whereas Clus-
ter 3 genes are uniquely involved in “behavior”, “metal ion transport” and “nervous system
development”. On closer inspection of Cluster 3, these representative terms comprise several
linked biological processes specific to the Nervous System, and which are not found on either
Cluster 1 or 2, such as “synaptic transmission” and “dendrite extension”.

The significant disease enrichment (adjusted p < 0.001) also supported the functional dis-
tinctiveness of the three clusters, with Cluster 1 being enriched for Mitochondrial disease,
Cluster 2 being significantly enriched for genes involved with Immune System and Inflamma-
tory disease, and Cluster 3 being principally involved in Nervous system disorders. Given the
observed functional differentiation between clusters, we investigated whether this might cor-
respond to cell-type specialization. We obtained lists of neuron- and microglia-enriched genes
in a repository of detailed RNA-sequencing and splicing data from purified cell cultures31 ,
and computed significant intersections using the SuperExactTest32. This showed that genes in
Cluster 3 have significant overlap with neuron- and microglia-specific genes (p < 0.05). Cluster
2, on the other hand, has a unique association to microglia-specific genes only (p < 0.05).

4. Discussion

Analyzing the transcriptome architecture of the human brain is a challenging task due to the
high-dimensionality and biological complexity of the data. This is compounded by technical
factors related to sample acquisition and measurement error that can influence the results.
We addressed the issue of anatomical variability in gene expression by proposing to model
each gene’s spatial co-expression pattern across anatomical regions as an individual spatial
network, or SEN. To explore whether topological similarity of gene expression as captured
by SENs is related to biological similarity, we used network dissimilarity to obtain clusters of
genes with similar patterns of spatial co-expression. We aimed to gain additional insights into
the biological interpretation of regional anatomical specialization of the brain.

We demonstrated that there is evidence to support the presence of three topologically
distinct clusters of SENs, with each cluster being characterised by particular network proper-
ties. Furthermore, investigating the community structure of the SENs, we identified possible
anatomical basis for the difference in the topological properties in the three clusters. The
differences between clusters are mainly due to the heterogeneity of expression levels in the
Basal Ganglia, and between the Neocortex and Cerebellum.

We also found these three topologically distinct clusters to have biologically distinct prop-
erties. On closer inspection we find Cluster 3 to be specific to the nervous system, while
Cluster 2 appears to be involved with immunity and Cluster 1 with transcription and transla-
tion. These associations are in line with previous results on the AHBA data set3,4, where the
majority of clusters obtained using WGCNA33, a well-known gene clustering procedure, were
also associated to immunity, nervous system or transcription and translation.

To gain an insight into possible cellular contributions to these differences, we included
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cell-type specific data and observe that the overlap of neuron- and microglia- specific genes
in Cluster 3 is in keeping with current hypotheses regarding the significant interactions be-
tween these two cell-types, including the possible modulatory activity of microglia in synaptic
pruning and cell communication beyond purely immune functions34.

We found significant disease associations for all three clusters, implying the high biological
impact of the genes involved and the utility of our modular clustering approach for the identi-
fication of therapeutic targets. There is a preponderance of neurological and neuropsychiatric
conditions linked to Cluster 3 genes, and immune disorders linked to Cluster 2, reflecting their
biological functions as described above and supporting those annotations.

One important concern was whether the above results were specific to using node degrees
or they could be reproduced using other feature vectors. Thus we constructed two different
sets of feature vectors based on node centrality as captured by the authority score and based
on the raw edges of the SEN. Based on each new set of feature vectors, results not included
in this paper demonstrated evidence to support the presence of three topologically distinct
clusters of SENs. For both feature vectors, the three clusters were again marked by different
topological properties although there were shifts in the distributions of those properties. Even
so, in both cases the three clusters were uniquely associated to the immune system, nervous
system or transcription and translation.

For comparison purposes, we used WGCNA on the gene expression values of the 16906

genes for the 105 brain regions. Results not included in this paper showed that WGCNA did
not assign a cluster membership to the majority of genes in Cluster 2 due to the sparseness of
their expression levels. More and smaller clusters were discovered with higher instability. The
advantage of our method compared to WGCNA is that the structure of SENs allows us to use
a number of clustering procedures to detect stable gene clusters, whose validation could be
achieved using both topological and biological measures. We determine the biological function
of a cluster using the gene ontology of the entire set of genes in the cluster, which is robust
to slight changes in the cluster membership.

A next step in the analysis of SENs should consider additional clusters to detect more
specialized biological functions. Furthermore, it is well known that gene expressions in the
cerebellum, subcortical and cortical regions differ significantly from each other based on their
composition of different cell types3,4. Future work in this direction will include an analysis
where only neocortex regions are used to construct SENs.

5. Conclusion

An important and challenging task in studying the brain transcriptional architecture is inte-
grating and modelling the high dimensionality of the gene expression across the brain. To the
best of our knowledge, our work is the first to perform a region-wise comprehensive profiling of
gene-specific co-expression patterns across the human brain. By modelling gene expression as
SENs and employing network embeddings, we identified distinct clusters of genes associated
to specific biological functions, topological properties and cell-types, with potential implica-
tions for neuropsychiatric disease. Modelling genes as SENs across brain regions could be used
for future studies in helping to identify genes with particular co-expression patterns across
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a set of spatial brain locations of interest, enabling the identification of genes that act in
spatially contextualized clusters with high biological impact. As more microarray gene ex-
pression data become available at higher spatial resolution and cell-type specificity, modelling
gene co-expression across the brain will be increasingly important to understanding the brain
transcriptome architecture at a microstructural scale.
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Lung cancer is one of the most deadly cancers and lung adenocarcinoma (LUAD) is the most common 
histological type of lung cancer. However, LUAD is highly heterogeneous due to genetic difference as 
well as phenotypic differences such as cellular and tissue morphology. In this paper, we systematically 
examine the relationships between histological features and gene transcription. Specifically, we 
calculated 283 morphological features from histology images for 201 LUAD patients from TCGA 
project and identified the morphological feature with strong correlation with patient outcome. We then 
modeled the morphology feature using multiple co-expressed gene clusters using Lasso-regression. 
Many of the gene clusters are highly associated with genetic variations, specifically DNA copy number 
variations, implying that genetic variations play important roles in the development cancer 
morphology. As far as we know, our finding is the first to directly link the genetic variations and 
functional genomics to LUAD histology. These observations will lead to new insight on lung cancer 
development and potential new integrative biomarkers for prediction patient prognosis and response to 
treatments. 

1. Introduction 

Lung cancer is one the most deadly cancers in the world. Among lung cancers, lung 
adenocarcinoma (LUAD) is a subtype of the non-small cell lung cancer (NSCLC) and is the 
most common histological type of lung cancers (1). However, despite the fact that it is a sub-
classification of lung cancer, LUAD is a heterogeneous group of tumors with a highly 
variable prognosis and responses to treatment (2). 

The high-throughput sequencing technologies are making targeted therapies possible for 
LUAD (3). The advance of these technologies allows molecular diagnostic biomarkers for the 
detection of lung cancer in addition to computed tomography (CT) screening (4–7). For 
example, the utility of epidermal growth factor receptor (EGFR) mutation testing is strongly 
recommended (8) in clinical practice. However, although EGFR-mutant lung cancers are 
                                                             
* This work is supported by UK-OSU Joint CCTS grant, NCI ITCR 1U01CA188547-01A1 grant, the OSU 

Pelotonia Fellowship, and the Ohio Supercomputer Center. 
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sensitive to EGFR tyrosine kinase inhibitors (TKIs), they develop resistance (9). Therefore, 
novel biomarkers for for LUAD are needed for enhanced personalized treatment. 

Lung cancer diagnosis and classification have been traditionally based on imaging 
approaches, such as CT and histopathology (10, 11). For instance, five distinct histologic 
subtypes and radiologic patterns have been reported recently. Traditionally, histopathology 
images serve as a golden standard for lung cancer diagnosis. Cellular and inter-cellular level 
morphology are usually used by the pathologists for making diagnosis decisions. However, 
the current pathology diagnosis is commonly based on individual pathologists’ interpretations 
of the samples which are subject to large inter-observer variations and low throughput 
analysis. Unbiased quantitative pathology methods are showing promise by offering more 
cellular information (12–14). Recently, pathology informatics study on lung cancer has 
attracted more interests. In one study (15), the diagnostic significance of nuclear features in 
differentiating small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) was 
investigated. Edwards et.al.(16) showed that adenocarcinoma diagnosis is more challenging 
compared to squamous carcinoma. An early automatic pathology analysis system was 
proposed in (17). In the study by Mijović et al. (18), diagnostic values of seven Karyometric 
variables are examined for diagnosis of major histological types of lung carcinoma. In Zhang 
et al’s study (19), an image classification system is proposed to differentiate lung 
adenocarcinoma and squamous carcinoma. The work by Yao et al (20) developed topological 
features for lung cancer diagnosis. Compared to genomic biomarkers, advanced imaging may 
provide more clinically relevant information. 

In order to take advantage of both the richness of histopathological information and 
molecular profiles, we aim to develop an integrative computational pipeline that exploits 
diagnostic images and mRNA expression. A related work on lung cancer was recently 
published on integrating histopathologcal images with genetic data for outcome prediction 
(21). The pipeline allowed us to discover the associations between cellular level and 
molecular level phenotypes, and thus novel biomarkers can be unveiled. In this paper, we 
extracted 283 histopathological features from LUAD tissue slides and initially attempted to 
identify co-expression gene clusters that have high correlation with these image features. 
Such approach in other cancers has led to new insight on cancer biology and new potential 
biomarkers (22). However, as shown in this paper, the morphology of LUAD is much more 
complicated and it turned out that the morphological features have low correlations with gene 
expression profiles. Figure 1 shows a ‘highly-correlated’ pairs between the imaging features 
and gene clusters. It is thus plausible that the 
LUAD morphology is regulated by any 
particular group of genes; instead a specific 
morphological characteristic is a manifestation 
of a combined effect from multiple groups of 
genes. Based on these quantitative experiments, 
we assert that a multivariate model is needed.  

Therefore in this paper, we demonstrate that 
the morphological characteristics of LUAD can 
be explained by a combination of multiple gene 
clusters identified using sparse modeling based 
on the Lasso algorithm. In addition, we found 
that many of the gene clusters are associated 
with putative copy number variations, implying 
that genetic variations play important roles in 
the development cancer morphology. As far as 

 
Figure 1: The scatter plot between the 
eigengene 95 and the tfcm4, which 
have the highest SCC between all 
eigengenes with tfcm4 (SCC = 0.170).  
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we know, our finding is the first to directly link the genetic variations and functional 
genomics to LUAD histology. These observations will lead to new insight on lung cancer 
development and potential new integrative biomarkers for prediction patient outcome and 
response to treatments.  

2 Methods and 
Materials 

Our analysis 
involve molecular 
and histological 
analysis based on 
data from The 
Cancer Genome 
Atlas (TCGA) 
LUAD project. 
The data we use 
include mRNA 
profiling, 
histological images 
and clinical data 
including survival 
information. 

2.1 Integrated 
Analysis Pipeline 

We collected matched diagnostic images and gene expression data for a discovery 
dataset of 201 LUAD patients from the TCGA. The integrative analysis workflow is shown 
in Figure 2. Our automatic imaging processing pipeline detected cell nuclei and extracted 
predefined features evaluating staining variations. To select imaging features with clinical 
relevance, survival-related imaging features were identified. At molecular level, gene 
expression profiles (mRNA levels) were filtered and clustered using our co-expression 
network analysis algorithm. Strongly co-expressed gene clusters were represented by 
eigengenes. Then, we built a lasso regression model to select gene clusters that regulate the 
image feature that has the strongest association with survival times. By finding the co-
expression patterns that are associated with the selected imaging feature, we can discover 
biological processes and genetic variations associated with cancer histology.  
2.2 Image and Genomic Data Collection 

We focus on LUAD patients with clinical information, genomic information, and 
histopathologic whole slide images. The data were downloaded from TCGA (The Cancer 
Genome Atlas) Data Portal. Data for 201 LUAD patients with all the three data types are 
downloaded for the experiments in 2014. For each patient, a representative image patch of 
size 1712 x 952 without damage or artifact is cropped from the tumor region.  Expression 
profiles of 20,530 unique genes were investigated in the 201 patients (23).  

2.3 Data Preprocessing and Imaging Feature Extraction 
2.3.1 Imaging features 

We adopt the cell detection and segmentation methods proposed in (24). In the cell 

 

Figure 2: Schematic overview of constructing gene co-expression 
networks and analyzing the relationships between gene networks and 
morphological features. 
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detection stage, a radial voting scheme with Gaussian pyramid is employed (25). For each 
image, a Gaussian pyramid is created. A single–pass voting  is applied to each layer. The 
voting region receives scores weighted by a distance transform. Therefore, such weighted 
voting encourages the pixels closer to the cell center accumulates higher voting scores. The 
final voting score is obtained by summing up the voting scores from different layers. In the 
segmentation stage, a marker based active contour with a repulsive term is applied to the 
images using the detection results as the markers. An initial contour associated with each 
detected marker is created first. The contours evolve through an iterative procedure to reach 
the real boundaries of the cells. The repulsive term serves to prevent the contours from 
crossing and merging with each other.  

Group 1: Geometry Features. Based on the segmentation results, five geometry features are 
calculated for each lung cancer cell to capture the cell shape information, including cell area, 
contour perimeter, circularity, major-minor axis ratio, and contour solidity. Contour solidity 
is defined as the ratio of the area of a cell region over the convex hull defined by the 
segmentation boundary. 
Group 2: Pixel Intensity Statistics. Pixel intensity statistics features are used to capture the 
color of the segmented cells. This group of features are calculated based on the intensity of 
the pixels within the segmented cells, including intensity mean, standard deviation, skewness, 
kurtosis, entropy, and energy. Lab color space is used for a better color representation. 
Group 3: Texture Features: Texture is an important feature found to be closely related to 
cancer diagnosis in radiomics. This is rooted in the fact that texture patterns are linked to 
difference in protein expressions (26). This group of features consists of co-occurrence 
matrix (27), center symmetric auto-correlation (CSAC) (28), local binary pattern (LBP) (29), 
texture feature coding method (TFCM) (30). The co-occurrence matrix (27) computes an 
estimation of the joint probability distribution of the intensity of two neighboring pixels. 
CSAC is a measure of the local patterns with symmetrical structure. These patterns are 
characterized by a series of local auto-correlation and covariance introduced in (28), 
including symmetric texture covariance (SCOV), variance (SVR), and within-pair variance 
(WVAR), and between-pair variance (BVAR). 3×3 pixel unit of each channel is considered. 
LBP (29) feature measures the local textures by assigning a binary code to a pixel with 
respect to its intensity and those of its neighboring pixels. A histogram of the generated 
binary codes reveals the distribution of the present repeated local patterns. Similar to LBP, in 
TFCM (30), a texture feature number (TFN) is assigned to each pixel by comparing this pixel 
with its neighbors in four directions: 0°, 45°, 90°, and 135°. A histogram is calculated based 
on the TFNs of one image patch.  
2.3.2 Gene transcriptome data 

The expression profiles of 201 samples with primary lung cancer adenocarcinoma from 
TCGA LUAD project were downloaded from TCGA data portal in January 2014. 
Specifically, RNA-seq data for the tumor samples were obtained using Illumina sequencing 
and processed as described in (6). The mapping results were converted to RPKM (read per 
kilobase per million reads) values for 20,530 genes. Genes with low expression levels (with 
no data in the top 15 percentile) and low variance (in the lowest 10 percentile) were removed 
resulting in 9,179 genes.  
2.4 Gene co-expression network analysis and summarization 

While our goal is to establish the relationships between gene expression levels and the 
imaging features, we first carry out gene co-expression network analysis (GCNA) to cluster 
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genes into co-expressed clusters. There are multiple reasons for carrying out GCNA before 
associating them with the imaging features. First, there is a large number of genes. If the 
association between every pair of gene and imaging feature is calculated and tested for 
significance, then more than half a million tests will be carried out which leads to low 
statistical power. In addition, since we will explore the association beyond univariate 
relationships using sparse analysis, the large number of genes (which are not always 
independent), pose serious computing challenges to the sparse modeling algorithms such as 
Lasso. Thus we first group genes with highly correlated expression profiles into co-
expression clusters using GCNA then summarize the expression profiles within each cluster 
as an “eigengene” using the protocol described in (31). Essentially the expression profiles of 
each gene are first centralized (by subtracting the mean for each gene) and then standardized 
to have norm one. After the processing steps, singular value decomposition is applied to 
obtain the eigengene as the principal vector in the direction with the largest variance among 
the samples. Another advantage of the GCNA approach is that the highly co-expressed gene 
clusters are usually highly enriched in specific biological processes, regulatory factors or 
structural variations (e.g., copy number variations) (32), making the interpretation of the 
results straightforward. 

While there are many algorithms for performing GCNA including the well known 
WGCNA package, we use a weighted network mining algorithm called local maximum 
quasi-clique merging (lmQCM) algorithm we recently developed (32). Unlike WGCNA 
which uses hierarchical clustering and does not allow overlaps between clusters, our 
algorithm is a greedy approach allowing genes to be shared among multiple clusters, in 
consistent with the fact the genes often participate in multiple biological processes. In 
addition, we have shown that lmQCM can find smaller co-expressed gene clusters which are 
often associated structual mutations such as copy number variations in cancers. The lmQCM 
algorithm has four parameters γ, α, t, and β. Among these parameters, γ is the most 
influencial, it decides if a new cluster can be initiated by setting the weight threshold for the 
first edge of the cluster as a subnetwork. In our GCN analysis, we directly use the absolute 
values of the Spearman correlation coefficients between expression profiles of genes as 
weights for which we have shown to be effective in previous studies.  
2.4 Associations between Morphology and Transcriptomes  

2.4.1 Correlation analysis 
We first examined the correlation between the imaging features and the eigengenes for 

the gene clusters identified using lmQCM by calculating the Spearman correlation 
coefficients between them. However, as shown in the Results, the correlations between 
imaging features and eigengenes are not strong (none of them is significant if Bonferroni 
correction is applied for multiple test compensation). While this is different from the case in 
breast cancer, it suggests that the tissue morphology development is a complicated process 
involving in multiple processes and genetic factors. Thus in order to explain the morphology 
development, we need to resort to multi-variate modeling methods such as lasso regression. 
2.4.2 Sparse modeling using Lasso regression 

We model imaging features as manifestations of gene expression. Given the data 
availability, we focus on transcriptome data. Lasso regression model minimizes the residual 
sum of squares while at the same time enforcing sparsity of the model by adding a penalty 
term of the L1-norm of the model coefficients.  

Consider the linear regression model: we have (𝑥! ,𝑦!) , 𝑖 = 1,2,… ,𝑁 , where 𝑥! =
(𝑥!!,… , 𝑥!")!  and 𝑦!  are eigen-gene expression and image feature value for the 𝑖 th 
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observation(patient sample), respectively. With regular regression model, the least square 
estimates are obtained by minimizing the residual squared error. However, in feature 
selection models to predict biomarkers, only imperative transcriptomes contribute to 
biological functions and processes, requiring more stringent and interpretable features. With 
large number of features, we would like to determine a small subset of them that can predict 
strong correlations. Let 𝛽 = (𝛽!,… ,𝛽!)! and 𝛽! to be a scalar. The lasso model estimate 
(𝛽,𝛽!) by solving the following problem 

min
𝛽,𝛽!

( !
!!

(𝑦! − 𝛽! −   𝑥!!𝛽)! +   𝜆!
!!! 𝛽!

!
!!! ),                                   (1) 

where 𝜆 is nonnegative regularization parameter giving the weight for the model complexity 
term. As 𝜆 increases, the number of nonzero components of 𝛽 decreases, leading to smaller 
numbers of predictors.  
2.5 Identification of Survival-Related Image Features 

Univariate Cox Proportional Hazard models are used to identify morphological features 
and genes that have expression related significantly to survival. Morphological features that 
have p-values less than 0.05 are recorded. 
Table 1: Prognostic values of various image features in discover dataset. The features are 

listed by their significance in 
the survival model. 
2.6 Validating the Identified 
Genes in Other Data Set 

For genes associated with 
the imaging features with the 
highest potential for predicting 
patient survival, we also test 
them on another publicly 
available dataset obtained 
from the NCBI Gene 

Expression Omnibus. The dataset GSExxxx contains transcriptome data of 149 non-small cell 
lung cancer patients, among which 90 are unique lung adenocarcinoma patients with clinical 
outcome (survival time and status). We use the genes to be tested as features to separate the 
90 patients into two groups using K-means algorithms (K=2, Euclidean distance, average 
linkage, and 10 replicates). The survival times of the two groups are then visualized using 
Kaplan-Meier curves and compared using Cox Proportional Hazard regression. 

2.7 Enrichment analysis of gene clusters 
To interpret the biological meaning of the identified gene clusters, enrichment analysis 

tools such as TOPPGene (https://toppgene.cchmc.org/enrichment.jsp) are used. In addition, 
information about the genes are extracted from cBioPortal (http://www.cbioportal.org/).  

3 Results 
3.1 Image Feature Calculation 

As shown in Figure 3 Left, the images reveal clear heterogeneity of the tumors among 
the patients. We calculated 283 image features from the images. As described in Section 
2.3.1, there are multiple types of features and many features are strongly correlated (Figure 3 
Right) such as part of the TCFM family (the block of 211 to 222). In this paper, we analyze 

Feature 
Names p-value  Feature 

Names p-value 

tfcm4 0.00456904  contrast1 0.01210092 
tfcm9 0.00532429  tfcm12 0.01247155 
tfcm3 0.00563955  tfcm11 0.01361604 
tfcm1 0.0064998  csac23 0.01754474 
tfcm2 0.00657692  tfcm7 0.0178572 

tfcm10 0.00685436  fourier15 0.0178766 
contrast2 0.0082282  csac5 0.01896244 

tfcm8 0.0093341  entry4 0.01995154 
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each feature individually, but some of the highly features can be combined in future analysis.  
3.2 Survival-related Image Features and Gene Cluster 

Using a univariate Cox proportional hazards regression model, we assessed the image 
features related risk score in the prediction of the LUAD patient survival. Significant 

morphological features are listed in Table 1. Among the six categories of imaging features, 
the tfcm category shows the most significant prognostic power, indicating texture features in 
lung adenocarcinoma have a strong potential for predicting patients’ outcomes. In fact, all of 
the top six survival-related imaging features are in the tfcm category. Other features that 
capture prognosis are contrast2, contrast, csac23, fourier15, csac5 and entry4.  
3.2 Gene Co-Expression Network Analysis 

As mentioned in Section 2.3.2, 9,179 genes were kept for analysis. The absolute value of 
the Spearman rank correlation coefficients were used for cluster detection using lmQCM 
algorithm. We allow the smallest gene clusters to have five genes. Then we found with γ = 
0.75, t = 1, α = 1, and β = 0.4 the algoirthm yielded co-expressed gene clusters with balanced 
sizes. Specifically, it led to 95 clusters ranging from 5 to 120 genes. Many of the gene 
clusters are consistent to the ones frequently found in cancers. Most of these clusters involved 
in hallmark cancer biological processes such as cell cycle/genome stability (cluster 1), 
immune respones (cluster 2), translation / protein synthesis (cluster 3), and extracellular 
matrix development (cluster 7). However, some of them are more associated with specific 
cytobands (e.g., chr19p13), implying potential CNV sites.  
3.3 Correlations between Image Features and Gene Clusters 

The image analysis pipeline allowed us to quantify tumor characteristics on cellular level 
and associate these tumor characteristics with patient outcomes. In this study, we calculated 
283 imaging features for the 201 patients and correlated with the 95 eigengenes. The 
correlation coefficient with the large absolute value is -0.2990 (p=1.7728e-05). In Table 2, 
we list the strongest correlation between eigengenes and the top five imaging features (in 

 
Figure 3. Left: Examples of the image patches from different patients. Right: Heatmap 
of the correlation (Spearman) matrix for the 283 image features.  
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Table 1) with the most significant power for predicting patient outcome. It is clear from the 
table that none of such correlations is statistically significant (after multiple test 
compensation), suggesting that complex phenomena such as cell and tissue morphology in 
lung cancers can only be explained by multiple molecular and genetic factors.  

Table 2. Imaging features and the eigengenes with the strongest correlations with them.  

Imaging feature Eigengene 
(cluster) SCC/p-value Enrichment 

tfcm4 95 0.1710/0.0153 18q12.1 (p=1.175e-9), all five 
genes on 18q12 

tfcm9 59 0.1677/0.0174 
16p11.2 (p=1.364e-10), all seven 

genes on 16p11 
tfcm3 59 -0.1658/0.0188 
tfcm1 59 0.1704/0.0157 
tfcm2 59 0.1508/0.0327 

3.4 Lasso Regression Model for Imaging Features Using Eigengenes 
Since the imaging features with prognostic power do not have strongly correlated gene 

clusters, we resort to multivariate models to explain the cell and tissue morphology using 
molecular data. Specifically, we built a lasso regression model. The lasso model selects a 
sparse set of eigengenes to explain the selected imaging feature. We rank the importance of 
image features by their significance in survival analysis. The top 10 image features in Table 1 
belong to only two categories – TFCM and Contrast. Features within each category are 
highly correlated (for the eight TFCM features, the smallest of the absolute value of the SCC 
is 0.6840, the two SCC between the two Contrast features is 0.9923). Since eight out of 10 
top image features are from the TFCM family, we chose one feature from for our modeling, 
namely tfcm4.    

For tfcm4, it is found that the 
lowest MSE is found at λ = 
0.0371 for the cost function in 
Eq.(1). Figure 4 shows the values 
of the coefficients β. Among the 
95 eigengenes, 28 have non-zero 
coefficients among which 18 are 
larger than 0.5 and 12 are larger 
than 1. For the analysis of genes, we collected 185 genes from the 18 clusters with absolute 
value of coefficients larger than 0.5. In 
addition, Figure 5 shows the correlation 
between the combined eigengenes using the 
calculated β values with the tfcm4 values in 
contrast to the correlation between the 95th 
eigengene (as listed in Table 2) and tfcm4 
(Figure 1).  
3.5 Functional and Genetic Analysis of 
Gene Clusters Associated with Imaging 
Features  

In order to understand the functional 
roles of the gene clusters associated with 
tfcm4, enrichment analysis was carried out 

 
Figure 5. The scatter plot between the 
combined eigengenes using the lasso 
coefficients and the tfcm4 (SCC = 0.4791).  

 
Figure 4. Coefficients (β values) of the lasso 
regression for tfcm4. 
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using TOPPGene and the results for the 18 gene clusters are shown in Table 2.  Among the 
gene clusters whose eigengenes are associated with tfcm4, the largest cluster is the cluster #4, 
consisting of 59 genes and is highly enriched with ribosomal genes and thus protein 
translation function. Other related biological processes including immune response (response 
to virus, cluster #18), response to steroid hormone, negative regulation of epithelial cell 
proliferation, and mitochondrial ATP synthesis.  

Interestingly, 14 out of the 18 gene clusters are highly enriched on specific cytobands.  It 
has been previously noticed that many of the co-expressed clusters in cancers are associated 
with copy number variations (CNVs) in specific cytobands (32). CNVs are common genetic 
variations playing important roles cancer initiation and development. Functional CNVs 
usually lead to changes in expression levels of genes on that region due to the “dose effect”, 
which also leads to co-expression of the transcribed genes. Figure 6 Left shows an example 
of the RPRD1A gene in cluster #95, whose mRNA level has a strong correlation with its 
copy number measurement and it shows a strong co-expression relationship with the ELP2 
genes on the same cytoband.  
Table 2: Gene clusters showing strong correlation with texture image feature tfcm, and their 
Gene Ontology terms and enriched cytobands. 

Gene 
Cluster 
(size) 

beta GO Biological 
Process/p-values 

Cytobands/p-
values Notes: 

4  
(59) 

-1.1558 GO:0006614 SRP-
dependent 
cotranslational protein 
targeting to membrane 
/ 9.105E-98 

  

18 
(14) 

0.6328 GO:0009615 response 
to virus  / 9.965E-15 

  

31 
(10) 

1.3894   Genes down-regulated in 
nsopharyngeal carcinoma 
relative to the normal tissue 
(p = 5.074e-19, all 10 genes) 

33 (10) -1.7213  19q13.42/5.525e-6 All 10 genes on 19q13.3-4 

40 
(8) 

1.2977  8q24.13/3.263e-5 Seven genes on 8q21-24, 
one on 8q13 

50 (8) -0.8343 GO:0048545 response 
to steroid hormone  /
 2.290E-8 

  

52 (8) 0.7075  7q33/  4.800E-5 All eight genes on 7q21-36 
54  
(7) 

0.5669 GO:0006413
 translational initiation  
/ 1.096E-5 

Yq11  /2.305E-6, 
Xq13.2/  2.856E-5  

Four genes on Yq11, two on 
Xq13.2, one on Yp11.3 

58 (7) 0.6952  8p21.1  / 6.631E-6  Five genes on 8p21, two on 
8p12 

59 (7) -1.5729  16p11.2/1.364e-10 All seven genes on 16p11 
60  
(7) 

1.2103  Xq28/1.982e-13 All seven genes on Xq27-28 

61 
(7) 

-1.6639  6p21.1/4.436e-7 Six genes on 6p21-22, one 
on 6p12 

70 (6) 2.1783  17q21.31/5.532e- All six genes are on 17q21 
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10 
74 
(6) 

-2.0544  8p11.2/1.048e-9 All six genes are on 8p11.2 

75 
(6) 

-1.0093 GO:0050680  negative 
regulation of epithelial 
cell proliferation  / 
 3.290E-6  

17q11.2/6.880e-7 All six genes are on 17q11-
12 

85 (5) -0.6095 GO:0042776
 mitochondrial ATP 
synthesis coupled 
proton transport  /
 6.311E-9 

21q22.11/  3.344E-
5 

Four genes on 21q21-22 

87 (5) 1.9569  19q13.2/1.131e-6 All five genes on 19q13 
95 (5) 2.5783  18q12.1/1.175e-9 All five genes on 18q12 

 

3.4 Prognostic Validation  
Validation on heterogeneous 
external data sets allows for 
evaluation of the 
generalizability. To test the 
importance of cilium-related 
genes, we further performed 
survival analysis on a 
publicly available dataset 
with 90 LUAD patients. 
Among the 185 genes 
correlated with the image 
feature category tfcm, 118 of 
the gene symbols can be 
matched exactly to the 
external dataset. In the 
validation dataset, lung adenocarcinoma patients were stratified into two groups using K-
means based on their 
expression levels of the 118 
genes. In both datasets, a 
statistically significant group 
of patients with worse 
outcomes were differentiated 
(n = 44 and n = 46, 
respectively). The difference 
between the two groups is 
significant (Cox hazard 
proportional model p-value 
2.1285e-6). Figure 7 shows 
the Kaplan-Meier curves of 
the two patient cohorts. 
4 Discussion and Conclusion 

Our integrative analysis 

 
Figure 6. Left: Gene RPRD1A shows strong correlation 
between mRNA level and copy number values. Right: 
RPRD1A and ELP2 (both in cluster #95) are strongly co-
expressed. 

 
Figure 7: Kaplan–Meier survival curves of prognostic 
model on two clusters from the lung adenocarcinoma 
dataset. Survival curves of two groups (group 1 with 44 
patients on the left and group 2 with 46 patients on the 
right). The difference of survival time between the two 
groups is significant (Cox hazard proportional model p-
value 2.1285e-6). 
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pipeline allows us to find survival related textural features of lung adenocarcinoma. In 
addition to the image features, we also demonstrated that modeling of the histology at 
cellular and tissue levels using “omics” data may involve multiple groups of genes. 
Interestingly, our results showed that that the histological phenotype may be manifestations 
of multiple genetic variations, especially copy number variations. Specifically, many of the 
enriched cytobands we identified have been previously associated with lung cancer 
development including 19q13 (33, 34) , 8q24 (33), 7q21-36 (35), 8p21 (33), 16p11 (36), 
Xq27-28, 6p21 (34), 17q21 (34), 21q22 (35), and 18q12 (33). While there is no report on the 
association of Xq27-28 with lung cancer, Xq26 has been shown to be associated with lung 
cancers (36), suggesting that the genetic variations should be further explored to identify 
potential “driver” genes for lung cancer. We also showed that the genes in the clusters can 
indeed predict patient prognosis, which leads to discovery of potential biomarkers. While our 
study is focused on patient prognosis, the process can be repeated for patient treatment 
response prediction with appropriate data. Overall we demonstrated that the morphology is a 
complex phenomenon and its development may involve multiple groups of genes. In cancers, 
this process is even more complex as the genetic variations also contribute significantly to 
this process. Our findings indeed support this notion.  
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FOR THE ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE†

Brain imaging and protein expression, from both cerebrospinal fluid and blood plasma, have
been found to provide complementary information in predicting the clinical outcomes of Alzheimer’s
disease (AD). But the underlying associations that contribute to such a complementary relationship
have not been previously studied yet. In this work, we will perform an imaging proteomics association
analysis to explore how they are related with each other. While traditional association models,
such as Sparse Canonical Correlation Analysis (SCCA), can not guarantee the selection of only
disease-relevant biomarkers and associations, we propose a novel discriminative SCCA (denoted as
DSCCA) model with new penalty terms to account for the disease status information. Given brain
imaging, proteomic and diagnostic data, the proposed model can perform a joint association and
multi-class discrimination analysis, such that we can not only identify disease-relevant multimodal
biomarkers, but also reveal strong associations between them. Based on a real imaging proteomic
data set, the empirical results show that DSCCA and traditional SCCA have comparable association
performances. But in a further classification analysis, canonical variables of imaging and proteomic
data obtained in DSCCA demonstrate much more discrimination power toward multiple pairs of
diagnosis groups than those obtained in SCCA.

Keywords: Imaging genomics; Alzheimer’s disease; Proteomics; Canonical correlation analysis; Multi-
class discrimination.
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1. Introduction

Alzheimer’s disease (AD) has been well known as one of the most common brain dementia,
a major neurodegenerative disorder that has been characterized by gradual memory loss and
brain behavior impairment. According to the latest report,1 more than 5 million Americans
are living with Alzheimer’s and it has been officially listed as the 6th leading cause of death.
Also, due to the significant decline of self-care capabilities during disease, it is not only the
patients who suffer, but also the family members, friends, communities and the whole society
considering the time-consuming daily care and high health care expenditures needed. In the
past decade, deaths attributed to Alzheimer’s disease has increased 68 percent, while deaths
attributed to the number one cause, heart disease, has decreased 16 percent. And all of these
situations will continue to deteriorate as the population ages during the next several decades.
To prevent such health care crisis, substantial efforts have been made to help cure, slow or
stop the progression of the disease.

In the last few years, many efforts have been dedicated to explore whether the combination
of multi-modal measures, e.g. brain atrophy measured by magnetic resonance imaging (MRI),
hypometabolism measured by functional imaging and quantification of proteins, can better
predict the clinical outcomes of AD, such as disease status and cognitive outcomes.19 In
many of these works, it has been found that brain imaging and protein expression, from both
cerebrospinal fluid (CSF) and blood plasma, hold some complementary information.12,18 But
how they are related with each other still remains elusive.

In this work, we will explore the relationships between brain imaging and protein expression
using bi-multivariate association models. Sparse Canonical Correlation Analysis (SCCA)11,16

is a typical example that has been widely used for associative analysis in both real8,15 and
simulated3 -omics data sets.2,11,17 But it can not guarantee the selection of disease-relevant
biomarkers and therefore the associations generated in SCCA are not necessarily related to a
specific disease either, unless the input features are already prefiltered disease-related biomark-
ers.5 On the other hand, most existing SCCA algorithms use the soft threshold strategy for
solving the Lasso11,16 regularization terms, which assumes the independence structure of data
features. Unfortunately, this independence assumption does not hold in neither imaging nor
proteomics data, and will inevitably limit the capability of yielding optimal solutions.

To overcome these limitations, we propose a novel discriminative SCCA (DSCCA) model,
coupled with a new algorithm to eliminate the independence assumption, to explore the imag-
ing and proteomic associations. Given imaging, proteomic and diagnostic data, the proposed
model can perform a joint association and multi-class discrimination analysis. As such, we can
not only identify disease-relevant multimodal biomarkers, but also reveal strong association
between them. We perform an empirical comparison between the proposed DSCCA algo-
rithm and a widely used SCCA implementation in the PMA software package (http://cran.r-
project.org/web/packages/PMA/).16 The results show that DSCCA and SCCA have compa-
rable association performances. But in a further classification analysis, canonical variables
of imaging and proteomic data obtained in DSCCA demonstrate much more discrimination
power toward diagnosis groups than those obtained in SCCA.
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2. Discriminative SCCA (DSCCA)

Throughout this section, we denote vectors as boldface lowercase letters and matrices as
boldface uppercase ones. For a given matrix M = (mij), we denote its i -th row and j -th
column to mi and mj respectively. Let X = {x1, ..., xn} ⊆ Rp be the imaging data and Y =

{y1, ..., yn} ⊆ Rq be the protein data, where n is the number of participants, p and q are the
number of brain regions and proteins respectively.

Canonical correlation analysis (CCA) is a bi-multivariate method that explores the linear
transformations of variables X and Y to achieve the maximal correlation between Xu and
Yv, which can be formulated as:

max
u,v

uTXTYv s.t. uTXTXu = 1,vTYTYv = 1 (1)

where u and v are canonical loadings or weights, reflecting the significance of each feature in
identified associations.

However, the power of CCA in biomedical applications is quite limited due to 1) its re-
quirement on the relatively large number of observations n which is expected to exceed the
combined dimension of X and Y, and 2) its nonsparse outputs u and v which make the ulti-
mate pattern hard to interpret. To address this concerns, sparse CCA (SCCA) method was
later proposed, where two penalty terms on both weight vectors P1(u) ≤ c1 and P2(v) ≤ c2
were introduced to help generate sparse results.

A widely used SCCA implementation, PMA package,16 applied L1 norm penalty for both
P1 and P2. But without diagnosis information, its capability in identifying disease-relevant
biomarkers is quite limited. Thus the ultimate association relationships are not necessarily re-
lated to a specific disease either. Another limitation of PMA is that it takes the soft threshold
strategy in the solution, which requires the input data to have an linear independence design
XTX = I and YTY = I (see Section 10 in14). Unfortunately, this independence assumption
does not hold in both imaging and proteomics data (e.g., correlated voxels in an ROI, corre-
lated protein expressions), and will inevitably limit the capability of identifying meaningful
imaging proteomics associations.

To overcome these limitations, we propose a novel discriminative SCCA (denoted as
DSCCA) algorithm to not only take into account the diagnosis information but also elim-
inate the independence assumption. Inspired by the application of locality preserving projec-
tion (LPP) in linear discriminative analysis,10 we add two new constraints as P1 and P2 for
multi-class discrimination.

P1(u) = ||u||D = αuTXTLwXu− (1− α)uTXTLbXu,

P2(v) = ||v||D = αvTYTLwYv− (1− α)vTYTLbYv,
(2)

Here, we construct two graphs Gw and Gb to account for the diagnosis groups, where
each vertex indicates one subject (Fig. 1). In Gw, only subjects within the same diagnosis
group have connections to each other. In other words, we build a complete graph for all the
subjects belonging to the same diagnosis group. In Gb, only subjects from different diagnosis
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Fig. 1. Illustration of within- and between-group graphs Gw and Gb. Each circle indicates one subject and
subjects from the same diagnosis group are colored the same.

groups have connections. Lw and Lb are the Laplacian graphs of Gw and Gb respectively.
While the traiditonal L1 norm helps ascertain the sparsity of selected imaging and protein
biomarkers, the new penalty term || · ||D encourages the closeness between subjects within
the same diagnosis groups and distance between subjects from different diagnosis groups
after projection. α is a trade off parameter that help balance the within- and between-group
constraints. Since canonical variables Xu and Yv have the exact same length, we use the
same α for both penalties P1 and P2.

The final objective function of DSCCA can be written as follows:

max
u,v

uTXTYv− β1
2
P1(u)− β2

2
P2(v) (3)

s.t. uTXTXu = 1,vTYTYv = 1, ||u||1 ≤ c1, ||v||1 ≤ c2

Using Lagrange multipliers, Eq. (3) can be reformulated as follows:

max
u,v

uTXTYv− γ1
2
||Xu||22 −

γ2
2
||Yv||22 −

β1
2
P1(u)− β2

2
P2(v)− λ1||u||1 − λ2||v||1 (4)

Eq. (4) is known as a bi-convex problem, which can be easily solved using an alternating
algorithm as discussed in.16 By fixing u and v respectively, we will have the following two
minimization problems shown in Eq. (5) and (6).
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min
u
−uTXTYv +

γ1
2
uTXTXu +

β1
2
P1(u) + λ1||u||1, (5)

min
v
−uTXTYv +

γ2
2
vTYTYv +

β2
2
P2(v) + λ2||v||1, (6)

Both objective functions can be efficiently solved using the Nesterovs accelerated proximal
gradient optimization algorithm.9 Algorithm 2.1 summarizes the optimization procedure. The
convergence is based on the value changes of the objective function and we use 10−6 as stop
criteria. Five-fold nested cross-validation was applied to automatically tune the parameters
β1, β2, λ1 and λ2. According to,2 the learned pattern and performance are insensitive to γ1 and
γ2 settings. Therefore in this paper we set both of them to 1 for simplicity. The optimization
method used in steps 3 and 4 is similar to that proposed in.9

Algorithm 2.1 Discriminative SCCA (DSCCA)

Require:
X = {x1, ..., xn}, Y = {y1, ..., yn}, Lw ⊆ Rn×n, Lb ⊆ Rn×n

Ensure:
Canonical vectors u and v.

1: t = 1, Initialize ut ∈ Rp×1, vt ∈ Rq×1;
2: while not converge do
3: Solve Eq. (5) using Nesterov’s method and obtain u;
4: Solve Eq. (6) using Nesterov’s method and obtain v;
5: Scale u so that uTu = 1

6: Scale v so that vTv = 1

7: t = t+ 1.
8: end while

3. Results

3.1. Data and Experimental Setting

The MRI data, quantification of proteins in CSF and blood plasma were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The primary goal of ADNI has
been to test whether serial MRI, PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early AD. For up-to-date information, see adni.loni.usc.edu.

We totally extracted 246 subjects with all MRI, CSF and plasma proteomic data available.
To balance the diagnostic groups, we randomly removed some mild cognitive impairment
(MCI) participants. Finally, 176 subjects (67 AD, 67 MCI and 42 healthy control (HC)),
were included in this study (Table 1). For each baseline MRI scan, FreeSurfer (FS) V4 was
employed to extract 73 cortical thickness measures and 26 volume measures, as well as to
extract the intracranial volume (ICV). CSF and blood plasma samples were evaluated by
Rules Based Medicine, Inc. (RBM) proteomic panel and 229 proteomic analytes survived the
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quality control process, with 83 from CSF and 146 from plasma. Using the regression weights
from HC participants, all the MRI, CSF and blood plasma proteomic measures were pre-
adjusted for the baseline age, gender, education, and handedness, with ICV as an additional
covariate for MRI only.

Table 1. Participant characteristics

HC MCI AD

Number 67 67 42
Gender(M/F) 38/29 45/22 22/20
Handedness(R/L) 64/3 64/3 38/4
Age(mean±std) 75.15±7.68 74.28±7.25 75.93±5.82
Education(mean±std) 15.12±3.01 15.96±2.92 15.88±2.77

3.2. Experimental Results

Both DSCCA and PMA were performed on the normalized FS and proteomic measures. To
avoid the over-fitting problem, 5-fold nested cross-validation was applied, which also helped
to optimally tune the parameters. Table 2 shows 5-fold cross-validation canonical correlation
results. It is observed that proposed DSCCA and PMA have comparable performances in
identifying imaging proteomic associations, whereas DSCCA is slightly better in performance
stability.

Next, we examined the discriminative power of canonical variables Xu and Yv generated
by DSCCA and PMA. Area under ROC curve (AUC) was calculated for each single canonical
variable of five folds. Both imaging and proteomic canonical variables of PMA and imaging
canonical variable of DSCCA were found to have little discrimination power in all HC vs MCI,
HC vs AD and MCI vs AD cases. Proteomic canonical variable Yv of DSCCA has the best
performance, with an averaged AUC around 0.7 for all three cases. Shown in Fig. 2 is an
example plot of Xu against Yv in one fold. Dot colors represent different diagnostic groups.
Compared to one single canonical variable, we observe that combination of two canonical
variables generated in DSCCA demonstrated much more discrimination power than PMA. In
Fig. 2(a) three diagnosis groups are all very well separated, whereas in Fig. 2(b) subjects are
mixing together.

To further validate our results, a follow up classification analysis was performed using both
imaging and proteomic canonical variables as predictors. Canonical loadings learned in the
training data set are applied to both training and test data to calculate the training and test
canonical variables respectively. The LIBSVM toolbox was employed to implement the SVM
using a linear kernel under default settings. Three pair-wise binary classification analyses were
performed between HC vs MCI, HC vs AD, and MCI vs AD respectively. Shown in Table.
3 are the classification performance comparison between DSCCA and PMA. The results are
very encouraging. Canonical variables of DSCCA significantly outperformed those of PMA in
terms of the overall accuracy in almost all the cases. The resulting best prediction rates for
HC vs AD (92.1%), HC vs MCI (75.3%) and MCI vs AD (70.3%) were competitive with prior
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multi-modal studies,6,19 especially considering that it is under default parameter settings.
All five-fold experiments generated similar sparse results in terms of selection of imaging

and proteomic markers. Fig. 3 shows the imaging and proteomic markers commonly identi-
fied across all folds using DSCCA, where the color represents the weights of corresponding
brain regions. Top brain regions identified include entorhinal cortex, amygdala volume, hip-
pocampal volume, etc. (Fig. 3(a)), which are all aligned with previous AD findings.12,19 In
terms of proteomic markers, expression levels of 12 proteins from CSF and 19 proteins from
blood plasma were found to be strongly associated with those brain regions. According to the
STRING database (http://string-db.org/), these proteins are highly interconnected with each
other, as shown in Fig. 3(b). Edges are colored based on the evidence of the connection, such
as experimental interaction, co-expression or co-occurrence in the literature. The more edges
two proteins have, the more confident their connection will be.

In particular, four proteins, apolipoprotein E (APOE ), AXL receptor tyrosine ki-
nase(AXL), interleukin 6 receptor (IL6R) and vascular endothelial growth factor (VEGF ),
were identified in both CSF and blood plasma. APOE is the top risk gene of AD. AXL is
a member of the Tyro3-Axl-Mer (TAM) receptor tyrosine kinase subfamily, which has been
previously reported to be involved in Amyloidogenic APP Processing and β-Amyloid Depo-
sition in AD.20 For growth factor VEGF, both its variants and expression changes are found
to be associated with AD.4,13 IL6R is less explored in terms of its relationship with dementia.
But in a recent study it was reported to have significant associations with proteins involved in
amyloid processing and inflammation.7 These findings suggest the existence of certain connec-
tions between brain and blood biomarkers. Thus, more accessible fluid biomarkers from blood
should have potential to provide extra insights of AD and guidance for future therapeutic
intervention activities.

Table 2. Five-fold cross validation canonical correlation results

f1 f2 f3 f4 f5 mean

DSCCA
Train 0.796 0.670 0.820 0.680 0.636 0.720
Test 0.424 0.476 0.281 0.392 0.312 0.377

PMA
Train 0.529 0.629 0.505 0.524 0.504 0.538
Test 0.410 0.095 0.324 0.201 0.460 0.298

4. Discussion

We performed an integrative analysis of brain imaging and protein expression data to jointly
identify AD related biomarkers and their associations using a new sparse learning model
DSCCA. The overall association performance of DSCCA is better than SCCA. the combina-
tion of its two canonical variables are much more powerful in discriminating multiple diagnostic
groups simultaneously. Using both imaging and proteomic canonical variables in DSCCA as
predictors, we obtained very promising prediction performances: HC vs AD (92.1%), HC vs
MCI (75.3%) and MCI vs AD (70.3%), which were competitive with prior multi-modal stud-
ies. Since the classification was done under default parameter settings and the sample size is
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Table 3. Five-fold cross validation classification performances (%) using canonical variables Xu and
Yv. HC vs MCI, MCI vs AD, and HC vs AD are performed as three tasks separately.

Train Test

HC vs MCI HC vs AD MCI vs AD HC vs MCI HC vs AD MCI vs AD

f1 97.17 100.00 94.19 75.00 91.30 60.87
f2 86.79 96.51 84.88 85.71 95.65 60.87
f3 96.23 100.00 94.19 85.71 91.30 86.96

DSCCA f4 93.40 95.35 75.58 57.14 100.00 78.26
f5 72.32 82.61 69.57 72.73 82.35 64.71

mean 89.18 94.89 83.68 75.26 92.12 70.33

f1 60.38 77.91 65.12 71.43 86.96 73.91
f2 66.98 84.88 74.42 71.43 95.65 60.87
f3 66.04 80.23 63.95 50.00 86.96 60.87

PMA f4 68.87 80.23 59.30 42.86 82.61 78.26
f5 65.18 77.17 60.87 31.82 64.71 64.71

mean 65.49 80.09 64.73 53.51 83.38 67.72

(a) (b)

Fig. 2. Plot of canonical variables Xu and Yv. Left: DSCCA; Right: PMA; Red: AD; Green: MCI; Blue:
HC; Solid: Training; Circle: Test.

very limited, we expect improved performances with more advanced parameter optimization
strategies and/or larger sample sizes.

In real applications, many identified proteomic markers are found to be interconnected,
but the underlying mechanisms still warrant further investigation. Replication in independent
large samples will be important to confirm these findings. Further pathway enrichment analysis
could be performed as a future direction to identify underlying biological pathways of relevant
genes and proteins. Considering the ever increasing data volume and diversity in many complex
diseases, another potential future topic is to investigate whether DSCCA can help identify
valuable complementary information between new -omics features and further improve the
classification performance.
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(a)                                                             (b) 

Fig. 3. Common imaging and proteomic markers across 5-fold cross-validation. (a): Mapping of imaging
canonical loadings onto the brain; (b): Known interactions between identified protein biomarkers from STRING
database.
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We consider the problem of multimodal data integration for the study of complex neurological dis-
eases (e.g. schizophrenia). Among the challenges arising in such situation, estimating the link between
genetic and neurological variability within a population sample has been a promising direction. A
wide variety of statistical models arose from such applications. For example, Lasso regression and
its multitask extension are often used to fit a multivariate linear relationship between given pheno-
type(s) and associated observations. Other approaches, such as canonical correlation analysis (CCA),
are widely used to extract relationships between sets of variables from different modalities. In this
paper, we propose an exploratory multivariate method combining these two methods. More Specif-
ically, we rely on a ’CCA-type’ formulation in order to regularize the classical multimodal Lasso
regression problem. The underlying motivation is to extract discriminative variables that display are
also co-expressed across modalities. We first evaluate the method on a simulated dataset, and fur-
ther validate it using Single Nucleotide Polymorphisms (SNP) and functional Magnetic Resonance
Imaging (fMRI) data for the study of schizophrenia.

Keywords: Multimodal Analysis, Collaborative Regression, CCA, Sparse Models, Schizophrenia.

1. Introduction

An increasing amount of high-dimensional biomedical data such as micro arrays (mRNA,
SNP) or brain imaging sequences (MRI, PET) is collected every day. Classical unimodal anal-
ysis often ignore the potential joint effects that may exist, for example, between genes and
specific brain regions for diseases such as Schizophrenia, Alzheimer, etc. By harnessing these
joint effects across modalities, we might be able to identify new mechanisms that uni-modal
methods may fail to capture. Imaging genomics is an emerging field whose aim is precisely
to leverage the wealth of biomedical knowledge provided by genomic and brain imaging data.
Integrating such multimodal data sets is critical to extract meaningful bio-markers, improve
clinical outcome prediction or identify potential associations across modalities. Unfortunately,
as mentioned by Lin1, such studies using genomic and brain imaging data often run into two
limitations: The first one is an average small sample size, which may result in over fitting
issues. In order to address such constraint, many authors relied on the use of sparse models.
One classical method introduced by Tibshirani2 is the Lasso regression. The second limitation
is poor biomarker reproducibility across studies. Although this issue remains an open prob-
lem, one may hope that using appropriate priors over the solution will lead to an improved
consistency of the result across different studies.
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1.1. Motivation: the study of Schizophrenia

Schizophrenia is a serious neurological disorder that affects around 1% of the general popu-
lation. It is regarded as the result of various factors including genetic variants, brain devel-
opment abnormalities and environmental effects. Identifying critical genes or SNPs related to
schizophrenia3,4 has been a challenging issue. Many studies relied as well on brain imaging
techniques5,6 to pinpoint functional abnormalities in brain regions for schizophrenia patients.
Multimodal analysis (e.g. using both genomic and brain imaging) often improve generalization
in situations in which many irrelevant features are present. In their recent paper, Cao et al.7

proposed a sparse representation based variable selection (SRVS) algorithm relying on sparse
regression model to integrate both SNP and fMRI in order to perform biomarker selection for
the study of schizophrenia. Lin8 proposed a group sparse canonical correlation analysis (CCA)
method based on SNP and fMRI data to extract correlation between genes and brain regions.
Le Floch et al.9 combined univariate filtering and Partial Least Squares (PLS) to identify
SNPs covarying with various neuroimaging phenotypes. It appears that both regression and
CCA methods display promising behaviors when combining SNP and fMRI data for the study
of schizophrenia. In this work, we will try to merge these two methods in order to make the
most out of both formulations.
The rest of this paper is organized as follows: we introduce in Section 2 some of the relevant
methods as well as the motivation for this work. A novel approach to multivariate regression
problems is then proposed in Section 3. Such method is then evaluated on both synthetic and
real datasets in Section 4, followed by some discussions and concluding remarks in Section 5.

2. Methods

2.1. Learning with L1 penalty

We consider M ∈ N+ distinct (i.e. from different modalities) datasets with n samples and
pm ∈ N+ (m = 1, ..,M) variables each. The m-th dataset is represented by a matrix Xm ∈ Rn×pm .
Additionally, each sample is assigned a class label (e.g. case/controls) yi ∈ {−1, 1}, i = 1, .., n.
Our goal is to look for a linear link between those class labels and the M data matrices. Let
us consider the following regression model:

min
β

M∑
m=1

‖y −Xmβm‖22 + λ‖β‖1 (1)

The model described by Eq. 1 performs both variable selection and regularization. It
often improves the prediction accuracy and interpretability of the results compared to the
use of classical `2 norm regularization terms, especially when the number of variables is far
greater than the number of observations. In some situations, we have several output vectors
ym,∀m = 1, ..,M and the m datasets are from the same modality: multi-task Lasso10 was
proposed to capture shared structures among the various regression vectors. We consider the
following model:

min
β

M∑
m=1

‖ym −Xmβm‖22 + λ

P∑
p=1

‖βp‖2 (2)
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where P is the dimension of the problem and βp is the p-th row of the matrix such that
β = [β1, .., βm] (i.e. the βm are stacked horizontally). Such norm is also referred to as the `1/`2
norm, and is used to both enforce joint sparsity across the multiple βm and estimate only a
few non-zero coefficients. Enforcing regularity within a modality11,12 (and across tasks) has
been an active aspect of regression models, and has proven to increase reliability and results.
However, since often pair-wise closeness is looked for in the common subspace, such methods
will often fail to capture relationships across modalities.

2.2. Collaborative learning

Collaborative (or Co-regularized) methods13 are based on the optimization of measures of
agreement and smoothness across multi-modal datasets. Smoothness across modalities is en-
forced through a joint regularization term. Their general model can be expressed as follows:

J(β) =

M∑
m=1

‖y −Xmβm‖22 + γ

M∑
m,q=1

‖Umβm −Uqβq‖22 + λ‖β‖1 (3)

where the Um, m = 1, ..,M are arbitrary matrices whose roles are to control the cross-view
joint regularization between each pair of vectors (βm, βq), m, q = 1, ..,M . Scalar parameter
γ ≥ 0 controls the influence of such cross-regularization term. Notice that if γ = 0, we fall back
on the original Lasso formulation. Collaborative learning is an interesting extension of Eq.1
allowing the user to explicitly enforce regularization across modalities. In this work, we rely on
a special case of collaborative methods (introduced later in section 3) to address the following
aspects: (i) Extend the regularization idea across modalities; (ii) Assume that relationships
between variable are not available as a prior knowledge (as opposed, e.g., to Xin11); (iii) Define
links between components using correlation measure. To do so, we first briefly introduce in
the next section some of the classical methods to extract meaningful relationships between
variables across modalities.

2.3. Extracting relationship between datasets

A wide variety of problems amount to the joint analysis of multimodal datasets describing
the same set of observations. Often, a mean to perform such analysis is to learn projection
subspaces using paired samples such that structures of interest appear more clearly. Some of
these methods are for example: Canonical correlation analysis14 (CCA), Partial least squares9

(PLS) or cross-modal factor analysis (CFA). Among them, CCA is probably the most widely
used. Its goal is to extract linear combinations of variables with maximal correlation between
two (or more) datasets. Using similar notations as in the previous section,and assuming M = 2,
one formulation of CCA is expressed as follow:

argmin
β1,β2

Jcca(β1, β2) = ‖X1β1 −X2β2‖2 (4)

to which a constraint on the norm of canonical vectors β1, β2 is added to avoid the trivial
null solution. In recent years, CCA has been widely applied to genomic data analysis. As a
consequence, many studies on sparse versions of CCA (sCCA) have been proposed8,15–18 to
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cope with the high dimension but low sample size problem. In the next section, we will rely
on a CCA term to measure co-expression between variables from different modalities.

3. Enforcing cross-correlation in regression problems

3.1. MT-CoReg formulation

As discussed in Section 1, several methods have been proposed to: (i) Associate a phenotype
and datasets while enforcing prior over solution; (ii) Extract relationships between coupled
or co-expressed datasets. In the present study, we propose to associate both the regression
and CCA frameworks in the case of M = 2 datasets. Our motivation is to extract informative
features that also display a significant amount of correlation across modalities. A simple way
to combine Lasso and sparse CCA would be a weighted combination of Eq.(1) and Eq.(4):

min
β
J(β) = (1− γ)

2∑
m=1

‖y −Xmβm‖22 + γ‖X1β1 −X2β2‖2 + λ‖β‖1 (5)

where γ ∈ [0, 1] is a weight parameter. Notice that Eq.(5) can be expressed within the col-
laborative framework introduced in Section 2.2. If we take a look at Eq.(3) with M = 2,
U1 = X1 and U2 = X2, we fall back on Eq.(5). Let us call this model CoReg for Collaborative
Regression. Interestingly, a similar model has been considered before by Gross19 to perform
prediction using breast cancer data. However, to our opinion, such formulation might prove
to be too constraining. It essentially amounts to force each component of the βm’s to fit both
the regression term and the CCA one. We illustrate such behaviour using a toy dataset later
in Section 3.4. Since our goal is to perform feature selection, we may allow the model to be
slightly more flexible. We thus propose an alternative formulation by first duplicating each βm
into two components such that:

βm = [αm, θm] , ∀m = 1, 2 (6)

where αm, θm are vectors from Rpm . As a consequence, the βm’s are now matrices such that
βm ∈ Rpm×2 ∀m = 1, 2. We then propose the following MT-CoReg formulation:

min
β
J(β) = (1− γ)

2∑
m=1

‖y −Xmαm‖22 + γ‖X1θ1 −X2θ2‖2 + λ

2∑
m=1

pm∑
i=1

‖βim‖2 (7)

where βim is the i-th row of βm, i.e. βim = [αm(i), θm(i)] ∈ R2. The third term of Eq.(3.3) is
simply the `1/`2 norm of each of the βm. As we can observe from looking at Eq.(3.3), each
’component’ (i.e. column of βm) will be involved in separate parts of the functional J : (i)
components αm are the fit to the regression term of Eq.(3.3); (ii) components θm are the
fit of the CCA term of Eq.(3.3). Each pair (αm, θm) and m = 1, 2 is coupled through the
use of the `1/`2 norm from the third term in Eq.(3.3). Although their values are different,
shared sparsity patterns are encouraged within each pair (αm, θm). As a consequence, we allow
the method to be significantly more flexible in terms of solutions: different values can be
taken to simultaneously fit the Regression and CCA parts. We hope that such framework
will encourage the selection of features that are discriminative (via the regression part) but
also co-expressed across modalities (via the CCA part). Note that when γ = 0, criterion (3.3)
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essentially reduces to the initial regression problem of Eq.(1), while setting γ = 1 amounts to
solving a conventional sparse CCA problem. A schematic view of the MT-CoReg pipeline can
be seen in Fig.(1). In the next section, we briefly explain how to solve the problem described
in Eq.(3.3).

Fig. 1. Schematic view of the MT-CoReg pipeline. From two different datasets X1 and X2 from different
modalities (here SNP and fMRI respectively), we fit both a regression and CCA terms and couple the resulting
components (αm, θm) using the `1/`2 norm denoted ‖ · ‖1,2 here. The ultimate goal is to find discriminative
SNP and brain regions that are also co-expressed across modalities.

3.2. Optimization

We solve the problem from Eq.(3.3) by optimizing the βm’s alternatively over iterations until
convergence, in a similar fashion to Wilms20 et al. formulation of sCCA. Suppose we have
an initial value β∗1 for β1, and want to estimate β2. Updating matrix β2 can be recast into a
problem of the following form:

min
β̃2

J(β̃2|β∗1) = ‖ỹ2 − X̃2β2‖2F + λ

p2∑
i=1

‖βi2‖2 (8)

where

ỹ2 = [
√

(1− γ)y,
√
γX1θ

∗
1], X̃2 = [

√
(1− γ)X2,

√
γX2] (9)

Obviously, Eq.(8) is a classical group-lasso regression problem10 (cf. Eq.(2)). It is easy to show
that updating β1 reduces to solving a similar problem. As a consequence, solving our mixed
Lasso/CCA problem from Eq.(3.3) can be briefly summarized as:

1 Initialization: estimate initial values for α1, β1, α2, β2 using ridge regression and ridge
CCA.

2 Assume β1’s value fixed, and update β2 using Eq.(8).
3 Assume β2’s value fixed, and update β1 using the adapted version of Eq.(8).
4 Go back to step 2. until convergence
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3.3. Parameter selection

Solving problem from Eq.(3.3) requires the estimation of two parameters, λ and γ, which
respectively control the weights of the sparsity and the co-expression regularization terms.
The choice of sparsity parameter λ for this type of problems is known to display a high
sensitivity21. In order to make the searching process more robust, we chose to let the sparsity
level of the solution control the tuning parameter value22,23. Consider a column vector β ∈ Rp

(e.g. a column of β from Eq.): let us denote |β|κ the κ-th (κ ∈ N+ ) largest absolute magnitude
of β. We can define a correspondence between λ and κ by making sure that for each iteration,
we have λ ∈ [|β|κ, |β|κ+1]. The selection can be looked for around the sample size (i.e. κ = n

for the entire estimation process), which helps drastically stabilize the estimation process in
practice.
As for the estimation of γ, we chose to rely on a technique introduced by Sun et al.24 based
on variable selection stability. Its main goal is to select a given tuning parameter so that
the associated variable selection method (in our case, the model from Eq.(3.3)) is stable in
terms of the features it selects. In this framework, the training set is split in two halves using
resampling (bootstrap resampling in our case). The variable selection method is then applied
to each of the subsamples along a grid of candidate values for the parameter. Kappa selection
criterion25 is then used to measure the degree of agreement between the two sets of variables
obtained for a given parameter value. This process is then repeated a number of times, and an
approximated measure of selection consistency is derived. The parameter value for which this
consistency is the highest (after correction for the number of non-zeros elements retained) is
the one kept for the estimation.

3.4. MT-CoReg VS. CoReg

As mentioned earlier in Section 3.1, in their CoReg model from Eq.(5) Gross et al.19 did
not separate the solution vectors βm into two components. We then propose to illustrate the
behavior of both models (Eq.(5) and Eq.(3.3)) on a toy dataset.
We generated M = 2 data matrices X1,X2 such that p1 = p2 = 30 and n = 50 observations.
We used a latent variable model to simulate cross-correlated components so that columns
p = [1, ..5]∪ [10, ..15] of X1,X2 are mutually co-expressed. We further use columns p = [10, ..15]∪
[20, ..25] to generate a phenotype vector y such that yi ∈ {−1; 1}. With such setup, columns p =

[10, ..15] correspond to both non-zeros values in the true regression and canonical coefficients.
Furthermore, let us point out that these non-zero values are diferent (canonical coefficients’
amplitude is lower than the regression ones). This setup can be seen in the first row of Fig.(2,
Truth), where the blue and red curves are the values taken by the canonical and regression
coefficients respectively. Resulting estimates for sCCA, Lasso, CoReg19 as well as proposed
method MT-CoReg can also be seen in Fig.(2). In such scenario, while CoReg model assumes
that regression and canonical coefficients have identical values, MT-CoReg has a wider scope
and allows a finer joint estimation of both components types.
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Fig. 2. Resulting estimates β1, β2 on the toy dataset. (Truth) blue and red curves are the values taken by
the true canonical and regression coefficients respectively. Solutions obtained with sCCA, Lasso, CoReg19 and
proposed method MT-CoReg are displayed. Notice that columns columns p = [10, ..15] correspond to both
non-zeros values in the true regression and canonical coefficients, although their amplitudes are different. By
relaxing the assumption that regression and canonical coefficients have identical values, MT-CoReg allows a
finer joint estimation of both components types compared to CoReg.

4. Experiments

In this section, we evaluate the proposed estimator from Eq.3.3. Performances will be assessed
in terms of feature selection relevance on both simulated and real data.

4.1. Results on synthetic data

For our first test, we simulate both fMRI and SNP datasets. Similar to the toy dataset from
Section 3.4, we start by generating explanatory variables α∗

1, α
∗
2 ∈ R900 for both genomic and

brain imaging data. The first 100 components of α∗
1, α

∗
2 are drawn from Normal distribution,

while the rest is set to zero. The total number of observations is set to n = 200. Genomic
values are coded as 0 (no minor allele), 1 (one minor allele), and 2 (two minor allele). We first
define a minor allele frequency η drawn from a uniform distribution U([0.2, 0.4]). The i-th SNP
is then generated from a binomial distribution B(2, ηi). For the imaging data, voxels values
were drawn from a Gaussian distribution N (0, Ip). Finally, binary phenotype y data are gen-

erated from B(1, di), where di =
exp(5

∑M
m=1Xmα

∗
m)

1 + exp(5
∑M

m=1Xmα∗
m)

. Furthermore, we add 100 additional

variables to the problem that will play the role of cross-correlated variables. Two canonical
vectors θ∗1, θ

∗
2 ∈ R100 are drawn from Normal distribution. Cross-correlated SNP are drawn from

B(2, logit−1(−ai + logit(ηi))) where a is issued from N (θ∗1y, I100), while cross-correlated voxels
are drawn from N (θ∗2y, I100) . The final dataset is made of n = 200 observations of p = 1000

variables for both SNP and fMRI. Each of these datasets is made of explanatory and cross-
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correlated components. A common way to assess the performance of a model when it comes
to feature selection is to measure the true positive rate (TPR) and false positive rate (FPR).
TPR reflects the proportion of variables that are correctly identified, while FDR reflects the
proportion of variables that are incorrectly selected by the model. We apply MT-CoReg to
100 random generation of the dataset described above. The tuning parameter γ from Eq.(3.3)
that weights the CCA term against the regression one is optimized through a grid search over
{[0] ∪ [10−1+`/20]; ` = 0, .., 20}. We plotted TPR values against FDR ones in Fig.(3) for two
different cases. In the first (left) subfigure are displayed TPR/FDR values relative to non-zero
components of α∗

1, α
∗
2 for γ = 0 (i.e. classical Lasso), γ = γ(C.S.) where the weight value is

determined using consistency selection (C.S.) scheme described in Section 3.3, and γ = 1 (i.e.
classical sCCA). We can observe that although classical regression seems to perform slightly
better for really low FDR values, MT-CoReg is quickly catching up around FDR ≈ 0.15.
sCCA, on the other hand, has a low selection power. The second (bottom) figure displays
TPR/FDR values relative to non-zero components of θ∗1, θ

∗
2, i.e. the cross-correlated compo-

nents. We can observe that MT-CoReg performs as well as sCCA, while Lasso is unable to
properly select the components of interest. It is encouraging to see that MT-CoReg takes the
best of both methods and seems to properly select the components we are interested in. It
seems to confirm our hypothesis that using a mix of both terms may lead to an improved
feature selection accuracy. In the next section, we apply the same method to a real dataset of
fMRI and SNP data.

Fig. 3. TPR against FDR values averaged over 100 simulations for different γ values. Fixing γ = 0 amounts
to using Lasso regression, while γ = 1 is equivalent to classical sparse CCA. γ(C.S.) is the ROC curve obtained
while using consistency selection (C.S.) scheme described in section 3.3 to automatically estimate γ. (a) values
for the selection of first 100 components (i.e. the explanatory components) only (b) values for the selection
of the last 100 components (i.e. the cross-correlated components). It can be seen that a non-trivial weight
combinaison for γ seems to be taking the best of the two methods that are Lasso (γ = 0) and CCA (γ = 1).
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4.2. Results on real imaging genetics data

4.2.1. Data acquisition

Both SNP and fMRI acquisition were conducted by the Mind Clinical Imaging Consortium
(MCIC) for 214 subjects, including 92 schizophrenia patients (age: 34 ± 11, 22 females) and
116 controls (age 32 ± 11, 44 females). Schizophreniac were diagnosed based on DSM-IV-TR
citeria. Controls were free of any medical, neurological of psychiatric illnesses.

fMRI were acquired during a sensor motor task with auditory simulation. Data were pre-
processed with SPM5, spatially normalized and resliced, smoothed, and analyzed by multiple
regression considering the stimulus and their temporal derivatives plus an intercept term as
regressors. For each patient, a stimulus-on vs. stimulus-off contrast image was extracted. 116
ROIs were extracted based on the aal brain atlas, which resulted in 41236 voxels left for
analysis. SNP data were obtained from blood sample using Illumina Infinium HumanOmni1-
Quad array covering 1,140,419 SNP loci. After standard quality control procedures using
PLINK software package a, a final dataset spanning 777, 635 SNP loci was available. Each
SNP was categorized into three clusters based on their genotype and was represented with
discrete numbers: 0 (no minor allele), 1 (one minor allele) and 2 (two minor alleles). SNPs with
> 20% missing data were deleted and missing data were further imputed. SNPs with minor
allele frequency < 5% were removed. This procedure yielded a final set of 129, 145 SNPs.

4.2.2. Significance analysis

In order to achieve a stable feature selection process, we follow Lin8 and perform N = 100

random samplings out of the 214 total subjects, where for each time 80% are used for training
and parameter selection, while the remaining 20% are used for evaluation. At the k − th

random sampling, we can calculate a set of solution vectors β̂km,m ∈ {1, 2}. It is then possible
to define a measure of relevance pim for the i-th feature in the m-th dataset such that: pim =
1
N

∑N
k=1 I(β̂km(i) 6= 0) where i = 1, .., dm is the feature index and I(·) is the indicator function.

We can then rank each SNP and voxel based on their associated relevance measure and apply
a cut-off threshold of 0.3 (c.f. Lin8). After applying this significance test, we were left with a
subset of 43 SNP spanning 30 genes and 6 ROI with a number of selected voxels over 5.
We display in Table.1 the list of each of the 43 selected SNP, as well as their associated
genes. Some of them have been identified by other similar studies8,26,27 such as CNTNAP2,
GLI2, GRIK3, NOTCH4, SUCLG2, GABRG2. Others have been identified from well-known
databases28 such as GRIK4 or HTR4. We display in Table.2 the list of the selected ROI as well
as the corresponding voxel count for each one of them. ROI for which less than 5 voxels were
selected where dismissed. Once again, it is encouraging to note that each of the selected ROI
(3, 7, 11, 40, 51, 100 from aal.) have been identified in similar studies8,29 on the same dataset.
Other studies pointed out both functionnal or structural differences in the middle occipital
gyrus30 and the parahippocampal gyrus31 for schizophrenic patients. Finally, a detailled slice
view of the selected voxels can be seen in Fig.(4).

ahttp://pngu.mgh.harvard.edu/ purcell/plink
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Table 1. List of selected SNP and their associated genes.

SNP ID Gene name SNP ID Gene name SNP ID Gene name SNP ID Gene name

rs3856465 ATP6V1C2 rs11607732 GRIK4 rs815533 CACNA2D3 rs10748732 HPSE2
rs12333931 CNTNAP2 rs12332417 HTR4 rs2373347 CNTNAP2 rs13359903 HTR4
rs2407264 CYSLTR2 rs7725785 HTR4 rs9535112 CYSLTR2 rs11875988 LIPG
rs6567629 DHRSX rs12454370 LIPG rs858341 ENPP1 rs9787820 LRRC4C
rs16842460 EPHB1 rs17819648 MAML2 rs11927660 FGF12 rs3134797 NOTCH4
rs17599845 FHIT rs3134799 NOTCH4 rs10926254 FMN2 rs394657 NOTCH4
rs4659573 FMN2 rs1009708 PDE2A rs11060822 FZD10 rs7111188 PDE2A
rs12824777 FZD10 rs17016738 RARB rs2963094 GABRG2 rs12101383 SMAD6
rs10831614 GALNTL4 rs7030433 SMARCA2 rs7602673 GLI2 rs573700 SPRY2
rs6753202 GPD2 rs9849270 SUCLG2 rs1392744 GRIK3 rs1105880 UGT1A6
rs10502240 GRIK4 rs17863787 UGT1A6

Table 2. List of selected ROI (from aal.) and associated voxel count.

ROI ID (aal.) ROI name voxels nb.

51 Left middle occipital gyrus 13
7 Left middle frontal gyrus 11
11 Left middle frontal gyrus, orbital part 9
100 Right lobule VI of cerebellar hemisphere 9
3 Left superior frontal gyrus 8
40 Right parahippocampal gyrus 7

Fig. 4. Slice view of the selected voxels (without thresholding using cluster size) and their significance.

4.2.3. Quantitative analysis

In this section, we try to analyze the results of MT-CoReg using some quantitative metrics.
We can first turn our attention to the Sum of Squared Errors (SSE) values obtained on
the testing set during our tests. Histograms of SSE distributions for different γ values (i.e.
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Lasso, MT-CoReg and sCCA) can be seen in Fig.(5,left): unsurprisingly, Lasso and MT-CoReg
produce the lowest RSS values, while sCCA does not fit the phenotype. If we now look at
Fig.(5,middle) where distributions of Pearson’s correlation on the testing set are displayed
for the same 3 strategies, we can see that MT-CoReg produces a better selection than Lasso
in terms of cross-correlation. This seems to confirm our intuition that MT-CoReg makes the
best of both Lasso and CCA by producing a solution that is good fit to the phenotype while
selecting co-expressed features across modalities.
Distribution of γ values produced by the consistency selection scheme described in Section
3.3 can be seen in Fig.(5,right). Most of these values fall into the range [0; 0.4], with a peak
in [0.2; 0.3]. It does appear, at least in term of feature consistency selection, that a non-zero
weight for the CCA term in Eq.(3.3) leads to improved performances.

Fig. 5. Frequency distribution of RSS values (on the test set) for N = 100 sub-sampling of the original set
of observations.

5. Conclusions

The main contributions of this paper can be summarized as follows. First, we proposed a
novel variable selection approach using a CCA-like regularization term in order to enforce
co-expression between modalities. Secondly, we present an efficient algorithm to solve this
problem, as well as strategies to estimate the tuning parameters. On top of that, a series of
experiments on both synthetical and real datasets were conducted, allowing us to evaluate the
performances of the proposed method. We identified two sets of SNP and voxels in which a
number of them have been previously reported to have potential relationship with the risk of
schizophrenia. Further exploration of the optimization scheme (alternate estimations) as well
as the selection of regularization parameter λ (see Section 3.3) will be needed in the future.
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31. M. J. Escart́ı, M. de la Iglesia-Vayá, L. Mart́ı-Bonmat́ı, M. Robles, J. Carbonell, J. J. Lull,
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