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Science is not done in a vacuum – across fields of biomedicine, scientists have built on previous 
research and used data published in previous papers. A mainstay of scientific inquiry is the 
publication of one’s research and recognition for this work is given in the form of citations and 
notoriety -- ideally given in proportion to the quality of the work. Academic incentives, however, 
may encourage individual researchers to prioritize career ambitions over scientific truth. Recently, 
the New England Journal of Medicine published a commentary calling scientists who repurpose 
data “research parasites” who misuse data generated by others to demonstrate alternative 
hypotheses1. In our opinion, the concept of data hoarding not only runs contrary to the spirit of, 
but also hinders scientific progress. Scientific research is meant to seek objective truth, rather than 
promote a personal agenda, and the only way to do so is through maximum transparency and 
reproducibility, no matter who is using the data. 
 
To maintain the integrity of the scientific process, it is necessary to cultivate practices that ensure 
reproducibility, especially as large and public heterogeneous databases proliferate. Many of these 
paradigms can be likened to open-source practices already adopted by much of the computer 
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science community. These include, but are not limited to, version control, code review, and 
containerization. There are many benefits to improving reproducibility: aside from the general 
benefit to science through increased transparency, releasing code enables additional peer review 
and is educational and efficient as it reduces duplications of efforts. Of course, these approaches 
require additional time for investigators to document and clean up code and data for release, which 
is the top reason for not sharing data and code2 (in addition to managing the intricacies of tools for 
version control, for example). Various incentive structures have been proposed to improve 
reproducibility rates across scientific fields, including creation of requirements by funding 
agencies or establishment of reward systems3. Additionally, like many computational skills, these 
require some initial effort, but have long-term benefits and will eventually become ingrained. 
Finally, public release of code can enable public code review, which improves programming 
habits: efforts such as Software Carpentry have been established to teach these skills and have met 
with recent success4. 
 
Reproducibility can take a number of forms and the desired extent of reproducibility has been 
debated in other fora: whatever the ideal solution, there is room for improvement in ensuring that 
research is reproducible. A growing number of researchers have begun to share their code and 
processed data, where possible. For instance, the ENCODE project released a virtual machine 
image that contained the code and data to reproduce the figures in their manuscript5 
[http://encodeproject.org/ENCODE/integrativeAnalysis/VM]. Similarly, the ExAC consortium 
deposited the figure generating code for their recent papers6,7 on Github 
[https://github.com/macarthur-lab/exac_papers; https://github.com/ericminikel/prnp_penetrance]. 
Some have gone even further as to publicly release a full manuscript under version control8,9 and 
document the process for others to do so [http://ivory.idyll.org/blog/2014-our-paper-process.html]. 
 
In this session, we feature five papers that explore research on the topic of reproducibility. This 
year, we required submissions to strive for reproducibility by depositing data and code on public 
repositories. The authors have stepped up to the challenge and are practicing what they preach: 
where possible, they have released applicable code and/or data to make their own research as 
reproducible as possible. 

Session Contributions 

Cohain, Divaraniya, and colleagues10 address an important challenge for reproducibility of 
Bayesian networks. While frequentist approaches can rely on p-values to predict replication, the 
construction of a Bayesian network is a data-dependent and heuristic process, and consistency 
between multiple analyses has not been rigorously performed. This paper explores the replication 
of Bayesian networks, particularly in relation to key driver nodes and hubs, as well as edge 
reproducibility. 
 
Hundreds of studies have used publicly available data to predict adverse drug reactions and drug 
indications and have reported seemingly exceptional predictive accuracy: Guney11 investigates the 
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issue of performance overestimation for drug side effect and indication, and finds that major 
assumption of these methods (independence) is violated, which overestimates their performance. 
Haynes et al12 present a pipeline for expression meta-analysis, which fills an unmet need for 
systematic processing and visualization of results from such analyses. Kaushik and colleagues13 
describe a workflow engine that uses graph theory approaches to optimize and ensure reproducible 
data analyses. Finally, Yang et al14 provide a detailed look on the reproducibility of clinical 
genetics data: concordance across variant classifications is reasonably high, but more work will be 
required to resolve differences and accurately classify all variants as pathogenic or benign. In 
summary, these exemplar papers demonstrate how to enhance research reproducibility across a 
variety of biomedical domains critical in this era of “big data” and precision medicine. 
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Network reconstruction algorithms are increasingly being employed in biomedical and life sciences research 
to integrate large-scale, high-dimensional data informing on living systems. One particular class of 
probabilistic causal networks being applied to model the complexity and causal structure of biological data is 
Bayesian networks (BNs). BNs provide an elegant mathematical framework for not only inferring causal 
relationships among many different molecular and higher order phenotypes, but also for incorporating highly 
diverse priors that provide an efficient path for incorporating existing knowledge. While significant 
methodological developments have broadly enabled the application of BNs to generate and validate 
meaningful biological hypotheses, the reproducibility of BNs in this context has not been systematically 
explored. In this study, we aim to determine the criteria for generating reproducible BNs in the context of 
transcription-based regulatory networks. We utilize two unique tissues from independent datasets, whole 
blood from the GTEx Consortium and liver from the Stockholm-Tartu Atherosclerosis Reverse Network 
Engineering Team (STARNET) study. We evaluated the reproducibility of the BNs by creating networks on 
data subsampled at different levels from each cohort and comparing these networks to the BNs constructed 
using the complete data. To help validate our results, we used simulated networks at varying sample sizes. 
Our study indicates that reproducibility of BNs in biological research is an issue worthy of further 
consideration, especially in light of the many publications that now employ findings from such constructs 
without appropriate attention paid to reproducibility. We find that while edge-to-edge reproducibility is 
strongly dependent on sample size, identification of more highly connected key driver nodes in BNs can be 
carried out with high confidence across a range of sample sizes. 
 
 

1.  Introduction 

Biological networks provide a graphical framework for organizing complex relationships among 
many thousands of variables in ways that can reveal coherent structures. These structures reveal 
knowledge and improve the understanding of molecular processes linked to higher order 
functioning of living systems. Vast arrays of data are being generated in numerous areas of 
biomedical research such as large-scale multi-‘omic’ studies across many cell types, 
comprehensive characterizations of microbiota living in and around us, advanced imaging data, 
and deep clinical characterizations of populations to name a few. This upsurge of big data has 
forced the life and biomedical sciences to rapidly turn to the use of network constructs. One such 
organizing framework for integrating data comes in the form of probabilistic network models that 
seek to capture the regulatory states of a system and their association to complex phenotypes such 
as disease. A particular class of probabilistic causal networks being applied to model the 
complexity and causal structure of biological data is Bayesian networks (BNs).  
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BNs are increasingly used in the field of genetics to describe and predict gene, metabolite, and 
protein level interactions. These networks are able to infer causal relationships among variables by 
employing mutual information or conditional independence measures based on Bayes Theorem. 
Since 2000 when this method was first applied to understand gene regulation1, numerous studies 
have showcased the advantage of using such methods to uncover biological insights that are not 
easily captured through descriptive methods such as hierarchical clustering or coexpression 
network analysis. Whether predicting regulatory genetic drivers of complex phenotypes such as 
human diseases or enabling identification of novel drug target interactions and adverse side 
effects, BNs have helped uncover the individual genes and biological processes involved in a 
broad range of human conditions, including cancer, diabetes and obesity, asthma and COPD, 
cardiovascular disease, and Alzheimer’s disease2–9. For example, BNs generated from ileal 
pediatric samples identified a causal gene resulting in a predictor for adult-onset inflammatory 
bowel disease10. As sample sizes increase, it can be envisioned that more groups will use BNs to 
predict individual response to treatment and it will enable fine-tuning for precision medicine11.  

Constructing a BN structure from data is an NP-hard problem with the complexity equaling 
O(nn), where n is the number of nodes in the structure. Many heuristic approaches are applied in 
searching for an optimal structure from the given data. However, these heuristic methods may find 
many local sub-optimal structures with no guarantee of finding a global optimal structure. To 
achieve high accuracy BNs, especially with respect to edge direction, large sample sizes or “big 
data” are required12,13. With the number of large datasets for which BN reconstruction algorithms 
could be applied growing at an exponential rate, the application of BN algorithms face a similar 
trend regarding the number of networks being constructed to derive data-driven hypotheses. 
However, assessing the reproducibility of BNs in the context of gene regulatory networks has not 
kept pace, with there being no studies to our knowledge systematically exploring this issue. Thus, 
we thought it crucial to test the conservation and reproducibility of BN constructions as a way to 
gain confidence in the methods currently used in the field. While significant work has been carried 
out to assess the construction methods that perform best across different types of biological data14–

16, these types of comparisons do not explicitly address the reproducibility of any given BN. 
Perhaps among the gravest concerns in the field of biomedical research today is the lack of 

reproducibility. It is estimated that over $28 billion of research money, or roughly 50% of life-
science research, is not reproducible17. The scientific method is rooted with principles of 
reproducibility giving credence to hypotheses only if they can withstand the scrutiny of many 
groups trying to reproduce them. In the current era of big data biology, the number of hypotheses 
generated in even a single publication can number in the hundreds (e.g., GWAS study on a 
complex trait). These hypotheses are difficult to validate across multiple groups, as the number of 
groups to rigorously pursue every hypothesis generated is limited. While intuition may argue that 
the large sample sizes and the robustness of the models may inherently address issues relating to 
reproducibility compared to traditional biological studies, recent claims indicate that about one 
quarter (25.5%) of studies not reproduced are due to data-analysis and reporting issues17. We 
therefore focused our study on the reproducibility of individual directed edges and key driver 
nodes of BNs, as these are generally considered targets for biological validation studies.  

2.  Study design 

Two different gene expression datasets and a simulated dataset were used in this reproducibility 
study. The first gene expression dataset was obtained from the GTEx Consortium where RNA was 
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extracted from multiple tissues from deceased, healthy 
individuals. Here, we used data from whole blood, which 
had a large sample size (N = 379)18,19. The second gene 
expression dataset was comprised of atherosclerosis patients 
undergoing Coronary Artery Bypass Grafting (CABG) 
surgery, at which time multiple tissues were extracted and 
RNA sequenced from the Stockholm-Tartu Atherosclerosis 
Reverse Network Engineering Team (STARNET)20 We 
chose to utilize the liver tissue (N=545), which contained 
the strongest eQTL signal20, a prior in the BN 
reconstruction algorithm we employed that helps reduce the 
search space and resolve true causal relationships. By 
leveraging these real-world datasets, we are able to capture 
the complex correlation structures that derive from gene 
expression data measured in populations. RNA levels are high fidelity sensors of the state of the 
system and of technical noise, where the many different variance components (technical, genetic, 
micro- and macro-environment) form a complex covariance structure that is difficult to reproduce 
in simulated datasets. In addition, these two biological datasets represent not only two distinct 
tissues, but also reflect different states of disease and wellness (Table 1).  

To assess and compare networks in a thorough manner, we restricted attention to a subset of 
genes (N=465) that have been previously identified as highly informative for inflammatory 
diseases and associated with immune and inflammation response2,5,8,21–24. By selecting this set of 
genes to use in the analysis, we reduced the computational time and cost required to generate each 
network.  

In order to assess the reproducibility of BNs, we subsampled from the complete datasets to 
generate datasets reflecting different sample sizes under identical conditions. Towards this end, we 
subsampled the data in three ways: 1) a subsampling of 50% of the samples (referred to as the 
subsampled-50 networks), 2) a subsampling of 80% of the samples (referred to as the subsampled-
80 networks), and 3) a subsampling of 90% of the samples (referred to as the subsampled-90 
networks) (Fig 1). All subsampling divisions were replicated five times. The first scenario was 
intended to mimic the situation in which an initial study producing a BN is followed by an 

equivalent replication study producing a confirmatory BN, 
while the second and third scenarios represent incremental data 
releases, as happens in the context of large studies where data 
freezes are employed. The same process was used with the 
simulated dataset, however, here we were able to control the 
power and increased our sample size (N=1000) to the point of 
reaching near perfect reproducibility. For the simulated 
datasets, we subsampled at 50%, 80%, and 90%, with five 
replicates generated at each level. We also generated the 
simulated data at a subsampling of 10% to represent how data 

with limited noise is reproduced at a small sample size (N=100).  
For all datasets, networks were generated using the Reconstructing Integrative Molecular 

Bayesian Networks (RIMBANet) algorithm25,26  as the output has been validated extensively (see 
methods). When available, eQTL data as well as previous information regarding the causal 

Figure 1. Schematic of the study 
design. 

Complete

90%80% 50%

100%

Table 1. Overview of datasets used. This 
table provides details on the two datasets 
used in this study. 

GTEx STARNET 
Tissue Whole Blood Liver 

Patient 
Status 

Deceased - 
Healthy 

Living -  
Undergoing 

CABG 
# Samples 379 545 
# Genes 
Used 455 385 

Priors cis eQTLs 
cis eQTLs + 

 Causal Inference 
Priors 
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association between several genes (nodes) in the network were used as structural priors5,9,20,25,26. 
With BNs, the predominant method for assessing confidence of an edge is based on the posterior 
probability associated with that edge. This is computed either directly from the network model or 
is empirically estimated by generating a distribution of models and computing summary statistics 
across the networks comprising the distribution. We utilized the latter scenario where the posterior 
probability is approximated by computing the number of networks that contain a particular edge 
and dividing this number by the total number of networks generated. In this study, we considered 
nine different posterior probability thresholds (0.1 to 0.9 in 0.1 increments) to explore the 
reproducibility of edges across different confidence levels. Thus, for each dataset, we generated 
nine networks for the complete and each of the subsampled datasets. 

3.  Results 

3.1.  Exploring edge-to-edge reproducibility  

Comparing BN’s is a multifaceted task in itself as they are complex representations of high-
dimensional data. To provide a more intuitive comparison consistent with how BNs are used in 
practice in the life sciences and biomedical research spaces, we compared networks in two ways: 
1) by evaluating the confidence levels of individual edges and 2) by evaluating the higher-level 
topology of the network.  

Given the stochastic search employed in the BN construction process, we first compared five 
networks generated on the complete dataset (includes all samples) for each cohort to characterize 
the degree of variability. As depicted in Table 2, at a posterior probability of 0.1, both datasets 
have a mean edge overlap of 99%. While the edges with high confidence (at a posterior 
probability >0.9) are found on average 97% in other replicates in GTEx and 96% in STARNET, 
we observe that 100% of these edges are present in other replicates when the posterior probability 
is > 0.5.  

As the stochasticity of the BN reconstruction process does not seem to affect the 
reproducibility of the BNs, we next calculated the Jaccard index with respect to all network pairs 
within a given subsampled set (Table 3). The Jaccard index is a measure commonly used when 
comparing sets, and ranges from 0, for completely unrelated sets, to 1, for highly similar sets. In 
our case, the edge counts between replicates are comparable when the number of samples and 
posterior probability are the same (see standard deviations in Table 4), thus the maximum Jaccard 
index should be close to 1 (complete reproducibility). The Jaccard index had a mean of 0.27 when 
comparing edges from the subsampled-50 networks across the different posterior probability 
thresholds within the replicates or to the complete network within each cohort (Table 3). 

Table 2: Overlap of five replications of complete BN. For each posterior probability, all combinations of replicates 
were looked at to calculate the percentage overlap divided by the total edges of each replicate. Here we report the 
mean percentage and standard deviation. 
Posterior 
Probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GTEx 99% 99% 99% 99% 99% 99% 99% 98% 97%
(± 0.008) (± 0.008) (± 0.007) (± 0.008) (± 0.008) (± 0.006) (± 0.004) (± 0.01) (± 0.02)

STARNET
99% 99% 99% 99% 98% 99% 99% 98% 96%

(± 0.01) (± 0.01) (± 0.01) (± 0.01) (± 0.01) (± 0.02) (± 0.01) (± 0.02) (± 0.02)
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Interestingly, the Jaccard index achieved values close to 0.5 for edges from the subsampled-90 
networks (Table 3), which is very different from the values we saw when comparing the replicates 
of the complete networks (mean >0.95 in both at a posterior probability >0.1). These results 
suggest that even with 90% overlap of samples, the edge-set overlap can still be different, 
highlighting significant reproducibility issues even among highly comparable sample sets. The 
data suggests that statistical power in resolving network relationships may be primarily 
responsible for the lower than expected reproducibility, an issue that can be experimentally 
addressed by increasing the sample size.  

The number of edges in a BN 
is at least partially a function of 
power, given that as sample size 
increases, an increase in the 
number of edges in the BN is 
observed (Table 4). Thus, a more 
applicable measure for assessing 
reproducibility among networks 
is by looking at the number of 
overlapping edges between a 
subsampled network and the 
complete network, divided by 
the number of edges in the 
subsampled network. This 
measure relates to precision or 
positive predictive value, given 
here we accepted as truth the 
complete network (in the context 
of the simulated data, true and 

false positives are known with certainty). The flip side of precision is recall, or sensitivity, defined 
by dividing the overlap number of edges by the total number of edges in the complete network  
(Fig 2A).  

For both GTEx and STARNET, when comparing the subsampled and the complete network at 
the same posterior probability cutoff, we found that on average 44% of GTEx and 38% 

!

Table 4. Number of edges in each network. We calculated the number of edges present in each subsampled network. 
Displayed are the mean and standard deviation for number of edges at select posterior probabilities.

GTEx STARNET Simulation
Sub-

sampling 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

10% --- --- --- --- --- --- 209 192 47.4
(± 4.637) (± 3.391)  (± 5.030)

50% 297.8 257.2 89 291.4 262.4 113.6 345.2 329 149.8
 (± 8.349) (± 3.271)  (± 9.055) (± 5.683) (± 4.336) (± 11.393) (± 3.493) (± 2.550) (± 7.396)

80% 390.8 343.6 136.6 373.2 329.8 135 380.6 368.6 149
(± 5.586) (± 5.459) (± 5.459) (± 8.349) (± 2.775) (± 8.337) (± 4.722) (± 1.342) (± 4.000)

90% 414.4 365 135 395 350.6 144.6 385.2 373.8 185.4
(± 6.465) (± 5.099) (± 4.950) (± 6.205) (± 3.647) (± 3.782) (± 1.095) (± 3.493) (± 8.081)

Complete 441.6 388.4 138.2 396.8 364.2 151 393.2 379.8 189.8
(± 0.894) (± 1.517) (± 2.280) (± 4.382) (± 4.025) (± 1.225) (± 0.447) (± 0.447) (± 0.837)

Table 3. Jaccard index values. We calculated the Jaccard index 
(intersection divided by union) for the edges found in the networks at each 
posterior probability threshold. We compared the subsampling networks to 
their respective replicates and to the complete BN at the same posterior 
probability threshold. Standard deviation ranges from 0.01-0.04 in all cases. 

GTEx STARNET 
Sub-

sampling 
Posterior 

Probability 
To Other 
Replicate 

To 
Complete 

To Other 
Replicate To Complete 

50% 
0.1 0.23 0.26 0.22 0.27 
0.5 0.23 0.26 0.21 0.27 
0.9 0.20 0.20 0.16 0.19 

80% 
0.1 0.34 0.40 0.37 0.43 
0.5 0.34 0.40 0.36 0.43 
0.9 0.29 0.33 0.26 0.35 

90% 
0.1 0.44 0.51 0.43 0.52 
0.5 0.43 0.53 0.43 0.52 
0.9 0.33 0.39 0.36 0.42 

Complete 
0.1 0.98 

--- 
0.97 

--- 0.5 0.98 0.97 
0.9 0.95 0.93 
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Figure 2. Edge reproducibility rate. In panel A, we compared the number of edges present in the complete 
BN to the subsampling network at the same posterior probability (top half) and by fixing the threshold for the 
subsampling networks but allowing any edge for the complete BN (posterior probability >0.1) as seen in the 
bottom half. In panel B, we show the results from the GTEx data as we allow for edges to be considered repro-
duced if there is a connection in the complete BN between those two nodes at a path length up to 10. In panel 
C, we illustrate the percision of edges depending on if the nodes are in the same correlation clique or not. For 
all panels coloring depicts the subsampling networks and the complete BN. 
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STARNETs’ most confident edges (posterior probability >0.9) in the subsampled-50 networks 
were reproduced, and this increases to 58% in GTEx and 61% in STARNET for the subsampled-
90 networks (Fig 2A). We observed a trend of the precision increasing as the posterior probability 
increased to 0.4-0.5, but then observed a decrease as the confidence in the edges increased (Fig 
2A). This is most likely due to a decrease in the number of edges in the BNs as the posterior 
probability increases (Table 4). We further evaluated the precision by relaxing the posterior 
probability for edges in the complete network to >0.1 (Fig 2A). In this case, on average 61% in 
GTEx and 57% in STARNET of the most confident edges (posterior probability >0.9) were 
reproduced in the subsampled-50 networks whereas for the subsampled-90 networks 76% in 
GTEx and 75% in STARNET were reproduced (Fig 2A).  

The above definitions of precision at the edge level require the presence of the exact same 
edge, whereas causal relationships in one network may also be reflected in a different network via 
intermediary nodes. For example, in one network an edge might be present from A à B (path 
length=1) and in a second network it may appear as AàCàB, where there is a path from A to B, 
but via C (path length=2). We hypothesized that this may explain some portion of the edges that 
failed to reproduce. To test this, we further evaluated if two connected nodes from the subsampled 
networks were connected in the complete network within a path length of ten. For the GTEx BNs, 
we saw that in the subsampled-50 networks, the precision increased to an average rate of 67% (up 
from 61%) at a path length of five for the most confident edges (posterior probability >0.9), while 
in the subsampled-90 networks, the precision increased to an average rate of 81% (up from 76%) 
at a path length of three (similar results were seen for STARNET as well). The precision increased 
with both the path length and sample size (Fig 2B). It should be noted that after a path length of 3, 
the precision plateaus, providing confidence that increasing the path length further would not have 
added any new information in the context of our networks.  

BNs reflect complex correlation structures or rich substructures in which the expectancy of 
certain nodes to be more or less connected may be contained within the network. Higher-order 
correlation structures have been informative for the underlying biology from large datasets13,27. To 
explore whether the correlation structure of the data affected edge reproducibility, we examined 
whether genes in clique structures (groups of highly interconnected genes) were more or less 
likely to be reproduced, compared to the average precision of the network. For each data set, we 
computed the correlation matrix and took the top 1%, 5% and 10% most correlated values to build 
an undirected, correlation-based network. We focused on the most stringent correlation criteria to 
define edges, which was the top 1%. From these networks we were able to call all clique 
communities using the program COS (https://sourceforge.net/projects/cosparallel/). This enabled 
us to determine if both nodes of an edge were included in the same clique. We found that the 
precision was further improved in edges whose nodes were found in the same clique (Fig 2C). In 
the STARNET subsampled-90 networks, the most confident edges (posterior probability >0.9) 
present in a clique obtained using the top 1% correlated values had a mean precision measure of 
85% compared to 71% for edges in which both nodes were not found in the same clique (whereas 
all edges had a mean precision of 75%). In the subsampled-50 networks, the edges in a clique had 
a precision rate of 65% versus 53% for edges comprised of nodes that did not both fall within the 
same clique  (whereas all edges had a mean precision of 57%). The GTEx dataset provided similar 
results, showing that we were able to improve the precision of edges by incorporating correlation 
clique information. 
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Precision and recall trends with the simulated 
datasets were similar to those observed in the biological 
datasets.  This confirmed not only that our simulated 
data was reflective of the biological datasets, but also 
that by increasing sample size we could address the 
edge-level precision and improve recall (Fig 3). Thus, 
as larger datasets are generated, the issue of 
reproducibility of networks should be addressed.  

3.2.  On the reproducibility of key driver nodes 

Another important aspect of BNs is their higher order 
topology. Not all nodes in a BN are equivalent, but 
rather some are more connected having a substantial 
causal impact on many more nodes in the network 
(referred to here as key driver nodes, or KD nodes). 
One way to assess reproducibility of these types of 
important topological features is by examining the 
reproducibility of KDs. KD nodes are important and 
commonly inferred from networks as they help 
elucidate the regulatory states of complex systems, and 
are crucial from a diagnostic and drug discovery 
standpoint2,5,28. Thus, we decided to assess the 

reproducibility of the detection of these types of nodes. 
We calculated the KDs for each network built at each posterior probability threshold and 

assessed the precision of the KDs in the same manner applied to the edges (see methods). First, we 
evaluated the overlap of KDs between the complete and subsampled networks when they were 
built at the same fixed posterior probability. To see if a difference between the ranking of KDs and 
their precision could be measured, we defined the top KDs as being in the 97.5 – 100 percentile 
and bottom KDs as being in the 95 – 97.5 percentile. When evaluating the KDs of the network 
built from the most confident edges (posterior probability >0.9), we found that the top KDs from 
the subsampled-90 networks were reproduced at an average rate of only 49% while the bottom 
KDs were reproduced at an average rate of 54% in GTEx. In STARNET, the top KDs were 
reproduced at an average rate of 85% while the bottom KDs were reproduced at an average rate of 
43% (Fig 4). To see if we could improve the reproducibility rate, we relaxed the threshold for the 
complete BN and allowed for the KD to be present at any posterior probability (similar to what 
was done with the edges). This drastically improved the reproducibility of the KDs. In GTEx, the 
top KDs from the subsampled-90 networks built on the most confident edges (posterior probability 
>0.9) were reproduced at an average rate of 87% while the bottom KDs were reproduced at an 
average rate of 77%. A similar evaluation of the STARNET results showed the top KDs were 
reproduced on average 93%, while the bottom KDs were reproduced at 60%. We saw in the 
subsampled-50 networks, at a posterior probability >0.5 that while the edge-overlap was on 
average 54% in GTEx and 53% in STARNET, the KD overlap was 58% in GTEx and 66% in 
STARNET. In the subsampled-90 networks, where the edge-overlap was on average 72% in 
GTEx and 71% in STARNET, the KD overlap increased to 76% in GTEx and 87% in STARNET. 
The KDs performed as well if not better than the edges, indicating that the KDs of BNs are more 

Figure 3. Simulation data precision and 
recall. We simulated a BN for 300 nodes, 1000 
samples with discrete data and looked at the 
precision and recall for the subsampling at 
10%, 50%, 80%, 90%, and 100%. The color 
scale represents the posterior probability 
threshold. We show the mean and standard 
deviation for the five replicates.  
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conserved than edges. 
Since the networks with 
fewer samples have 
fewer edges present, it 
could help explain why 
we see such low 
precision in the 
subsampled-50 networks. 
These results further 
support that a larger 
sample size, or increased 
power, will lead to more 
reproducible KDs.  

As the KDs take into 
account the shortest path 
to reach all nodes, we 
thought to additionally 
assess nodes with the 
highest number of first-
degree downstream 
targets, hub nodes. These 
nodes have the most 
local and direct impact 
on other nodes. Here we 
took the top 10% of 
nodes based on their total number of out edges and applied the same analysis pipeline defined 
above for KDs. We found that when the posterior probability >0.1 for the complete network, the 

hub nodes were more reproduced in the 
subsampled networks, as can be seen 
by the subsampled-90 networks 
reaching an average rate of 78% in 
GTEx and 83% in STARNET at a 
posterior probability threshold of 0.5 
(Fig 5). However, if we hold the 
posterior probabilities constant in both 
the complete and subsampled networks, 
the precision fluctuates in the GTEx 
dataset but appears to perform better in 
the STARNET dataset. This could be 
explained by the larger sample size of 
the STARNET dataset.  

4.  Discussion  

In this study on the reproducibility of 
BNs in the context of regulatory gene 

Figure 4. Precision of key driver (KDs). Precision is the % KDs of the 
subsampling network present in the complete BN (at either the same posterior 
probability threshold or at any). Left panel shows all KDs; Middle panel shows Top 
KDs (top 97.5% based on the weighted number of connections, see methods); Right 
panel, shows bottom KDs (95 – 97.5%). Mean and standard deviation for the five 
replicates are displayed, and color depicts subsampling.  

Figure  5.  Hub nodes precision. We define hub nodes as nodes 
in the 90th percentile based on the number of first degree out 
edges. The top half illustrates the precision when the posterior 
probability is the same in both the subsampling and the complete 
BN. The bottom half illustrates the precision when the posterior 
probability in the subsampling network is fixed but the hub node 
in the complete BN can be at any posterior probability.  The mean 
and standard deviation for the five replicates is displayed and color 
depicts subsampling. 
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networks, while we found a high degree of reproducibility at the edge and key driver node levels, 
we also noted that a large proportion of edges and key driver nodes were not reproduced. Given 
the rate at which edges and key driver nodes did not reproduce in networks constructed from a 
moderate number of samples, caution should be exercised when interpreting specific features of a 
network. Validating hypotheses generated from networks is critical to ensure the accuracy of 
network predictions. However, we also observed that the lack of reproducibility might be 
attributed to power issues, which can be straightforwardly addressed by increasing sample sizes 
for network reconstructions. As obtaining large sample size is difficult and expensive, our results 
stress the need to assess the reproducibility of methods being deployed in the field. We must be 
aware of limitations so we can strive to improve them.  

While we restricted attention to a coherent subset of several hundred genes to contain 
computational costs, we have observed similar trends in BNs built on 10,000 or more genes using 
the GTEx whole blood samples, suggesting that the subset of genes used was a good proxy for 
how larger networks of genes would behave. Ideally, we would have run our analysis on a 
completely validated BN from a biological dataset. However, at the time of this study, such a 
validated network was not available. Instead, we complemented our study of networks constructed 
from gene expression datasets with examination of simulated datasets containing discretized data 
for a comparable number of genes.  

We used structural priors to generate the BNs, which could bias the structure of the resulting 
networks. However, we saw a decrease in precision and recall when priors were not used, further 
demonstrating the importance of high-confidence priors. We chose to include priors as this is 
typically done in practice today and their use has shown to increase accuracy of networks based on 
smaller sample sizes26. 

The reproducibility of KDs was of particular interest, given the role they play in current 
biological investigations of complex systems. KDs represent central information flow points in the 
network that are identified in disease studies as potential targets of therapeutic intervention or as 
features that may be critical as biomarkers of disease. We observed that KDs were more 
reproduced than edges. This suggests that while the edges may be less conserved due to nonlinear 
interactions or stochasticity, the overall structure of the network may still be well conserved, 
explaining the increased confidence in key driver node predictions. In particular, the top KDs, 
which are most connected and predicted to significantly impact network states, were reproduced at 
exceptionally high rates.  

As biomedical and life sciences research gravitates toward network-based constructs, issues of 
reproducibility will come front and center. It is critical to characterize network reconstruction 
methods from the standpoint of what is required to lead to reproducible structures that in turn, lead 
to high-confidence hypotheses.  Our analysis shows that well-powered Bayesian networks are 
highly reproducible. Since high power is not always possible to achieve because samples are 
scarce and assays are expensive, our results provide guidance on interpreting and using Bayesian 
networks. In cases of diminished power, it is critical to realize that key drivers, in particular the 
strongest key drivers, and hub nodes are more robustly reproduced than individual edges. 

5.  Methods 

Bayesian Network Construction: RIMBANet was used to construct all Bayesian Networks9,12,26. 
Continuous data was used for calculating partial priors, which are then used as priors in the 
network construction. Additional priors included genes that are cis eQTLs and the results from the 
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causal inference test of cis gene à trans gene (for STARNET only)20,29. For the eQTL priors, if a 
gene also has a strong eQTL associated with it in cis, such a gene can be considered as a parent 
node, given the genotype cannot be the effect of a gene expression change. The data was 
discretized into 3 states for each gene: high expression levels, low expression levels and 
unexpressed. This is done by first normalizing the values for each gene to ensure a normal 
distribution. Then, k-means clustering (k=3) is used with the option of dropping groups should 
there not be enough members to fill it to assign the values for each sample. In a case where there 
are only two clusters they would be classified as high and low30. For the sake of quicker run times, 
when looking for the parents of each gene, the other genes were sorted by their mutual information 
and only the top 80% were considered as candidates. Also, the  maximum number of parent nodes 
that were allowed for any given node was set to 3.  After running successfully 1,000 
reconstructions, the networks were pooled together. Finally, because a BN is a directed acyclic 
graph (DAG) by definition, the consensus network was obtained by searching for the shortest 
cycle and then the edge with the weakest weight (the smallest number of times it occurs in 1,000 
reconstructions) was removed. This process was repeated until no cycles were present and the 
resulting network was a DAG. 
Generation of Simulated Dataset: To generate the synthetic true network, we used the SynTRen 
software v1.231. We extracted a subnetwork with 300 nodes from the background source network 
“DAG1_clean.sif” with default settings. We limited the node selection to 300 nodes to reduce the 
computational time required to generate all of the networks and to mimic the size of the biological 
datasets used in this study. Next, to generate the synthetic discretized data from the known 
network structure, we utilized Bayes Net Toolbox (BNT) for Matlab 
[https://code.google.com/archive/p/bnt/]. The conditional probability was customized so that we 
could discretize the data into three bins, similar to RIMBAnet. Given the configuration of parent 
node, the child nodes were skewed towards one of the three discretized states with a probability 
between 0.8 and 0.9, therefore, ensuring assignment to a given bin with high confidence. 
Key Driver Node Detection: Key driver nodes (KDs) were detected by calculating the shortest 
downstream path length between each pair of nodes in the network. For each candidate key driver 
node, we took the inverse of path length between the candidate key driver node and every other 
node in the network. We then summed the inverse path lengths to obtain a final score per node. 
Based on this calculation, we defined nodes in the 95th percentile as KDs5. We define top KDs as 
nodes in the 97.5 - 100 percentile and bottom KDs as nodes in the 95 - 97.5 percentile. 
Code and data can be found at https://github.com/divara01/PSB2017_ReproducibilityOfBNs/ and 
http://research.mssm.edu/integrative-network-biology/Software.html  
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Repurposing existing drugs for new uses has attracted considerable attention over the past years.
To identify potential candidates that could be repositioned for a new indication, many studies make
use of chemical, target, and side effect similarity between drugs to train classifiers. Despite promising
prediction accuracies of these supervised computational models, their use in practice, such as for rare
diseases, is hindered by the assumption that there are already known and similar drugs for a given
condition of interest. In this study, using publicly available data sets, we question the prediction
accuracies of supervised approaches based on drug similarity when the drugs in the training and the
test set are completely disjoint. We first build a Python platform to generate reproducible similarity-
based drug repurposing models. Next, we show that, while a simple chemical, target, and side effect
similarity based machine learning method can achieve good performance on the benchmark data set,
the prediction performance drops sharply when the drugs in the folds of the cross validation are not
overlapping and the similarity information within the training and test sets are used independently.
These intriguing results suggest revisiting the assumptions underlying the validation scenarios of
similarity-based methods and underline the need for unsupervised approaches to identify novel drug
uses inside the unexplored pharmacological space. We make the digital notebook containing the
Python code to replicate our analysis that involves the drug repurposing platform based on machine
learning models and the proposed disjoint cross fold generation method freely available at github.
com/emreg00/repurpose.

Keywords: Drug repurposing; Machine learning; Drug similarity; Stratified disjoint cross validation.

1. Introduction

Computational drug repurposing has gained popularity over the past decade, offering a pos-
sibility to counteract the increasing costs associated with the conventional drug development
pipelines. Several studies have focused on training similarity-based predictors (also known as
knowledge-based or guilt-by-association-based methods) using drug chemical, target and side
effect similarity between drugs (see Refs. 1–3 for recent reviews). These studies often combine
various features including but not limited to chemical 2D fingerprint similarity, overlap or in-
teraction network closeness of drug targets and correlation between drug side effects and build
a machine learning model based on different algorithms, such as support vector machines, ran-
dom forests and logistic regression classifiers.4–11 The proposed models are then compared in
a cross validation setting, in which a portion of the known drug-disease associations are hid-
den during training and used for the validation afterwards. The areas under reciver operating
characteristic (ROC) curves in the cross validation analysis reported for these models range
between 75-95%, suggesting that some of these models can accurately identify novel drug-
disease associations. Nevertheless, in reality, the applicability of these methods for discovery
of novel drug-disease associations has been limited due to “the reliance on data existing nearby
in pharmacological space” as highlighted by Hodos et al.2 Moreover, Vilar and colleagues alert
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the community about the potential “upstream bias introduced with the information provided
in the construction of the similarity measurement” in similarity-based predictors.12 Yet, since
many studies do not provide the data and code used to build the models for repurposing, it
is often cumbersome to validate, reproduce and reuse the underlying methodology.

In this study, first, we provide a Python-based platform for reproducible similarity-based
drug repurposing and then seek to quantify the effect of the assumptions on the existing data
nearby in pharmacological space. Following similar works evaluating various cross validation
approaches for drug-target and protein-protein interaction prediction,13,14 we adopt a stratified
disjoint cross validation strategy for splitting drug-disease pairs, where none of the drugs in
the training set appear in the test set. We show that, although a simple logistic regression
classifier can achieve good performance on the data set under a conventional cross validation
setting, it performs poorly when it faces with drugs it has never seen before.

Overall, our results suggest that the prediction accuracies reported by existing supervised
methods are optimistic, failing to represent what one would expect in a real-world setting.
We believe that the platform provided in this study could be useful for prospective studies to
perform benchmarking in a unified manner.

2. Results

2.1. A Python platform for reproducible similarity-based drug repurposing

To incentivize reproducibility in computational drug repurposing research, we provide a
Python-based platforma encapsulating several machine learning algorithms available in Python
Scikit-learn package15 available both as stand alone code and Jupyter notebook. The platform
consists of methods to (i) parse a publicly available data set containing drug chemical sub-
strucuture, target, side effect information, (ii) calculate drug similarity using a combination
of the three features provided in the data set, (iii) balance data such that the drug-disease
pairs have the same proportion of positive and negative instances, (iv) apply cross validation,
and (v) build classifiers (Fig. 1).

The platform facilitates access to several machine learning algorithms and cross validation
utilities available in Scikit-learn. By changing the configuration values, the user can build a
classifier using default parameters based on logistic regression, k-nearest neighbor classifier,
support vector machine, random forest, and gradient boosting classifier. We note, however,
these methods are provided as is and the user still has to take the necessary steps for parameter
optimization for these methods. The user can also adjust the proportion of the positive and
negative pairs within each fold by changing the parameter file. Furthermore, the platform is
easily customizable, allowing the user to define her own data balancing, cross validation and
classifier building methods.

2.2. Evaluating similarity-based drug repurposing via cross validation

Next, we show the utility of the platform by building a logistic regression based drug repur-
posing classifier that incorporates drug chemical, target, and side effect similarity, a simplified

aAvailable at github.com/emreg00/repurpose
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Python-based interface for
    - data parsing
    - data balancing
    - similarity calculation
    - cross validation (CV)
    - building classifiers 

Benchmark data
- drug similarity 
             matrices
- drug indications

Parameters
- classifier
- proportion of +/-
- # of CV folds
- # of repetitions

Model accuracy
 - AUROC
 - AUPRC

. . .

(powered by NumPy 
and Scikit-learn)

Fig. 1. Overview of the reproducible similarity-based repurposing platform.

version of the classifier suggested in a seminal paper by Gottlieb and colleagues.4 Our model
uses three drug-drug similarity based features compared to the combination of five drug-drug
similarity (similarity of targets in terms of gene ontology functions and protein interaction
network closeness in addition to the drug chemical, target, and side effect similarity) and two
disease-disease similarity-based features (ten in total) proposed by Gottlieb and colleagues.
We also incorporate the k-nearest-neighbor approach used by Zhang and coworkers,7 who
recently, built a classifier based on similarity to the 20 most similar drugs and compared it
to Gottlieb and colleagues. We build our model on the same data setb used by Zhang and
coworkers. We calculate the Pearson correlation between drugs using each of the three features
mentioned above. For each feature, we assign a score corresponding to the likelihood of a given
drug to be indicated for a disease based on the similarity scores and labels of the most similar
20 drugs. These scores are then combined in a logistic regression model and coefficients of the
model is derived using a cross validation scheme (see Methods).

We test the prediction accuracy of the classifier under a ten fold cross validation scheme,
where we split the available data set into ten groups, leave one group for testing the accuracy
of the classifier and use the remaining groups to train the classifier. We repeat the cross
validation analysis ten times to get estimates on the mean and standard deviation of the areas
under ROC curves (AUC) and report these values in Table 1. We find that the AUC of the
classifier is 84%, comparable to 87% reported by Zhang and coworkers. The slight discrepancy
between the values can be explained by (i) the original study using imputation on the feature
set and/or (ii) the authors reporting the AUC value from a single run instead of the mean

bMade publicly available by the Zhang et al. at http://astro.temple.edu/~tua87106/drugreposition.

html
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over multiple cross validation runs (due to the random subsampling of the data, the AUC
values in consequent runs might vary slightly).

Table 1. Areas under ROC and Precision-Recall curves (AUC and AUPRC) under vari-
ous validation schemes averaged over ten runs of ten-fold cross validation (S.d.: Standard
deviation).

Disjoint folds Mean AUC (%) S.d. AUC (%) Mean AUPRC (%) S.d. AUPRC (%)

No 84.1 0.3 83.7 0.3
Yes 65.6 0.5 62.8 0.5

2.3. Revisiting cross validation using disjoint folds

Existing studies often assume that the drugs that are in the test set will also appear in the
training set, a rather counter-intuitive assumption as, in practice, one is often interested in
predicting truly novel drug-disease associations (i.e. for drugs that have no known indications
previously). We challenge this assumption by evaluating the effect of having training and test
sets in which none of the drugs in one overlaps with the drugs in the other. Accordingly,
we implement a disjoint cross validation fold generation method that ensures that the drug-
disease pairs are split such that none of the drugs in the training set appear in the test set
(Fig. 2, see Methods for details).
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Fig. 2. Schematic representation of similarity-based repurposing and cross validation strategy. On a toy data
set consisting of four compounds c1, c2, c3, c4 and two phenotypes p1, p2, the similarity-based drug repurposing
approach is illustrated. c1 and c2 are indicated for p1 and p2, respectively. For instance, c3 can be inferred to
be useful for p1 due to its similarity to c1. Conventionally, k-fold cross validation randomly splits the data into
k groups preserving the overall proportion of the labels in the data. We propose a disjoint cross validation
scheme for paired data, such as drug-disease pairs in drug repurposing studies, that does not only preserve
the proportion of the labels but also ensures that none of the drugs from the pairs in one fold are in the other
folds. We demonstrate this on the toy data for k = 2 (two-fold cross validation).

In fact, several studies aim to investigate the prediction performance when the drugs in
the test set are dissimilar to those in the training data set. Nonetheless, they usually do not
guarantee that the trained models are unbiased with respect to unseen data. For instance,
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Luo et al.11 use an independent set of drug-disease associations, yet, 95% of the drugs in
the independent set are also in the original data set (109 out of 115). On the other hand,
Gottlieb et al.4 create the folds such that 10% of the drugs are hidden instead of 10% of the
drug-disease pairs, but they do not ensure that the drugs used to train the model are disjoint
from the drugs in the test set.
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Fig. 3. ROC curves for each fold with and without disjoint cross validation (in a single run).

2.4. Effect of the cross validation strategy on classifier performance

We use the drug-wise disjoint cross validation strategy to study its effect on the classifier
performance. We observe that the AUC drops significantly from 84% to 66% (P = 6.9 ×
10−23, assessed by two-sided t-test) when the classifier is trained with drug-disease associations
coming from the drugs that do not exist in the test data set (Table 1).

We suspect that this is due to the limited information within the test set from which the
similarity-based drug-disease associations are calculated (using 20 most similar drugs) before
they are fed to the classifier. To verify this, we repeat the analysis using two-fold, five-fold
and 20-fold cross validation and show that the number of folds does indeed have an effect
on the classifier performance (Table 2). In the two-fold disjoint cross validation scheme, the
classifier accuracy is almost as good as the ten-fold cross validation accuracy without using
disjoint folds, probably due to the number of drug-disease pairs within the test fold being
large enough to capture the similarity relationships between drugs. Conversely, in the 20-fold
disjoint cross validation scheme, the AUC drops to 59%, emphasizing the effect of the test set
size due to the increased number of folds.

We next turn to the ROC curve of each cross validation fold under the two different
strategies to examine the consistency among different folds (Fig. 3). We recognize that the
variance between the ROC curves is higher when the folds are drug-wise disjoint compared to
when drugs are shared among folds. As a result, the standard deviation over the corresponding
AUC values is larger in the drug-wise disjoint case (6.0% in disjoint vs 1.5% in non-disjoint),
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Table 2. Areas under ROC and Precision-Recall curves under disjoint k-fold cross validation
scheme for k = 2, 5, 10 and 20 averaged over ten runs.

Number of folds Mean AUC (%) S.d. AUC (%) Mean AUPRC (%) S.d. AUPRC (%)

2 80.7 0.3 79.3 0.3
5 73.6 0.7 71.9 0.7
10 65.6 0.5 62.8 0.5
20 59.1 0.6 57.0 0.3

suggesting that the predictions are less robust against the partitioning of the drugs in disjoint
cross validation.

Compiled mainly via text mining, the drug side effect information in SIDER is prone to
a high number of false positives. Given the reduced number of drugs with high similarity, the
effect of false positive associations might be more pronounced in the disjoint cross validation
than the non-disjoint scenario. Thus, to inspect whether the observed decline in the AUC can
be attributed to one of the features used in the classifier –such as side effect based similarity–,
we check the contribution of each feature under the disjoint cross validation scheme (Fig.
4). We confirm that this is not the case. In fact, the feature based on side effect similarity is
slightly more predictive than the rest (AUC=65% for side effect similarity vs 62% and 61% for
chemical and target similarity, respectively), corroborating the promise of side effect profiles
to describe similarities between drugs,4,7,16,17 despite potential noise in the annotations.
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Fig. 4. Prediction accuracy (AUC) when each similarity feature used individually in disjoint cross validation.
Error bars show standard deviation of AUC over ten runs of ten-fold cross validation.

2.5. When similarity does not suffice

The drop in the AUC confirms that many drug-disease associations are missed when the drugs
in the test set have not been seen while training the classifier. For instance, the gold standard
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data contains several lipid lowering agents indicated for hypercholesterolemia: cholesterol ab-
sorption inhibitors (ezetimibe); fibrates (clofibrate, fenofibrate, gemfibrozil); and statins (ator-
vastatin, fluvastatin, lovastatin, pravastatin, simvastatin). We observe that most of these drugs
can be predicted for hypercholesterolemia due to their chemical, target, and side effect based
similarity to the other drugs within the same family when drugs are allowed to overlap across
cross validation folds. However, when the classifier is trained using disjoint cross validation,
most of these drug-disease associations can not be predicted correctly. Likewise, the drugs used
for juvenile rheumatoid arthritis (diclofenac, ibuprofen, methotrexate, naproxen, oxaprozin,
sulfasalazine, toletin) fail to manifest similarity to other drugs in the cross validation fold,
hence missed by the classifier. We also note a similar trend for acute myeloid leukemia drugs
(cyclophosphamide, daunorubicin, etoposide, idarubicin, mitoxantrone). In Table 3, we high-
light the similarity-based scores of the drug to the other drugs and the probability calculated
by the logistic regression classifier in a cross validation fold for several of these drug-disease
associations.

Table 3. Similarity scores and logistic regression based probabilities for several known drug-disease associa-
tions missed using disjoint cross validation.

Non-disjoint cross validation Disjoint cross validation

Drug Chemical Target Side effect Probability Chemical Target Side effect Probability
score score score score score score

Hypercholesterolemia drugs
fenofibrate 0.76 0.71 1.10 0.82 0.57 0 0.46 0.36
lovastatin 1.93 1.97 2.92 0.99 0 0 0 0.14

Juvenile rheumatoid arthritis drugs
ibuprofen 0.82 3.50 1.08 1.00 0 0.50 0.43 0.43
sulfasalazine 1.39 1.99 0.43 0.96 0 0.50 0.43 0.43

Acute myeloid leukemia drugs
daunorubicin 1.77 1.50 0 0.87 0 0 0 0.15
idarubicin 0.78 2.00 0.81 0.97 0 0 0 0.14

3. Methods

3.1. Data sets

We have retrieved the data set Zhang et al. curated for the analysis of the drug repurposing
classifier they proposed.7 They collected 1,007 approved drugs and their targets from Drug-
Bank,18 the chemical structure information of these drugs from PubChem19 and the side effect
information from SIDER.20 The drugs were represented by a combination of 775 targets ex-
tracted from DrugBank and 881 substructures in PubChem. They were able to map side effects
of 888 out of 1,007 drugs using SIDER, covering 61,102 drug-side effect associations coming
from 1,385 side effects. The known drug-disease indications span 3,250 associations between
799 drugs and 719 diseases and were extracted from the National Drug File - Reference Ter-
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minology (NDF-RT) as suggested in a previous study by Li and Lu.21 The data set is publicly
available online at http://astro.temple.edu/~tua87106/drugreposition.html. We used
the 536 drugs that were common among chemical, target, side effect, and indication data,
corresponding to 2,229 drug-disease associations covering 578 diseases and 40,455 drug-side
effect associations covering 1,252 side effects.

3.2. Drug similarity definitions

We used the data sets described above to build a drug-drug similarity matrix for each one of
the three feature types: chemical substructures, targets, side effects. For each feature type, the
drug i was defined by a binary vector Xi = [x1, x2, . . . , xn]T , corresponding to the existence of
the feature for that drug (1 if exists, 0 otherwise). The Pearson product-moment correlation
coefficient between two drugs i and j was then calculated using ρij = Cij√

Cii∗Cjj

, where Cij given

by

Cij = cov(Xi, Xj) = E[(Xi − E(Xi))(Xj − E(Xj))]

The corrcoef function implemented in NumPy Python package was used to calculate cor-
relation coefficients for each drug-drug pair.

3.3. Similarity-based logistic regression classifier

We trained a logistic regression model to predict the drug-disease associations based on the
drug-drug similarities defined by the targets, chemical substructures, and side effects combined
for the 20 most similar drugs to the drug in concern. Therefore, the probability of observing
an association between the drug i and the disease j is

P (Yij = 1|schemical
ij , starget

ij , sside effect
ij ) =

1

1 + e−(β0+β1∗schemical
ij +β2∗stargetij +β3∗sside effect

ij )

where for each feature f ∈ { chemical, target, and side effect }, the similarity-based drug-
disease score sfij is defined as

sfij =
∑

k∈NN(i)

simf (i, k) ∗X(k, j)

with simf (i, k) being the similarity between two drugs i and k (calculated via Pearson
product-moment correlation coefficient as explained above), NN(i) is the set of 20 most similar
drugs to drug i (nearest neighbors in the similarity space), and X(k, j) being an indicator
function with values 1 if drug k is a known indication for disease j, and 0 otherwise.

We used the LogisticRegression function in Scikit-learn Python package with the L2 reg-
ularization option and the default values (inverse regularization strength of 1 and stopping
tolerance of 0.0001).
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3.4. Prediction accuracy evaluation

To assess the prediction performance of the logistic regression classifier, we calculated the area
under ROC curve (AUC) using k-fold cross validation scheme (e.g., k = 2, 5, 10, 20). We used
2,229 known drug-disease associations as the positive instances and marked all remaining pos-
sible associations between 536 drugs and 578 diseases (536×578−2, 229 = 307, 579 associations)
as negative instances. Following the previous studies, we balanced the data set such that it
contained twice as many negative instances as positives.4,7 Thus, in a k-fold cross validation
run, we created k groups containing 2, 229/k positive instances and 2 × 2, 229/k negative in-
stances that were randomly chosen among all negative instances. Each fold was used as the
test set once, in which all the remaining folds were used to train the classifier. In order to
get robust estimates of the AUC, we repeated the cross validation procedure ten times and
recorded the mean and the standard deviation of the AUC values over these runs. Note that,
the classifier we built relies on both the similarity and the labels of the training drug-disease
associations, as we calculate a drug-disease association score using the most similar 20 drugs
and their indication information. We made sure not to use the training information in the test
phase and calculated the drug-disease association scores within the training and test folds
separately. We used the roc curve and auc functions in Scikit-learn Python package to first
get the true and false positive rates at various cutoffs and then to calculate the AUC using
the trapezoidal rule.

3.5. Stratified disjoint cross validation for defining non-overlapping drug
groups

To investigate the robustness of the drug-disease association classifier in the case of unseen
data, we used a disjoint cross validation scheme, in which none of the drugs in one fold appear
in another fold. We created cross validation folds such that all the drugs with the same name
were in the same fold by first converting the drug’s name into an integer value and then taking
the modulo (k) of this value (for k-fold cross validation). To produce different groupings at
each run, we added a random integer to the integer value of the drug calculated based on its
name. The details of the algorithm are as follows:

D: data set containing drug-disease pairs, c: drug, p: disease,
l: label (1 if c is known to be indicated for p, 0 otherwise), k: number of cross validation folds,
fold: dictionary containing the fold index of each drug-disease pair
i := random([0, 100])
fold := {}
for each (c, p, l) ∈ D do
sum := 0
for each x ∈ characters(c) do
sum := sum+ to integer(x)

fold(c, p) := modulo(sum+ i, k)
return fold

To preserve the balance between positive and negative instances (stratified cross valida-
tion), we first grouped the data set into positive (Dl=1) and negative (Dl=0) pairs and applied
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the proposed disjoint fold generation algorithm above to each group.

4. Conclusions

Many recent similarity-based drug repurposing studies reported stunningly high prediction
performances, suggesting that drugs can be predicted for novel uses almost with perfect accu-
racy. Yet, there has not been an observable improvement in the drug discovery in the pharma
industry over the past years. We suspect this could be (i) because similarity-based methods
do not provide insights on the mechanism of action of drugs, failing to explain clinical failures
due to the lack of efficacy and safety and/or (ii) the reported accuracies being unrealistic due
to the underlying validation scheme.

To look into various validation schemes and toward increasing the reproducibility in com-
putational drug repurposing research, we provide a Python-based platform encapsulating ma-
chine learning algorithms available in Python Scikit-learn package and propose a disjoint cross
fold generation method. This platform allows us to easily evaluate the prediction performance
of a logistic regression classifier built using drug chemical, target, and side effect similarity
under various experimental settings. Using this platform, we investigate the role of the experi-
mental settings in similarity-based drug repurposing studies in producing optimistic prediction
accuracies. In particular, we seek to validate the drug repurposing model when it has never
seen the drug beforehand. To test this idea, we use a cross validation approach in which the
data is split such that none of the drugs in the test set are in the training set. We show that
the high success rate of the model drops sharply under such cross validation setting.

Indeed, in many computational biology problems dealing with paired data, such as predict-
ing drug targets, side effects, drug-drug interactions, protein-protein interactions, functional
annotations, and disease-genes, researches aim to leverage machine learning methods using
similarity between biomolecules. Our findings suggest that failure to take into account the
parity in such data sets can produce optimistic prediction accuracies, supporting earlier stud-
ies on drug-target and protein-protein interaction prediction.13,14 We particularly point out
the effect of the training set size when the drugs in the training and test sets do not over-
lap. Hence, we argue that, though useful in highlighting potential unknown drug-disease pairs,
similarity-based methods are likely to be ineffective to explore drugs that are not in the nearby
pharmacological space, i.e. the drugs with low chemical similarity or for which target and side
effect data are not abundant.

Alternatively, systems-level drug discovery approaches can offer insights on the mecha-
nism of action of the drugs by matching gene expression signatures upon drug treatment
to compensate the genomic changes caused by the disease22,23 or exploiting the paths from
drug targets to the genes perturbed in the diseases to explain the efficacy of treatments given
the interaction network.24 Nonetheless, these approaches are still at their infancy and their
accuracies remain modest,24,25 leaving room for improvement.
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A major contributor to the scientific reproducibility crisis has been that the results from homoge-
neous, single-center studies do not generalize to heterogeneous, real world populations. Multi-cohort
gene expression analysis has helped to increase reproducibility by aggregating data from diverse
populations into a single analysis. To make the multi-cohort analysis process more feasible, we have
assembled an analysis pipeline which implements rigorously studied meta-analysis best practices.
We have compiled and made publicly available the results of our own multi-cohort gene expression
analysis of 103 diseases, spanning 615 studies and 36,915 samples, through a novel and interactive
web application. As a result, we have made both the process of and the results from multi-cohort
gene expression analysis more approachable for non-technical users.

Keywords: Multi-cohort Analysis; Meta-Analysis; Gene Expression; Reproducibility; Web Applica-
tion; Software

1. Introduction

Prior to translation of the results of a biological experiment into clinical practice, they must
be replicated and validated in multiple independent cohorts. However, the majority of findings
fail to validate, leading to a ’reproducibility crisis’ in science.1,2 One of the factors in this lack
of reproducibility is that traditional, single cohort studies do not represent the heterogeneity
observed in the real world patient population.3 As a result, observed and reported effects are
often specific to a population subset instead of generalizable across the population.

More than two million publicly available gene expression microarrays present novel op-
portunities to incorporate the real-world heterogeneity observed in patient populations into
analysis.4,5 However, the biological (tissue, treatment, demographics) and technical (experi-
mental protocol, microarray) heterogeneity present in such data poses a daunting challenge
for their integration and reuse. Consequently, many tools, which allow reuse of these data, are
unable to combine evidence across multiple data sets and place that burden on the end user,
leading to under-utilization of these datasets.6,7

Previously, we have described a novel multi-cohort analysis framework for integrating mul-
tiple heterogeneous datasets to identify robust and reproducible signatures by leveraging the
biological and technical heterogeneity in these datasets. We have repeatedly demonstrated
the utility of our framework for identifying novel diagnostic and prognostic biomarkers, drug
targets, and repurposing FDA-approved drugs in diverse diseases, including organ transplan-
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tation, cancer, infection, and neurodegenerative diseases.8–16 In each of these analyses, we
analyzed more than a thousand human samples from more than 10 independent cohorts to
generate and validate data-driven hypotheses. Many of these results also been further vali-
dated in experimental settings.8,11,16 These results have further demonstrated the ability of our
framework to create ”Big Data” by combining multiple smaller studies that are collectively
representative of the real word patient population heterogeneity.

We recently published a systematic comparison of gene expression meta-analysis to evalu-
ate existing tools, including GeneMeta, MAMA, MetaDE, ExAtlas, rmeta, and metafor,17–21

and described best practice guidelines for gene expression meta-analysis.22 While these exist-
ing packages perform both generic and gene expression meta-analysis, none provide coverage
of the entire gene expression meta-analysis workflow: downloading data from public reposi-
tories, rigorously implementing gene expression meta-analysis best practices, and providing
visualizations of the final results.

2. Multi-Cohort Gene Expression Analysis with MetaIntegrator

Despite its demonstrated utility in identifying robust, reproducible, and biologically as well
as clinically relevant disease signatures, our multi-cohort analysis framework has previously
required manual dataset download, pipeline set up, and visualization generation. To lower
this barrier to entry, we have developed MetaIntegrator, an R package that automates most
of the multi-cohort analysis framework. Our package guides the user from data download to
execution of statistical analysis to evaluation of the results [Figure 1].

2.1. Data Processing

The first step in the multi-cohort analysis is downloading the requisite experimental informa-
tion, notably the class labels (case or control), the gene expression data, and any interesting
phenotypic information about the samples. Since we have found that most users will download
data from the NCBI’s Gene Expression Omnibus (GEO), we have integrated an automatic
downloading and processing of GEO data into our analysis pipeline. MetaIntegrator will au-
tomatically download the expression data and all available annotations, perform sanity checks
that the data have been appropriately normalized, and compile the data into the MetaInte-
grator object format.

2.2. Multi-cohort Analysis

2.2.1. Combining effect sizes

Our meta-analysis approach computes an Hedges g effect size for each gene in each dataset
defined as:

g = J
X̄1 − X̄0√

(n1−1)S2
1+(n0−1)S2

0

n1+n0−2

(1)

where X̄1 and X̄0 are the average expression for cases and controls, S1 and S0 are the standard
deviations for cases and controls, and n1 and n0 are the number of cases and controls.8,23 J is
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Fig. 1. Gene expression meta-analysis workflow with MetaIntegrator utility functions.

the Hedges’ g correction factor, which is computed as:

J = 1 − 3

4df − 1
(2)

where df are the degrees of freedom.
To pool these effect sizes across datasets, the summary effect size gs is computed using a

random effect model as:

gs =

∑n
i Wigi∑n
i Wi

(3)

where n is the number of studies, gi is the Hedges’ g of that gene within dataset i, Wi is a
weight equal to 1/(Vi + T 2), Vi is the variance of that gene within a given dataset i, and T 2 is
the inter-dataset variation as estimated by the DerSimonian-Laird method.23,24 The standard
error for the summary effect size is SEgs =

√
1∑n
i Wi

. Given gs and SEgs , we calculate a p-value
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based on a standard normal distribution and perform a Benjamini-Hochberg FDR correction
for multiple hypothesis testing across all genes.25

2.2.2. Heterogeneity of effect size

We calculate Cochrane’s Q value for evaluating heterogeneity of effect size estimates between
studies:

Q =

n∑
i=1

Wi (gi − gs)
2 (4)

where Wi, gi, and gs are the same as above.23 The p-value of Cochrane’s Q is calcu-
lated against a chi-squared distribution and adjusted for multiple hypothesis testing using the
Benjamini-Hochberg FDR method across all genes.25 A statistically significant Cochrane’s Q
indicates significant heterogeneity of effect sizes between studies.

2.2.3. Combining p-values

We use Fisher’s method for combining p-values across studies.26 We calculate the log sum of
p-values that each gene is up-regulated as:

Fup = −2

n∑
i=1

log(pi) (5)

where n is the number of studies and pi is the t-test p-value that the gene of interest is
up-regulated in study i. Similarly, we calculate Fdown as the log-sum of p-values that each gene
is down-regulated.

For each gene, we calculate the p-value of Fup and Fdown under a chi-squared distribution
and perform a Benjamini-Hochberg FDR correction across all genes.25

2.3. Signature Selection

Once meta-analysis is performed, a subset of genes must be identified as the disease signature.
MetaIntegrator allows the user to identify these genes by varying the filtering parameters
based on gene effect size, effect size false discovery rate, Fisher’s method false discovery rate,
heterogeneity of effect size, and the number of studies in which the gene was present. In
order to avoid disproportionate influence of a single study, MetaIntegrator allows the user
only include genes which were similarly significant across all leave-one-dataset-out analyses.
By varying these criterion, the user may control whether they identify a larger set of genes,
which may be ideal for understanding molecular pathogenesis and identifying drug targets, or
a smaller set of genes, which may be optimal developing a parsimonious clinical diagnostic.

For users that are particularly interested in developing a powerful diagnostic, we have
integrated forward and backward search, which reduce gene set size to optimize the area
under the receiver operating characteristic curve on the training data.10
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2.4. Score Calculation

For a set of signature genes, a signature score can be computed for every sample, i, as:

Si =

( ∏
gene∈pos

xi(gene)

) 1

‖pos‖

−

( ∏
gene∈neg

xi(gene)

) 1

‖neg‖

(6)

where pos and neg are the sets of positive and negative genes, respectively, and xi(gene)

is the expression of any particular gene in sample i (a positive score indicates an association
with cases and a negative score with controls). This score Si is normalized to a z-score to
center the samples for each study around zero.

2.5. Visualization

With scores calculated for each sample, we are able to visualize comparisons of cases vs. con-
trols, regression of continuous variables against the score, and consistency of gene expression
across datasets. Some of the built in visualizations, in counter-clockwise order from Figure 1:

• Forest plots. Examine the effect sizes and standard errors for a single gene across
studies, including the summary effect size.

• Regression plots. Evaluate the relationship of the signature score with continuous
variables like clinical severity and time.

• Heatmap plots. Observe consistency of differential expression for all signature genes
across studies.

• Violin plots. Compare signature scores across categorical variables like disease sub-
types, treatment protocols, and demographic groups.

• ROC plots. Evaluate classification performance for signature score on a single dataset
in terms of specificity and sensitivity.

3. Data-Driven Biological Hypotheses with MetaSignature

We have created MetaSignature (http://metasignature.stanford.edu), a web application
which empowers researchers to generate data-driven hypotheses by enabling access to the re-
sults of our multi-cohort gene expression analysis framework. We focused on enabling intuitive
data access for researchers with specific interest in either a disease, a gene, or several genes,
while requiring little or no analytic background.

3.1. Data

Thus far, we have aggregated 615 gene expression studies composed of more than 35,000
human samples with approximately 1.5 billion data points from 103 diseases, a number which
we will continue to grow. For each disease, we applied our multi-cohort analysis approach to
compute the gene expression differences between the manually curated cases and controls. To
perform these multi-cohort analyses, we searched for relevant studies in GEO, identified cases
and controls in every study, and calculated disease effect sizes using the MetaIntegrator R
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Fig. 2. Diagram of the MetaSignature web application.

package. We stored the multi-cohort analysis results in a MySQL database for rapid retrieval.
As more studies are incorporated into our database, we recalculate the disease summary effect
sizes.

3.2. Gene-centric Analysis

For researchers that are interested in the expression of a particular gene, MetaSignature pro-
vides visualizations that allow researchers to quickly identify the diseases in which specified
gene is most differentially expressed [Figure 2a], study-level data of the gene expression in
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particular diseases [Figure 2b], and cell type-specific gene expression patterns [Figure 2c].
For instance, consider a researcher who has developed a drug, such as atorvastatin, that

effectively reduces plasma levels of CXCL10, and seeks to identify the most promising clinical
applications. Using MetaSignature, she determines CXCL10 is significantly up-regulated in
transplant rejection [Figure 2a]. A drilldown further identifies eight separate studies that have
measured CXCL10 in transplant rejection, indicating a highly positive effect size in all except
one of these studies [Figure 2b]. The researcher further observes that CXCL10 is up-regulated
in monocytes, compared to other immune cell types. [Figure 2c]. Taken together, these findings
would motivate a clinical investigation of the use of a CXCL10 inhibitor, such as atorvastatin,
in monocytes of patients at risk for transplant rejection. We have already verified this data-
driven hypothesis in mouse models and patient electronic health records, where, in both cases,
atorvastatin increases graft survival.8

Beyond single gene analysis, MetaSignature empowers users to examine gene sets in terms
of correlation of those genes based on their disease effect sizes [Figure 2e] and correlation of
diseases based on expression of that set of genes [similar to Figure 2f]. These visualizations
enable dissection of positively- and negatively-correlated members of gene families.

3.3. Disease-centric Analysis

If a researcher is more interested in a particular disease, then MetaSignature enables identifica-
tion of genes that are most up- or down-regulated in that disease [Figure 2d] and exploration
of that disease’s relationship to other diseases based on gene expression [Figure 2f]. When
we compute disease-disease correlation based on gene expression data, we observe clustering
patterns that map to established disease categories.

To follow our example from the gene-centric analysis, consider a researcher who is inter-
ested in improving transplant rejection outcomes. To gain a global understanding of transplant
rejection, the researcher observes that transplant rejection falls into a cluster of inflamma-
tory diseases, including discoid lupus, Crohn’s disease, and interstitial cystitis [Figure 2f]. By
examining the transplant rejection expression data in MetaSignature, he or she would rec-
ognize that CXCL10, a chemokine important in inflammatory response, is one of the most
up-regulated genes in transplant rejection [Figure 2d].27 After verifying that this observation
is consistent across studies [Figure 2b], the researcher identifies that CXCL10 is a reasonable
target for therapeutic inhibition in transplant rejection. Looking at other genes which are
up- and down-regulated in transplant rejection, he or she recognizes that CXCL10 expression
is in a positively correlated with several other genes, including TRAF2 and CD38 [Figure
2e]. Collectively from these observations, the researcher has learned that transplant rejection
is related to inflammatory diseases, which is consistent with the observed up-regulation of
CXCL10, an inflammatory chemokine. As noted in the gene-centric analysis above, we have
observed increased graft survival through administration of atorvastatin.8

4. Discussion

The reproducibility crisis in biomedical research has led to erroneous conclusions and wasted
resources. Here, we present a vertically integrated platform that can both assist with gene
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expression multi-cohort analysis (MetaIntegrator) and provide aggregated results for users
who wish to rapidly test hypotheses (MetaSignature). By leveraging the growing public data
available for study, this new resource can drastically reduce the time and effort for biologi-
cal hypothesis testing across numerous studies and diseases. While many software packages
exist for similar analyses,17–21 ours offers simple, custom software for plotting and analysis,
automated downloading of data from GEO, and integration to the MetaSignature database.

Our package is complementary to the recently published OMiCC platform, which enables
curation and meta-analysis of GEO studies.28 OMiCC relies on the RankProd package for
performing meta-analysis using rank-based statistics for identifying differentially expressed
genes.29 While others have provided thorough comparisons of the different meta-analysis meth-
ods, the most notable difference between RankProd and MetaIntegrator is that rank-based
statistics fail to produce a summary effect size across multiple studies.30,31 By leveraging our
MetaIntegrator package, OMiCC could produce differential gene expression profiles across
multiple studies instead of internal to single studies.

Although MetaIntegrator is currently applicable to microarray gene expression data, we
plan to expand the MetaIntegrator package to handle the count data which is generated
by RNAseq experiments. Additionally, we intend to enable download from additional data
repositories including ArrayExpress and, once RNAseq processing is implemented, Sequence
Read Archive.?,5

Our work promises to increase reproducibility of research for both data analysts and wet
lab researchers. For data analysts, we have made multi-cohort gene expression analysis pub-
licly available through a straightforward R package. By performing integrative, multi-cohort
analyses, these analysts will generate more reproducible results. For wet lab researchers, we
are empowering data-driven hypotheses prior to experimentation. Rather than performing
broad assays to identify disease related genes, researchers can focus on performing targeted
experiments on genes which are reproducible across cohorts.

5. Package and Source Code Distribution

The MetaIntegrator R package, including an introductory vignette, may be installed using the
following command in R:

install.packages("MetaIntegrator")

The source code for MetaIntegrator is available at:
https://cran.rstudio.com/web/packages/MetaIntegrator/

MetaSignature was developed using R and Shiny and is hosted at:
http://metasignature.stanford.edu/
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As biomedical data has become increasingly easy to generate in large quantities, the methods used to analyze it have proliferated                    
rapidly. Reproducible and reusable methods are required to learn from large volumes of data reliably. To address this issue, numerous                    
groups have developed workflow specifications or execution engines, which provide a framework with which to perform a sequence                  
of analyses. One such specification is the Common Workflow Language, an emerging standard which provides a robust and flexible                   
framework for describing data analysis tools and workflows. In addition, reproducibility can be furthered by executors or workflow                  
engines which interpret the specification and enable additional features, such as error logging, file organization, optim izations to                 1

computation and job scheduling, and allow for easy computing on large volumes of data. To this end, we have developed the Rabix                      
Executor​a​, an open-source workflow engine for the purposes of improving reproducibility through reusability and interoperability of                
workflow descriptions. 
 
 
  

1This project has been​ ​funded​ in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, 
Department of Health and Human Services, under Contract No. HHSN261201400008C. 
[†] Corresponding author 
a​The Rabix Executor is available on GitHub: ​ ​http://github.com/rabix/bunny 
 

Pacific Symposium on Biocomputing 2017

154

mailto:gaurav@sevenbridges.com
mailto:sinisa.ivkovic@sevenbridges.com
mailto:janko.simonovic@sevenbridges.com
mailto:boysha@sevenbridges.com
mailto:brandi@sevenbridges.com
mailto:deniz.kural@sevenbridges.com
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots
https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots
http://github.com/rabix/bunny
http://github.com/rabix/bunny


 

1.​     ​Introduction  
 
Reproducible analyses require the sharing of data, methods, and computational resources.​1 The probability of              
reproducing a computational analysis is increased by methods that support replicating each analysis and the               
capability to reuse code in multiple environments. In recent years, the practice of organizing data analysis via                 
computational workflow engines or accompanying workflow description languages has surged in popularity as             
a way to support the reproducible analysis of massive genomics datasets.​2,3 Robust and reliable workflow               
systems share three key properties: flexibility, portability, and reproducibility. Flexibility can be defined as the               
ability to gracefully handle large volumes of data with multiple formats. Adopting flexibility as a design                
principle for workflows ensures that multiple versions of a workflow are not required for different datasets and                 
a single workflow or pipeline can be applied in many use cases. Together, these properties reduce the software                  
engineering burden accompanying large-scale data analysis. Portability, or the ability to execute analyses in              
multiple environments, grants researchers the ability to access additional computational resources with which to              
analyze their data. For example, workflows highly customized for a particular infrastructure make it challenging               
to port analyses to other environments and thus scale or collaborate with other researchers. Well-designed               
workflow systems must also support reproducibility in science. In the context of workflow execution,              
computational reproducibility (or recomputability) can be simply defined as the ability to achieve the same               
results on the same data regardless of the computing environment or when the analysis is performed.                
Workflows and the languages that describe them must account for the complexity of the information being                
generated from biological samples and the variation in the computational space in which they are employed.                
Without flexible, portable, and reproducible workflows, the ability for massive and collaborative genomics             
projects to arrive at synonymous or agreeable results is limited. ​4,5 

Biomedical or genomics workflows may consist of dozens of tools with hundreds of parameters to               
handle a variety of use cases and data types. Workflows can be made more flexible by allowing for                  
transformations on inputs during execution or incorporating metadata, such as sample type or reference genome,               
into the execution. They can allow for handling many use cases, such as dynamically generating the appropriate                 
command based on file type or size, without needing to modify the workflow description to adjust for edge                  
cases. Such design approaches are advantageous as they alleviate the software engineering burden and thus the                
accompanying probability of error associated with executing extremely complex workflows on large volumes of              
data. In addition, as the complexity of an individual workflow increases to handle a variety of use cases or                   
criteria, it becomes more challenging to optimally compute with it. For example, analyses may incorporate               
nested workflows, business logic, memoization or the ability to restart failed workflows, or require parsing of                
metadata -- all of which compound the challenges in optimizing workflow execution. 

As a result of the increasing volume of biomedical data, analytical complexity, and the scale of                
collaborative initiatives focused on data analysis, reliable and reproducible analysis of biomedical data has              
become a significant concern. Workflow descriptions and the engines that interpret and execute them must be                
able to support a plethora of computational environments and ensure reproducibility and efficiency while              
operating across them. It is for this reason that we have developed the Rabix Executor (on GitHub as Project                   
“Bunny”)​a​, an open-source workflow engine designed to support computational reproducibility/recomputability          
through the use of standard workflow descriptions, a software model that supports metadata integration,              
provenance over file organization, the ability to reuse workflows efficiently, and which combines an array of                
optimizations used separately in existing workflow execution methods. ​6–12  
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For the 1.0 release of the Rabix Executor (or Rabix), we’ve focused on supporting the Common                
Workflow Language (CWL), an open, community-driven specification for describing tools and workflows with             
a focus on features that support reproducibility. ​2 The Common Workflow Language is used to describe               
individual “processes” or “applications”, which can be either a single tool or an entire workflow. Workflows                
are described as a series of “steps,” each of which is a single tool or another, previously-described workflow.                  
Each step in the workflow has a set of “ports” which represent data elements that are either inputs or outputs of                     
the tool. A single port represents a specific data element that is required for execution of the tool or is the result                      
of its execution. For data elements that are passed between applications, there must be an output port from the                   
upstream application and a complementary input port on the downstream application. 

CWL is designed to be extensible, so the specification may grow based on the community’s needs.                
However, the software model for Rabix was designed with an abstract workflow execution model to anticipate                
support for additional workflow languages or syntax used by other workflow engines. 
  
2. Software model used by Rabix to interpret and compute workflows 
  
The Rabix Executor allows users to execute applications described by a workflow description language. First,               
the workflow description is submitted to the engine. Then, the Rabix engine interprets the workflow description                
and translates it into discrete computational processes or “jobs.” Finally, the jobs are queued to a backend or                  
computational infrastructure, such as a local machine, cluster, or cloud instances, for scheduling and execution.               
Each component of the executor (frontend, bindings, engine, queue, backend) is abstracted from each other to                
enable complete modularity; Developers are able to design custom frontends (e.g. command line or graphical               
user interface), bindings for the engine to parse different workflow languages, use the queuing protocol of their                 
choice, and submit computational jobs to different backends. This flexible software model means that Rabix can                
be modified to perform data analysis on many different infrastructures as desired by the user or developer and                  
achieve identical results or incorporate tools described by different languages or syntaxes into a single               
workflow. 
  
3. Abstract representation of data analysis workflows in Rabix 
  
Computational workflows are frequently understood as a directed acyclic graph (DAG) ​3,13,14​, a kind of finite               
graph which contains no cycles and which must be traversed in a specific direction. In this representation, each                  
node is either an individual executable command, a “nested” workflow, or a set of commands that can be                  
executed in parallel. The edges in the DAG represent execution variables (data elements such as files or                 
parameters) which pass from upstream nodes to downstream ones. 

  
Figure 1​. Illustration of a directed acyclic graph (DAG). The DAG may be traversed from left-to-right, moving from node-to-node 

along the edges that connect them. 
  

Workflows can be described as machine-readable serialized data objects in either a general-purpose             
programming language (GPL), domain-specific language (DSL), or serialized object models for workflow            
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description. ​2,9,15 For example, an object model-based approach may describe the steps in a workflow in JSON                
format with a custom syntax. This workflow description can then be parsed by an engine or executor to create                   
the DAG representation of the workflow. The executor may then translate the directions for workflow execution                
to actionable jobs in which data is analyzed on a computational infrastructure, such as a cloud computing                 
instance, a high-performance computing cluster, or a personal computer. 

A primary design constraint of the Rabix executor is to abstract components of a workflow to a data                  
model that is comprehensive enough to allow for mapping the syntax of different workflow systems, whether                
they are DSLs or serialized data objects. In this way, tools and workflows from different systems can be used                   
together in a single workflow.  
  
3.1. ​General structure of a workflow execution 
  
There are three general steps in preparing a workflow for execution: interpretation of a machine-readable               
workflow description, generation of the workflow DAG, and finally decomposition into individual jobs that can               
be scheduled for execution. At the beginning of execution, a workflow engine or interpreter is provided with the                  
workflow description and the required inputs for execution of the workflow, such as parameters and file paths                 
(Fig. 2a). The workflow description object is then parsed and a DAG is created (Fig. 2b), which contains the                   
initial set of nodes and edges required for computation. 

In addition to representing the steps in the workflow as a DAG (Fig. 2c), certain workflow ontologies                 
model computational jobs as a composite (tree) pattern in which there are “parent nodes” (workflows), which                
can contain multiple executables or “leaf nodes” or other "parent" nodes (Fig. 2d).​16–20 The Rabix engine                
extends this model by generalizing “parent” nodes to include groups of jobs, such as when parallelization is                 
possible at that node. It is important to note that the “parent-child” terminology is also applied to relations                  
between individual workflow nodes by the Toil project, an executor which can also interpret Common               
Workflow Language. ​10 However, Rabix uses these terms to refer to computational "jobs" and "subjobs", e.g. a                
“nested” workflow node is a child of a workflow and can be decomposed into an array of “subjobs”. The                   
engine handles the "execution" or parsing of these parent jobs, while leaves are queued for scheduling and                 
execution on a backend. This model allows for more efficient resolution of DAG features such as nodes in                  
which steps can be parallelized or are nested. It also maintains a one-to-one mapping between the internal DAG                  
representation and the workflow description supplied by the author. 
  

 
Figure 2​. The process of parsing a workflow description. ​A.​ The machine-readable document is interpreted, from which ​B.​ a DAG is 
produced. From the DAG, ​C.​ subgraphs representing computational jobs that can be sent to backends for scheduling/execution and ​D. 

a job tree is resolved, which identifies “parent” and “leaf” nodes. Each leaf represents an individual job. 
  
4. Optimization of CWL workflows via DAG transformations 
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The Rabix Executor began its development by examining how to interpret Common Workflow Language and               
interoperate on different versions or earlier drafts, in a way that is extensible to future versions and other                  
workflow syntaxes. Rabix currently supports tools and workflows described in CWL Draft 2, Draft 3, and                
version 1.0, either individually or in combination. 

When a CWL workflow is represented as a DAG, applications become nodes and edges indicate the                
flow of data elements between ports of linked tools. In the case of a simple workflow, there are no possible                    
transformations of the DAG; each node represents a single command line execution and all data elements are                 
simply passed from tool-to-tool as-is (Fig. 3). 
 

  
Figure 3​. A DAG created from a workflow described by the Common Workflow Language which contains two tools (​A, B​). Tools 

have input and output ports, which define discrete data elements that are passed downstream along the edges of the DAG. 
  

Additionally, CWL workflows can be designed such that data elements and the execution itself can be                
transformed during runtime. Developers are given several options for describing workflows which can enhance              
their utility and flexibility in handling biomedical data analysis: 

1. The ability to generate “dynamic expressions” or transformations on data elements, inputs, outputs,              
and other command line arguments. 
2. The ability to perform “scatter/gather I/O (input/output)”, also known as vectored I/O, in which               
execution of the input data can be parallelized based on specific criteria. A common genomics use case                 
for this is performing an analysis per chromosome, in which the set of chromosomes is delivered to a                  
node as an array (e.g. [1, 2, 3, X]). 
3. The ability to nest workflows within workflows, which allows for rapid composition of complex               
workflows and the ability to quickly reuse existing code. 

 
4.1 ​Rabix uses a custom data model and port-level inspection for workflow execution 
  
Though CWL provides a specification for how to describe the execution of tools and workflows, the exact way                  
in which these features are implemented is left entirely to the execution engine that is interpreting it. Therefore,                  
the Rabix engine has been designed to handle CWL descriptions with two optimizations: 

1. Reacting to "port ready" events rather than "job done" events. “Port ready” is a state triggered by the                   
evaluation of data elements produced by a port, whereas “job done” refers to ​all ports of a node being                   
evaluated. In this approach, possible downstream executions are triggered if the edges leading to it are                
resolved. This allows further dynamic transformations of the DAG to optimize for when all prerequisites               
for downstream jobs are ready. 
2. Reacting to "port ready" events from dynamically created subjobs and rewiring them to their final                
destinations, possibly creating and running subjobs before their parent fully evaluated (referred to as              
“look-ahead” method). 
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These functionalities enable the Rabix engine to create additional edges and nodes as needed, in order to                 
decompose the workflow DAG as early as possible, allowing downstream jobs to be scheduled as soon as actual                  
prerequisites are met.  

The workflow DAG is stored in three tables, Variables, Jobs, and Links, which are accessed when a port                  
value is updated. The Variables table contains the ports and their explicit values. The Jobs table stores each                  
node of the workflow and a counter for the inputs and outputs that have been evaluated at that node. The Links                     
table stores the edges in the DAG that is traversed. 

As compared to other CWL execution models​2,10​, computational events are triggered by “port” events              
instead of “job” events. In other words, when a port is evaluated, this triggers the executor to scan or update                    
these tables in the following order: Variables, Jobs, Links. Any node for which all input ports are now evaluated                   
is then executed.  

Suppose for example, Rabix is executing the workflow in Figure 4. The engine will first parse the                 
workflow description as a workflow DAG with two variables (W.I, W.O; Fig. 4a), which are yet to be                  
evaluated. Additionally, there are two ports (#In, #Out), an input and an output. Next, the engine inspects the                  
contents of the workflow (Fig. 4b) and is able to see the following steps: Tool A, Tool B, each of their ports,                      
and the link between each step within scope. 

After this, any known values are curried downstream through their links. The input for the workflow                
(W.I) is curried to Tool A through the link that has been identified between the two (W.I → W.I.A). The input                     
job counter (#In) for Tool A is decremented to 0, thereby triggering an input event where a job (execution of                    
Tool A with value1) is distributed to a backend for computation. The engine now waits for an event in which                    
the output of Tool A (W.A.O) is reported as value. 

Once the output for the job is evaluated and reported to the engine (value2), an output event is triggered.                   
The output port for W.A is decremented to 0, the link from W.A.O to W.B.I is traversed, and W.B.I is evaluated                     
as value2. This reduces the #In counter for W.B to 0 in the Jobs table and triggers a job, the execution of Tool B                        
with its input (Fig. 4c). The execution finally concludes until the input port counter for W reaches 0 and W.O is                     
evaluated (Fig. 4d). 
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Figure 4.​ The algorithm as it is traversed. ​A.​ The engine interprets the top-level of the workflow description and  ​B.​ inspects the 

contents of the workflow node and determines the DAG structure and links between each step (edges). The currying of value1 from 
the workflow input to the input of Tool A triggers an input event, where a job (analysis of Tool A with its inputs) is sent to a backend 
node. ​C.​ The execution continues and the engine traverses the DAG. ​D.​ The workflow is completed when the output of the final tool 

(W.B.O., value3) is curried to the overall workflow output (W.O). The port counters allow the engine to track when nodes are ready to 
be executed even if upstream jobs are only partially completed. 

  
In the case where the engine is traversing a portion of the workflow that maps to a parent node beneath                    

the root parent node, each output update event will generate an additional output update event. This strategy                 
allows the engine to “look-ahead” towards future executions and apply optimizations to dynamic portions of the                
DAG, as outlined in the following sections. 
  
4.2. ​DAG transformations: parallelization with scatter/gather 
  
By evaluating workflows through this port-counter and trigger system, Rabix is capable of rewiring              
parallelizable nodes in the DAG when upstream jobs are only partially completed. Suppose we have a workflow                 
where a data file and an array are inputs for a single tool, which then produces an output file (Fig. 5a). In this                       
case, the tool is capable of being scattered over an array of variables (e.g. [1, 2, 3]). Normally, these executions                    
will be performed sequentially on a single core, or on multiple threads if the tool allows it. However, on a                    
workflow level, additional parallelization can be enabled by scattering the data over three separate executions of                
the tool based on the values in the array (Fig. 5b), thus allowing the jobs to be distributed to separate                    
computational instances as needed. 
 

Pacific Symposium on Biocomputing 2017

160



 

  
Figure 5.​ Graph transformations when performing parallelization.  In this workflow, a function is performed on two inputs, an ​int​  and 

an ​array of ints​ . ​B.​ The flattened DAG created by the engine. Each value of the array is scattered as a single process to reduce 
computation time. 

  
The advantages of the transformation approach is further demonstrated by another use case, in which               

there are two sequential, parallelizable jobs (Fig. 6a). Rabix employs a “look-ahead” strategy (Fig. 6b) which                
can mark downstream jobs as ready even though not all sub-jobs (leaves) are done from the upstream parent                  
job. 
  

 
Figure 6.​ Graph transformations for sequential scattered nodes. ​A.​ The workflow from Fig. 5 with an additional downstream function 
with an input that can be scattered. ​B.​ During execution, the engine is able to look ahead to the next stage in the workflow. If any input 

is available (e.g. value of 11 returned by a tool), downstream processes which can proceed are started. ​C.​ The completed workflow.  
 

Each node in the DAG does not need to be scheduled independently. Instead, (sub)jobs that work with                 
same data can be explicitly dispatched to the same backend. (Fig. 7). For example, in the case of executions                   
scattered across chromosome number, jobs processing the same chromosome can be distributed to the same               
node to optimize cost. 

 

 
Figure 7.​ Jobs can be grouped (grey background) for execution on a backend node from criteria set by the workflow or tool author. 

  
Figure 7 demonstrates two possible job group assignments. In the case of Figure 7a, the first tool can be                   

executed simultaneously for each chunk of the data on a single backend node. Once any single job in the first                    
group is finished, the second group of jobs can begin execution on a second node. In the case of Figure 7b, each                      
chunk of data is parallelized across three nodes and the final output is gathered at the end. 
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The engine is also able to send information to the backends about upcoming jobs, which allows a                 
backend scheduler to pre-allocate resources for them. When executing CWL workflows, both of these              
optimizations are enabled through the "hints" feature. 

Whether these optimizations can be used are sometimes dependent on how the workflow is constructed.               
For example, a workflow author can make use of optimizations in Fig. 6 by grouping nodes that can be                   
scattered into a nested workflow. This optimization can be especially useful when combined with nested               
workflow optimizations described in the next section, and allows for reusability of previously made workflows,               
as encouraged by CWL. 
  
4.3. ​Graph transformations: nested workflows 
  
CWL developers have the ability to reuse existing code and import previously-described workflows into other               
workflows. This feature means that it is possible to reuse code for additional workflows in lieu of refactoring                  
and potentially introducing errors that break reproducibility. However, the ability to nest workflows presents a               
challenge to interpretation and optimization by the engine. If no DAG transformations are applied and nested                
workflows are only executed recursively, this can lead to unnecessarily prolonged execution time and cost. 

Suppose a developer has described a workflow that takes two inputs and produces two outputs from two                 
tools (Fig. 8a). In this workflow, one of the outputs is created by the upstream tool and one from the                    
downstream tool. Later, the developer wishes to reuse this workflow description in another workflow, where the                
output of the upstream tool is passed to another tool for further analysis (Fig. 8b). As with sequentially scattered                   
tools, the engine is capable of passing values from the nested workflow, once they’re produced, to steps                 
downstream using the “look-ahead” strategy. Commonly, the tool outside the nested workflow is blocked from               
execution until all outputs from the nested workflow are produced, leading to increased computation time and                
cost. 

 
Figure 8.​ Graph transformations of nested workflows to optimize total execution time. ​A.​ Workflow consisting of two tools. ​B. 

Workflow in Fig. 8a. extended with third tool. The engine allows the downstream tool to start executing once the necessary inputs are 
ready, even if the upstream workflow has yet to produce all of its outputs. No code refactoring from the workflow in 8a is required. 

  
4.4. Benefits to Logging, Orchestration, and Computation 
 
The model used by the Rabix engine allows for improved optimization of data analysis at the workflow level.                  
Further, it provides the ability to implement additional optimizations or features to enhance orchestration of jobs                
and computation, regardless of whether such features are supported by a workflow description language or               
specification. 

Rabix keeps track of all jobs executed from the workflow and caches results. In addition, each parameter                 
of a job is recorded and automatically logged for the researcher. These include the explicit command line                 
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arguments used, the files/paths, attributes of the data, metadata attributes, and any logs associated with the                
execution. In addition, a snapshot of the application is stored, along with the explicit values used in the                  
execution. All of this is done at the job level, allowing for granular replication of subsets of a workflow. If the                     
workflow contains a job that has previously been executed and the outputs are still available, the engine can                  
reuse them even if the job was part of a different workflow run. Importantly, even if cached results are not                    
available, the engine will look ahead in the DAG and may encounter cached downstream jobs which do have                  
these files available, and so can resume failed or modified workflow jobs. This makes the caching mechanism                 
comparable to declarative workflow description such as GNU Make. ​8 

Additional business logic outside of a workflow specification can also be implemented. For example,              
CWL does not yet allow for conditional workflows, in which the entirety of DAG is not necessarily traversed                  
but only paths based on checkpoints during the execution. Additionally, though a DAG is acyclic, Rabix could                 
in principle enable loops for a tool or workflow which use iterative operations. 
  
4.5. ​Caveats to Graph Transformations and Possible Solutions 
 
An important caveat for these optimizations are external transformations in which the structure of data elements                
is modified before execution and thus cannot be anticipated by the engine. For example, CWL and other                 
workflow description languages allow for modifications of input types before tool execution. In certain cases,               
such as for a tool which can be scattered, the data type may change or the length of the array that is being                       
scattered cannot be known ahead of time. If the engine is unable to anticipate the length of an array that must be                      
scattered upon execution, it is impossible for it to re-wire the DAG before evaluation. However, such hurdles                 
can be overcome by allowing users to either define a mapping for individual array items or declaratively                 
specifying the method of combining multiple ports before scattering (cross-product or dot-product). In these              
cases, the engine can still maintain its look-ahead optimizations. 
  
4.6. ​Furthering reproducibility by extending CWL to execution descriptions 
  
Workflows described using the Common Workflow Language require two objects for execution: the description              
of an application and an input object specifying the explicit values of the required inputs. Recording a task that                   
has been previously executed is not, however, within the scope of CWL. However, an analyst may want to                  
reinspect a prior analysis, reuse a workflow with a specific set of parameters on new data, or reanalyze the same                    
data with a different workflow version. It is for these reasons that we have enabled an additional layer of task                    
description and annotation within Rabix, alleviating the burden of logging the workflow execution. 
 Following the execution of a workflow, additional outputs and logs are produced by Rabix as a matter of                  
course. The explicit command line execution, an object describing the output of the execution, and a description                 
of the workflow execution are all recorded. From these objects, it is directly possible to reproduce a prior                  
analysis or reanalyze additional data with the exact same parameters as previous. Rabix allows for replication of                 
a previous execution or reproduction an exact workflow on new data with a single command line call. In this                   
way, it is possible for an analyst to not only publish a workflow but also the explicit tasks as plain text files.                      
These functionalities can be extended with new modules or plugins to enable a variety of use cases centered on                   
reproducibility. 
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5. Rabix in the context of existing workflow models and engines  
 
The primary design guideline for Rabix was to support Common Workflow Language in a way which will                 
allow for supporting additional workflow languages, whether they are domain-specific languages or            
object-based. Further, “tools” or workflows described in different syntaxes should be interoperable such that a               
single workflow may be comprised of tools and workflows from a variety of syntaxes. In effect, certain                 
optimizations described in Rabix above have been implemented in other systems, but not yet in a single                 
executor capable of supporting emerging standards. 

Most of the focus in this paper was on port-level inspection, an abstract data model for tools and                  
workflows, and how they can enable additional optimizations when used in conjunction. However, certain              
features described here are also used by existing workflow systems,​6,7,10–12 most notably the support for multiple                
infrastructures. Additionally, there are certain features not yet implemented in Rabix but which are seen in other                 
systems, such as conditional steps in a workflow, as seen in Toil. Though the Rabix model allows for                  
conditional operations (e.g. for, if, while), we chose to focus on features supporting reusability and               
interoperability and computational optimizations for this manuscript. 
 
6. Conclusions 
 
The Rabix Executor is an open-source project designed to enable scalable and reproducible analysis of portable                
workflows, which is available on GitHub (http://github.com/rabix/bunny). Computational reproducibility, the          
ability to replicate a prior analysis or reuse prior workflows on new data, is required for accurately judging                  
scientific claims or enabling large-scale data analysis initiatives in which synonymous results can be              
compared.​4,5,21 The Rabix engine additionally aims to optimize workflow executions by intelligently interpreting             
and handling complex workflows. This is achieved through a composite model in which workflows can be more                 
fully decomposed. Finally, additional logic can be applied to optimize for user-defined variables, such as cost or                 
execution time, regardless of the workflow description language being interpreted. 
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Open sharing of clinical genetic data promises to both monitor and eventually improve 
the reproducibility of variant interpretation among clinical testing laboratories. A 
significant public data resource has been developed by the NIH ClinVar initiative, which 
includes submissions from hundreds of laboratories and clinics worldwide. We analyzed a 
subset of ClinVar data focused on specific clinical areas and we find high reproducibility 
(>90% concordance) among labs, although challenges for the community are clearly 
identified in this dataset. We further review results for the commonly tested BRCA1 and 
BRCA2 genes, which show even higher concordance, although the significant 
fragmentation of data into different silos presents an ongoing challenge now being 
addressed by the BRCA Exchange. We encourage all laboratories and clinics to contribute 
to these important resources.  
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1.  Background 

1.1.  Clinical genetic testing  

Clinical genetic tests of germline DNA are routinely used to direct patient care in oncology, 
cardiology, neurology, pediatrics, obstetrics, and other clinical specialties. Excitement surrounds 
the future of medical genetics, which will likely involve routine and proactive sequencing of 
patient genomes or exomes. However, even today genetics is used pervasively: over one million 
clinical genetic tests will be performed in 2016 to inform various pressing medical decisions 
facing doctors and patients. This number is considerably larger if tests for infectious disease and 
tumors (somatic testing) are included. Such testing is regulated, often paid for by private insurance 
and public health systems, and written into many current clinical care guidelines established by 
payers and medical professional societies. 

It is not glib to say that many of these tests are ordered in life-or-death situations. One example 
is BRCA1 and BRCA2 (collectively, BRCA1/2) tests, where erroneous results can have substantial 
deleterious consequences for patients. With a false positive, a radical preventative procedure such 
as prophylactic bilateral oophorectomy may be indicated, thereby causing an otherwise healthy 
woman to enter premature menopause and to face the multiple health risks associated with that 
procedure and with the hormone replacement therapy that often follows. Prophylactic 
chemotherapy (specifically, tamoxifen) is another option offered to some healthy BRCA1/2 
carriers, with significant side effects. Conversely a false negative could eliminate the chance to 
prevent a fatal early-onset carcinoma. Such errors are either analytic (reporting a variant to be 
present in a patient when it is not, or vice versa) or interpretive (concluding that a variant  is 
pathogenic [disease causing] when it is not, or vice versa). This paper focuses on the latter subject.  

1.2.  Clinical variant interpretation 

In response to concerns about reproducibility among laboratories, the American College of 
Medical Genetics (ACMG) and the Association for Molecular Pathology (AMP) jointly developed 
revised guidelines for clinical variant interpretation [Richards 2015]. These guidelines require 
laboratory directors to scrutinize the literature and all other available evidence for each variant 
observed in a patient. The guidelines provide a structured framework for which evidence is 
weighed in final interpretations. Under these guidelines, variants are classified as pathogenic (P), 
likely pathogenic (LP), variants of uncertain significance (VUS), likely benign (LB), or benign 
(B). Despite the significant improvement in standardization that these new guidelines represent 
compared with their predecessor, laboratory directors must still use a significant degree of expert 
judgment, which can result in different classifications from different laboratories for the same 
variant. Date also matters: classifications that pre-date availability of an important piece of 
evidence should indeed be different than those that post-date it. 
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1.3.  Data sharing and clinical genetics 

Of course, the first step toward achieving reproducibility is measuring reproducibility, which 
requires data to be shared among clinical labs. The sharing of genetic data from research projects 
has long been accepted and encouraged (despite being incompletely implemented). Unfortunately, 
the open sharing of de-identified clinical genetic data has been far less common owing to a 
combination of informed consent issues, the commercial interests of certain healthcare providers, 
and the lack of a community mechanism for doing so. 

Recently, the National Institutes of Health established ClinVar, “a freely available archive for 
interpretations of clinical significance of variants for reported conditions” [Landrum 2016]. By 
storing only individual variants and classifications, the re-identification of patients whose 
genotypes are submitted to ClinVar becomes essentially impossible, at least without an 
independent test of the same variant in the same patient for comparison (in which case, the 
patient’s genotype is already known). Thus, fully de-identified clinical genetic data can be 
disclosed publicly under US laws and regulations. The American Medical Association (AMA) and 
National Society of Genetic Counselors (NSGC), among others, have issued recommendations 
urging laboratories to share such data.  

 Some commercial and academic laboratories have, unfortunately, declined to participate. Most 
famously, Myriad Genetics, the largest BRCA1/2 testing laboratory in the world, has maintained 
its large genetic database as a proprietary asset [Cook-Deegan 2013]. Moreover, Myriad claims 
that by leveraging this database, it can deliver superior variant classifications compared to other 
labs [Angrist 2014]. This stands in sharp contrast with the American Medical Association and the 
National Society for Genetic Counselors recommendations. It also is inconsistent with accepted 
practice in many non-genetics medical fields in which data sharing is common. Thankfully 
thousands of de-identified Myriad reports have been submitted to ClinVar by ordering clinicians 
through the Sharing Clinical Reports Project [SCRP website]. 

2.  ClinVar 

Since its inception in 2013, ClinVar has grown rapidly, and as of August 2016 contains more 
than 186,000 records from 560 submitters, most of which are clinical genetic testing laboratories 
[ClinVar website]. Importantly, three of the top eight submitters to ClinVar are commercial 
laboratories (GeneDx, Invitae, and Ambry). Another three are large academic laboratories 
(Harvard Partners Laboratory for Molecular Medicine, Emory Genetics Laboratory, and the 
University of Chicago Genetic Services Laboratories), and two are academic efforts that aggregate 
literature-based information (OMIM and GeneReviews) These submitters account for more than 
half of the data in ClinVar, although the many smaller submitters provide key data as well. This 
high degree of industry–academic collaboration is encouraging and critical given the degree of 
privatization in the American healthcare system. 
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2.1.  Data set used for analysis 

We extracted variant classifications from ClinVar (May 2016 XML download, which remains 
archived online [ClinVar website]). We included data for genes in six different clinical specialties 
that our laboratory (Invitae) offered for clinical testing at the time and with which we were thus 
familiar (Supplemental Data). For simplicity, when one gene may be tested by multiple 
specialties, we used the most common one. Because variant-phenotype assertions are 
inconsistently populated in ClinVar these were ignored. We further limited our data set to 
classifications of germline (not somatic) variants from licensed clinical diagnostic laboratories. 
Thus data submitted by literature curation efforts (e.g. OMIM), expert panels (e.g., ENIGMA, 
InSiGHT) and research were also excluded, as these do not reflect actual clinical test reports 
provided to physicians. Finally, we required that variant classifications be on the 5-class ACMG 
system and be asserted by at least two submitters. Our data set contained 9875 variants in 409 
genes (Table 1, Supplemental Data). We note that many of these classifications pre-date the 2015 
ACMG guidelines mentioned above. 
 
 Variants Genes Classifications Variants/Gene Classifications/Variant 
Cancer 4802 55 12,703 87.3 2.7 
Cardiology 3289 163 7611 20.2 2.3 
Epilepsy 739 58 1659 12.7 2.2 
Metabolic 383 56 850 6.8 2.2 
Neurology 662 77 1376 8.6 2.1 
Total 9875 409 24,199 24.1 2.5 

Table 1. ClinVar-based data set used in this analysis. 
 
Overall, variants considered benign (B or LB) by most or all submitters composed the largest 

group (44.5%). Pathogenic variants (P or LP) made up 17.9% of the data set. Many variants 
(26.9%) were considered VUS, and 10.7% had no consensus (as defined below) for any category. 
This distribution varied significantly by clinical area (Figure 1). 

Figure 1. Fraction of variants in ClinVar for each clinical area by consensus pathogenicity. 
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2.2.  Rarity of clinically observed variants  

Because our data set was limited to variants from two or more submitters, it was naturally 
biased away from the rarest of variants. Nevertheless, this data set was predominantly composed 
of rare variants (Figure 2). Most (62%) of the ClinVar variants that also appear in ExAC [Lek, 
2016] had population allele frequencies less than 0.001, and for 36%, that frequency was less than 
0.0001. Another 22.8% of the ClinVar variants were not in ExAC at all, either because they are 
very rare or because they lie outside of ExAC’s well-covered regions. This rarity also manifests 
itself in the number of submitters who have classified each variant: Most variants had been 
classified by only two or three of the 23 submitters in this data set (Table 1). Even in the case of 
BRCA1/2, one of the most common clinically tested genes, the average was only 2.9 
classifications per variant. Rare variants comprise an even larger fraction of ClinVar overall, 
particularly variants with only a single submitter which were excluded from this data set.  
 

Figure 2. Histogram of allele frequency in ExAC for all ClinVar variants in our analysis 
regardless of pathogenicity. Note that the vast majority of ClinVar variants are in or near exons. 

2.3.  Concordance of variant classifications  

We compared variant classifications in ClinVar to assess the degree of agreement among 
clinical testing laboratories (Figure 3). We first focused on differences between positive (P or LP) 
classifications, which are potentially clinically actionable, as opposed to findings that are not 
actionable (VUS, B, or LB). We refer to this analysis as the P-NP (positive versus not positive) 
comparison. Counting each of the 9875 variants as a data point, concordance among laboratories 
was high: 96.1% of variants agreed across all (two or more) submitters. For an additional 0.9% of 
variants, there was a consensus among a majority of the submitters. We defined consensus as 
agreement in two-thirds of the submissions (i.e., consensus required two of two submissions to 
agree, or 2/3, 3/4, 4/5, 4/6, etc.). In 3% of variants, there were only two submitters who disagreed, 
and only one variant had four submitters with a 2–2 tie. Clinical care guidelines generally state 
that patients with only VUS should be managed according to their personal and family histories 
and not their genetic test results [e.g. NCCN 2016]. Thus the P-NP comparisons correlate most 
with the impact of interpretation discordance on patient care decisions.  
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When the comparison was performed on a different basis—not combining VUS with B/LB 
classifications—concordance was, of course, lower. We refer to this analysis as the P-V-B 
(pathogenic versus VUS versus benign) comparison. In this evaluation, only 83% of variants 
agreed among all submitters. A further 6% achieved consensus but with some submitter(s) in 
dissent. This much lower rate indicates that the criteria for discriminating between VUS and B/LB 
variants varies among laboratories, more so than criteria for establishing pathogenicity.  

Concordance varied considerably among clinical areas. On a P-NP basis, variants in 
cardiology and metabolic genes had concordances lower that those in the other areas, although in 
all cases concordance was greater than 90%. On a P-V-B basis, epilepsy genes fared the worst, 
followed by cardiology. The gap between P-NP and P-V-B is particularly large in epilepsy genes, 
suggesting that evidence against pathogenicity is used quite inconsistently by labs. Cursory 
analysis suggests that classification date, as expected, plays a significant role in discordance 
(Supplemental Data). A detailed analysis of the basis for discordance is important future work. 

 

Figure 3. Concordance among labs measured in different ways. See text. 

3.  BRCA1/2 

BRCA1/2 had the largest number of variants of any gene(s) in our ClinVar data set (1771 
combined) for several reasons: BRCA1 and BRCA2 are not only among the most commonly tested 
genes in clinical practice today, but also have been clinically tested for more than 20 years. 
Moreover, a significant international effort has focused on adding BRCA1/2 variants to ClinVar, 
whereas data sharing efforts for some other commonly tested genes center on previously 
established databases (e.g. the CFTR2 database for cystic fibrosis). Finally, compared with most 
human genes, BRCA1/2 have relatively large coding sequences and thus can harbor an atypically 
large number of variants. Thus, the “long tail” of BRCA1/2 variants is particularly long, and new 
variants needing classification are continually uncovered, as shown by our own data (Figure 4). 
This conclusion is consistent with unpublished reports from Myriad Genetics, which claims to 
encounter >50 new variants per week despite offering testing for 20 years [Myriad 2015] 

3.1.  Concordance among BRCA1/2 variant classifications 

In a separate study, we performed a much more detailed comparison of ClinVar data for 
BRCA1/2 using a ClinVar data set of more than 2000 comparable variants [Lincoln 2016]. This 
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analysis considered only classifications from clinical labs with significant experience (as 
evidenced by submitting 200 or more variants to ClinVar) and excluded submitters where most 
classifications were >5 years old. On a P-NP basis, 98.5% of variants showed no disagreement 
among submitters—a concordance higher than that observed in ClinVar overall. This previous 
study also showed that variants with classification discordance were rare (allele frequencies were 
always less than 0.0005 and usually were immeasurably low). Although they are numerous, rare 
variants by definition appear in very few patients: less than 15% of the 30,000 patients studied 
carried any rare variants in BRCA1 or BRCA2, and most of those were concordantly classified. In 
this prior study, concordance per patient (not per variant) was thus estimated to be 99.8%. 

Figure 4. The relationship of number of unique BRCA1/2 variants to number of patients tested at 
Invitae (dark curve). The extrapolation (light curve) was fit in R using the formula 
poly(log(Patients), 3). We chose the polynomial degree empirically by minimizing the Akaike 
Information Criteria [Sakamoto 1986]. 

3.2.  Variants of Uncertain Significance (VUS)  in BRCA1/2 

VUS can present a challenge in day-to-day clinical decision-making, and the most prevalent 
type of VUS are rare missense changes. VUS rates are traditionally defined as the fraction of 
patients with one or more VUS and no positive findings. Major U.S. laboratories report VUS rates 
in the range of 3–5% for BRCA1/2, although this rate varies considerably with ethnic mix and with 
the fraction of cancer-affected versus unaffected patients [Lincoln 2015]. On a per-variant (rather 
than per-patient) basis, the VUS rate is much higher: 31.4% of BRCA1/2 variants in our data set 
(Table 1) were VUS, although most are very rare and thus appear in very few patients. 

The evidence suggests that the majority of VUS are actually benign variants that have 
inadequate evidence to demonstrate that fact. This is supported by our own experience that most 
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VUS, when reclassified, are “downgraded” to LB or B. We also observed this in a sequential 
analysis of ClinVar releases from the past 2 years (available at [ClinVar website]) in which 
roughly 95% of BRCA1/2 VUS reclassifications were downgrades. Others have also observed this 
in Myriad data [Murray 2011]. In terms of clinical impact, a rough approximation is that if 4% of 
patients have a VUS, and if 5% of those findings are truly pathogenic variants lacking evidence of 
pathogenicity, then 1/500 BRCA1/2-positive patients may currently be missed. 

BRCA1/2 tests are increasingly being replaced by multi-gene panels that assay additional genes 
that significantly increase the risk of various cancers. By virtue of testing more genes, the VUS 
rate in these panels is substantially larger. For example, VUS rates of roughly 40% have been 
reported by 25-29 gene panels [Lincoln 2015; Desmond 2015; Tung 2015], although again, 
experience suggests that the majority of these VUS will ultimately be classified as benign.  

3.3.  The BRCA Exchange  

As of August 2016, ClinVar contains more than 9000 variants in BRCA1/2, many of which are 
either unclassified or are considered VUS. Most of these variants have been reported by only a 
single submitter. These data still represent only a fraction of the known human variation in 
BRCA1/2, much of which is either not submitted to ClimVar or is not appropriate for ClinVar (yet 
is useful to have linked). In an effort to collect a more comprehensive view of BRCA1/2 variation, 
the BRCA Exchange project has been initiated under the auspices of the Global Alliance for 
Genomics and Health’s BRCA Challenge. European laboratory data, coordinated by the Leiden 
Open Variation Database (LOVD), population databases, and other data sources are being 
combined with ClinVar in this BRCA1/2-specific public database. In its current preliminary form, 
the BRCA Exchange describes more than 13,000 variants, many of which originate from only a 
single source database (Figure 5). Not only is the BRCA exchange database open, but the code 
that populates it is open source. Future analyses of the type described in this paper could and 
should leverage this code in order to further improve reproducibility of such research. 

 

 
Figure 5. Sources of data in the pre-release BRCA exchange.  Many variants not in ClinVar and 
indeed many are unique to a single database. For details and references see brcaexchange.org. 
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4.  Discussion 

4.1.  Summary: Most variant classifications agree, but . . . 

In the analysis described above, we examined nearly 10,000 variants from ClinVar in more 
than 400 genes across six clinical areas and found generally high (>90%) variant classification 
concordance among clinical laboratories in terms of potential effect on clinical management (our 
P-NP comparison). In separate prior studies, we examined BRCA1/2 in particular detail found 
higher concordance on both a per-variant (99.0%) and a per-patient (99.8%) basis than is seen in 
the broader gene list. It is reassuring, at least for geneticists, to note that this level of concordance 
is higher than that observed among pathologists reading breast biopsies or radiologists reading 
mammograms [Elmore 2015(a,b); Elmore 2016; Sprague 2016]. Nevertheless, resolving 
differences in variant classification is critical to doctors and patients. Moreover, many variants 
(30.1%) have classifications that are concordantly VUS and much more work is required to 
classify these variants definitively even though laboratories agree.  

Public databases such as ClinVar play critical roles in the identification of both disagreements 
and uncertainties, and these databases can facilitate collaborative interactions that will resolve 
many such issues. The value of such collaboration in improving variant classifications has recently 
been demonstrated by multiple groups [Amendola 2016]. Efforts are now organized into disease-
specific working groups by the ClinGen consortium [Rehm 2015; Pfimister 2015] and support pre-
existing efforts such as ENIGMA and InSiGHT. Those with interest and expertise in these areas 
should certainly consider joining and contributing. 

Public databases can also play a critical role in laboratory quality control by allowing detailed 
independent peer scrutiny of all variant classifications by the global community. In our opinion, 
no laboratory could (or probably would) mount such an effort alone, and publication peer review 
processes can not provide this type of ongoing quality assessment. In our opinion, laboratory 
directors who are both confident in their quality yet continually working to improve should have 
no reservations about unrestricted public data submission of their data.   

4.2.  Considerations when using public clinical databases 

Our analysis highlights important considerations users must keep in mind when accessing 
public databases such as ClinVar. Foremost is that it is a fallacy to say, for example, “ClinVar 
says that variant X is pathogenic.” ClinVar itself generates no assertions; it only collects them 
from submitters. Database users must pay careful attention to the original source of each 
classification, which may be a reputable clinical laboratory rigorously following accepted 
classification guidelines, or it may not be. Dates are important, as submissions to these databases 
can become outdated, which results in false discrepancies. 

It is important that users understand the biology and medical practice considerations for each 
gene they examine in a public database. Consider three examples of the rates of variant 
pathogenicity (Figure 1) which we find unsurprising: (a) In some genes (e.g., most hereditary 
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cancer genes) loss-of-function variants are pathogenic, and nature provides many means of 
disabling genes or their proteins. In other cases (e.g., some neurology and cardiology genes), gain-
of-function mutations are clinically more important, and these, by their very nature, are less 
numerous, reducing the fraction of pathogenic variants in ClinVar. (b) The large fraction of 
pathogenic variants and small fraction of VUS in metabolic genes reflect the fact that experimental 
confirmation of pathogenicity (e.g., through blood chemistry and urinalysis) is relatively 
straightforward and standard clinical practice. However, the relatively low concordance in 
metabolic genes (Figure 3) suggests that these procedures are imperfect. (c) In cardiology, 
complexities in both phenotyping and penetrance are well known to increase the complexity of 
variant classification [Van Driest].  

Deliberate (and not nefarious) submission biases also affect ClinVar. Notably, laboratory 
policies vary as to whether and when B/LB variants are reported to patients/physicians or to 
ClinVar (even though benign polymorphisms are frequently observed). Similarly, practices for the 
detection and reporting of non-coding variants vary. Although many routine tests detect copy 
number variants, these variants are less commonly reported to ClinVar for logistical reasons (a 
situation we hope will change). Furthermore, a test may or may not be sensitive to complex 
alterations such as copy-neutral inversions, Alu insertions, or variants in low complexity or highly 
conserved regions. Although ClinVar can record the observed prevalence of any variant, this field 
is rarely filled in. Finally, ClinVar submissions generally represent laboratory patient series, which 
are subject to many undocumented ascertainment biases. For these reasons, ClinVar cannot be 
used to evaluate the spectrum of disease-causing or benign variation in any gene. 

4.3.   Whither data sharing  

Although sharing of clinical genetic data has been successful, and clearly impactful, challenges 
remain. For example, during our various analyses of ClinVar, we uncovered a number of out of 
date and erroneous submissions, which are an obvious concern. A bigger problem is the multiple 
laboratories who do not contribute. In addition to not contributing, Myriad Genetics has updated 
its terms of service to, in theory, prohibit ordering clinicians from sharing data with ClinVar 
[Robinson 2016]. A further challenge is the fragmentation of data into multiple silos. Although the 
BRCA Exchange aims to address this problem for BRCA1/2, this is a considerable effort and only 
applies to these two genes, not the many others of clinical relevance. 

In environmental policy, the term “greenwashing” has emerged to describe the characterization 
of various activities as environmentally friendly when in fact they are not. Activities can occur in 
our field that one might perhaps call “sharewashing”. For example two large commercial labs 
(Labcorp and Quest) currently contribute variants only to BRCAShare, a database whose terms 
effectively prohibit either incorporation of the data into a common repository (like the BRCA 
Exchange) or its use in comparisons such as those described here. We hope this changes, but at 
present these data are not available in unrestricted form. The BRCAShare terms also prohibit use 
of the data by other commercial labs without paying a significant fee (unlike ClinVar).  
Separately, Myriad has tried to argue that its participation in the PROMPT patient registry 
comprises data sharing. PROMPT is indeed valuable, but serves a very different purpose than 
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ClinVar. We encourage all groups to support and contribute to open, unrestricted, public 
databases, particularly ClinVar.   
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6.  Supplement 

The dataset upon which this analysis is based is available at: 
https://drive.google.com/drive/folders/0B79LNgCdve9BSWN0VHhodFFsMmM 
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