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Recent technological developments allow gathering single-cell measurements across different 

domains (genomic, transcriptomics, proteomics, imaging etc). Sophisticated computational algorithms 

are required in order to harness the power of single-cell data. This session is dedicated to 

computational methods for single-cell analysis in various biological domains, modelling of population 

heterogeneity, as well as translational applications of single cell data. 
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1.  Introduction 

Inferring the molecular mechanism of cell behavior and linking it to function and dysfunction is 

one of the ultimate goals of quantitative biology and medicine. Until recently, most measures to 

classify and characterize cellular behavior have been performed on the ‘bulk samples’, whereby a 

large number of cells were physically homogenized and then assayed. Bulk measurements erase the 

information about the potentially complex heterogeneity of cellular states within the samples. The 

problem with such approaches becomes obvious from a simple example: whenever researchers 

observe a difference in average values of a single parameter between samples, it is quite impossible 

to differentiate between a scenario where there was a homogenous change of a variable in all cells 

versus a shift in compositional ratios between a  differentially expressing populations Besides, the 

measurements derived from pooled populations of cells lack the specificity to capture outlier cell 

behavior that might explain cell differentiation and transitions from normal to disease cellular states. 

The noise, or variance, between the molecular states of different cells -- even among cells assumed 

to be homogenous – can be correlated with protein expression and function 1 as well as cell 

morphology and interaction with neighbors2. Emergence of cell heterogeneity might be sporadic 

(e.g., cell-to-cell variation in cell culture3), programmed (e.g., cell differentiation4  or immune 

receptor recombination5), or a result of adaptive evolution and semi-heritable phenotypic plasticity6. 

The ability to quantify molecular events with single cell resolution is intrinsically linked to 

analytical advances.  Unfortunately, many of those variations could not be systematically studied 

by traditional molecular biology methods, such as PCR, Western Blotting, IP, genome sequencing, 

microarrays and RNA-seq, because they lack the sensitivity and the throughput that are required for 

single cell analysis. One notable exception is immunology, which has enormously benefitted from 

early adoption of the single-cell analysis by flow cytometry and FACS. Flow cytometry has been 

pivotal to detailed characterization of various immunological processes, such as blood cell 

development and activation and has enabled systematic mapping of the roles of various immune cell 

populations in healthy and disease states. Driven by a need to distinguish multiple cell populations, 

cytometry placed emphasis on multiparametric analysis whereby the cell populations were defined 

by increasingly complex combinations of protein markers. More recently, the importance of 

multiparametric analysis has increased with advent of mass cytometry7. Many excellent 

computational tools have been developed for handling cytometry data, including specialized 

clustering algorithms for automated mapping of cell population8, machine learning tools that find 

cell populations that are correlated to clinical outcome9, data visualization tools that trace cell 

differentiation trajectories10,11, a specialized ontology of cell types12, algorithms for causal inference 

of signaling networks by leveraging huge training sets of single-cell data 13, data-driven reference 

maps of immune cell populations14 and many others. 

For many years the single-cell analysis has been associated with flow cytometry and was limited 

to measuring protein concentrations using tagged antibodies. Recent advances in experimental 

Pacific Symposium on Biocomputing 2017

558



techniques and automation have greatly expanded the scope of single-cell analysis and introduced 

completely novel readouts and modalities. Examples include: 

1. Genomic sequencing in single cells 15 

2. Single cell RNA-seq 16  

3. Single molecule RNA sequencing in situ 17   

4. Gene expression profiling by flow cytometry  18 19 

5. Histo-cytometry 20 

6. Multiplexed ion beam imaging 21 

7. Mapping of chromatin state in single cells 22 

8. Cell morphology and motility analysis in cell cultures 2 

9. Single cell western blotting23 

These emerging technologies provide an unprecedented opportunity to capture new biological 

processes and mechanisms at the single cell level. Given the list of analytical methods with a single 

cell resolving power now available, a wealth of new information, including: protein abundance, 

methylation patterns, promoter structure, gene expression, copy number variations, gene function 

and essentiality, DNA structure, evolutionary plasticity, and selective advantage can now be created 

for integration. Synthesis and interpretation of various modalities of single cell-level data now 

depends on novel computational approaches that aim to uncover and model the biological principles 

behind the cell heterogeneity. Data fusion methods that leverage prior biological knowledge for 

automated cell type annotation. Most importantly, computational methods are needed to provide a 

system-level view of the interplay of diverse, fluctuating biological components and identify 

clinically relevant and actionable modules within the biological system. In this session we feature 

excellent pieces of original research that broadly cover various aspects of single-cell analysis and 

modelling of cellular heterogeneity. 

 

2.  Session contributions 

2.1.  Data normalization and quality control 

Quality control is a cornerstone of quantitative data analysis: rigorous filtering of noisy and 

spurious signals and correction of systematic variability is lays the solid foundation which ensures 

that the downstream data analysis captures true biological effects. 

Aevermann et al. present a quality control pipeline for single-cell analysis which pioneers the 

use of objective criteria and machine learning for QC of single-nuclei sequencing data. While many 

researchers today still rely on subjective assessment of data quality, Aevermann and colleagues 

designed and trained a classifier that implements a random-forest approach with 79 features per 
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sample to stratify samples into 3 quality classes: 1 pass and 2 types of fails. Analysis of 2272 single-

nuclei samples successfully screened out 21% low quality data points. Authors demonstrated that 

removing the low-quality samples had a marked effect on the quality of the results in the downstream 

multidimensional manifold embedding analysis. 

Fread et al. devised an elegant advance for the quality control and filtering of barcoded mass 

cytometry (CyTOF) data. They are introducing a concept of per-sample filtering of data following 

the debarcoding, which allows for proper handling of potentially very significant sample-to-sample 

variations in barcode intensity. Authors are also pioneering the idea of combining multiple cellular 

features into semi-artificial filtering parameters and writing them into the FCS files, which gives the 

human analyst an opportunity to set filtering gates using gating software and adjust the positioning 

of such gates on as sample-by-sample basis, dynamically monitoring the data quality based on 

biaxial scatterplots for other parameters. This simple yet elegant improvement dramatically 

streamlines the process of filtering spurious single-cell events and their publicly available software 

can be expected to be of a great utility to the CyTOF community. 

2.2.  Manifold embedding and tracing with single-cell datasets 

One of the most exciting opportunities in the age of single-cell data is the ability to map the 

complex processes of cell differentiation by tracing the manifold shapes of single-cell distributions 

and discovering the local trajectories of cell changes in the marker space. This analysis is 

complicated by the unpredictable nature of manifolds in the data, high dimensionality of feature 

space and the instability of the local covariance matrix. 

Cordero et al. introduce an approach for linear trajectory tracing in single cell RNA-seq data 

called SCIMITAR that implements morphing Gaussian model and performs simultaneous 

estimation of the mean expression levels along the trajectory and the local covariance matrix. The 

authors introduce a new statistical test to select relevant genes based on correlation of gene 

expression to the trajectory. They convincingly demonstrate that this test is more sensitive and 

specific that a conventional group-based comparison, picking up more biologically significant genes 

than the ANOVA-based statistical test in the original paper24. While the SCIMITAR algorithm is 

currently limited by the assumption of a single curvilinear trajectory, the authors anticipate further 

extension of this approach that would allow capturing more complex manifolds. 

Kim et al. present a new scalable algorithm for fast embedding of multidimensional data based 

on LargeVis algorithm25. Unlike most embedding methods, the algorithm works in linear time, 

which it very useful given the ever-growing datasets. Authors validate the algorithm on CyTOF data 

from mouse bone marrow and show that the quality of embedding is superior to the slower tSNE 

algorithm that is currently popular in the single-cell analysis community. 

2.3.  Cross-species alignment of single-cell expression patterns 

Traditionally, comparative cytology and histology relied on qualitative descriptions of tissue 

architectures and cell functions across different organisms. The availability of single-cell data opens 

a possibility to quantitatively align differentiation trajectories and cell types between species based 
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on their expression profiles and other quantitative functional features. Such mapping could help us 

understand better the development and evolution of multicellular organisms and also facilitate the 

transfer of pre-clinical results from model organisms to human. 

Johnsons et al. harness the single-cell RNA-seq data from neural precursors in human and 

mouse for building the cross-species map of neural cell populations. They take a two-step approach, 

which starts with defining the list of genes which show concordant expression patterns across major 

neuronal precursor populations in both species. In the second step, the authors co-cluster neuronal 

cell distributions of the two species based on the concordant gene subset, thus constructing a cross-

species map of cell populations. Despite the lack of a perfect overlap, which is expected due to 

systematic differences in cell distributions between species, the authors show that the obtained 

cross-species map can be utilized for transferring the functional annotations of cells subsets between 

the corresponding population of the two species.  

2.4.  Modelling of cell heterogeneity in cancer   

While single-cell readouts provide excellent snapshots of population heterogeneity, creating 

comprehensive mathematical models of cell interactions, somatic transdifferentiation and clonal 

evolution is key to attaining detailed understanding of dynamic processes that underpin the 

population heterogeneity in cancer. By identifying the causal chains of events and iterating through 

various scenarios, mathematical models of cancer cell populations can yield clinically actionable 

predictions and assist in optimizing treatment strategies. 

Kanigel Winner and Costello present a novel modeling technique to model the treatment 

regimens for people with metastatic bladder cancer. This form of cancer metastasized to the lung 

has not been previously modeled and hence is an important and realistic problem since overall 

survival for this disease has not improved in the past three decades. The authors created a 

computational model to simulate tumor environment by carefully incorporating quantitative data 

about cell division rates, in vivo drug concentrations, in vitro IC50 curves for cancer cell lines and 

vascularization patterns of tumor microenvironment. This model was used to analyze different 

chemotherapeutic regimens much faster than getting in-vivo data. Authors strikingly demonstrated 

that the standard-of-care chemotherapeutic regimen that alternates gemcitabine and cisplatin 

inevitably leads to quick emergence of resistant clones, which goes in line with the abysmal 5-year 

survival rate (6.8%) for this type of cancer following the aforementioned treatment. Authors also 

found that any conceivable regimen combining the two drugs will eventually lead to resistance 

because of randomly surviving cancer cell clones. Key factors that contribute to this resistance is 

the inhomogeneity of drug distribution in the tissue and the ‘dilution effect’ whereby rapidly 

dividing cells effectively drop the drug concentration by splitting it between daughter cells. With 

further refinement, this model could help design novel therapeutic regimens that would hopefully 

lead to disease eradication. 
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of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA, 6Division of Vaccine Discovery, La Jolla 

Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA 

Next generation sequencing of the RNA content of single cells or single nuclei (sc/nRNA-seq) has become a 
powerful approach to understand the cellular complexity and diversity of multicellular organisms and 
environmental ecosystems.  However, the fact that the procedure begins with a relatively small amount of 
starting material, thereby pushing the limits of the laboratory procedures required, dictates that careful 
approaches for sample quality control (QC) are essential to reduce the impact of technical noise and sample 
bias in downstream analysis applications.  Here we present a preliminary framework for sample level quality 
control that is based on the collection of a series of quantitative laboratory and data metrics that are used as 
features for the construction of QC classification models using random forest machine learning approaches.  
We’ve applied this initial framework to a dataset comprised of 2272 single nuclei RNA-seq results and 
determined that ~79% of samples were of high quality.  Removal of the poor quality samples from 
downstream analysis was found to improve the cell type clustering results.  In addition, this approach 
identified quantitative features related to the proportion of unique or duplicate reads and the proportion of 
reads remaining after quality trimming as useful features for pass/fail classification.  The construction and 
use of classification models for the identification of poor quality samples provides for an objective and 
scalable approach to sc/nRNA-seq quality control. 

 

 

  

                                                             
* This work is supported by the Allen Institute for Brain Science, the JCVI Innovation Fund, and the U.S. National 

Institutes of Health 1R21AI122100. 
# Contributed equally to this work. 
† Corresponding author email: rscheuermann@jcvi.org. 

Pacific Symposium on Biocomputing 2017

564



 
 

 

 

1.  Introduction 

Single cell genomic analysis is poised to revolutionize our understanding of the diversity and 
complexity of multicellular organisms. One of the key applications of single cell genomics is the 
determination of transcriptional profiles using next generation sequencing of amplified cDNA 
synthesized from the RNA content of single cells or single nuclei (sc/nRNA-seq).  By avoiding the 
averaging phenomenon inherent in the analysis of bulk cell populations, sc/nRNA-seq is revealing 
a level of cell type complexity and dynamics that is unprecedented in comparison with previous 
technologies.   

sc/nRNA-seq has now been applied to explore a wide range of biological questions.  It has been 
used to understand the heterogeneity of somatic mutations acquired in cancer subclones arising 
from the same progenitor [Patel 2014][Min 2015], providing insights into therapeutic responses 
and disease progression.  sc/nRNA-seq has been used to track cell state transition dynamics during 
normal tissue differentiation [Nestorowa 2016], cell cycle progression [Scialdone 2015], and in 
vitro trans-differentiation induced using direct reprogramming methodologies [Treutlein 2016].  It 
has also been used to investigate the dynamics of X chromosome inactivation in preimplantation 
embryos [Petropoulus 2016], lineage determination during blastocyst development [Blakeley 
2015], T cell receptor repertoires in antigen-specific immune responses [Eltahla 2016], T cell 
progressive cell states [Proserpio 2016], variability in cellular responses to viral infections [Ciuffi 
2016], and the similarities between induced pluripotent stem cell-derived neurons and cells from 
primary tissue and cortical layers [Handel 2016].  And at its most basic level, sc/nRNA-seq is 
being used to understand the complexity of steady state cell type distributions in normal human 
tissues [Zeisel 2015][Wang 2016][Lacar 2016][Li 2016], and abnormal tissue disorders 
[Ramsköld 2012][Glaublomme 2015][Tirosh 2016]. 
RNA-seq from single nuclei (Grindberg, 2013) provides transcriptomes that strongly reflect those 
obtained from whole cells.  Nuclei can be used in place of cells to assess cell type and state, as 
well as revealing mRNAs and non-coding RNAs that are differentially enriched in the nucleus.  
The use of nuclei as a starting material also has the advantage of providing individual 
transcriptomes without the harsh proteolytic treatment required to disperse single cells from intact 
tissue specimens, which is known to alter gene expression and damage sensitive cell types.  
snRNA-seq has enabled single neuron studies even from postmortem human brain tissue 
(Krishnaswami, 2016).  Use of nuclei for RNA-seq enabled the first single neuron analysis of 
immediate early gene expression associated with memory formation in the mouse hippocampus, 
whereas proteolytic dissociation of neurons yielded artifactual expression in most cells (Lacar, 
2016).  In this study we use data from single nuclei RNA-seq, however, the QC analysis proposed 
should be equally applicable to single cell data.    
While the promise of sc/nRNA-seq is enormous, the methods used to isolate and specifically 
amplify the RNA target material in a manner that preserves the molecular structures and 
abundance levels pushes the limits of these technologies.  As a result, the impact of contaminating 
nucleic acid templates (e.g. chromosomal and other contaminating DNAs, rRNA, mtDNA), 
technical variability in laboratory reagents and procedures (e.g. variability in the efficiencies of 
enzymatic reactions, quality of oligonucleotide reagents, plate position effects, reagent stability), 
biological variability (e.g. eQTL effects) can introduce noise and bias into the resulting sequence 
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read data that can be difficult to control.  Thus, the combination of technical noise and intrinsic 
biological variability makes the detection of and control for technical artifacts challenging.  For 
this reason, the development and implementation of rigorous quality control procedures 
throughout the entire laboratory and informatics workflow is essential in order to assess, improve 
and optimize both the wet lab and dry lab component steps in order to obtain optimal transcript 
expression values for downstream analysis. 

Here we describe an approach to quality control (QC) for sc/nRNA-seq assays in which we 
capture over 70 different quantitative laboratory and data metrics and use these quality metrics to 
construct QC classification models that can be used to filter out poor quality samples from 
downstream analysis.  We’ve applied this QC approach in the context of a project to define the 
cell type complexity of the human brain neocortex in a collaboration involving the Allen Institute 
for Brain Science, the J. Craig Venter Institute, and Illumina, Inc. 

2.   Methods and Results 

 Laboratory and Informatics workflows 

Our standard laboratory workflow for single nuclei RNA-seq is summarized in Figure 1 and is 
based on the detailed protocol described previously [Krishnaswami 2016].  Single nuclei are sorted 
into 96- or 384-well plates containing 2 µL 0.2% Triton X-100, 2 Units/µL RNase inhibitor, 
1:2000000 dilution of ERCC spike-in RNAs (Life Technologies) per well and frozen immediately 
in an ethanol/dry ice bath. The ERCC external RNA control, consisting of 92 transcripts derived 
from NIST-certified plasmids that mimic natural eukaryotic mRNAs, is used to measure limits of 
detection and dynamic ranges, and can also be used to help quantify differential gene expression. 
Amplified cDNA is prepared using a Smart-Seq2 modification [Ramsköld 2012, Krishnaswami 
2016] to our previous method [Grindberg 2013] to improve amplification of transcript 5’ ends. 
cDNA quality is evaluated using Taqman qPCR for selected housekeeping (ACTB), ERCC, and 
sample-specific genes. Using the single nuclei amplified cDNA, bar coded libraries are prepared 
and 60 sample pools are used for next generation sequencing using paired end 2 x 150 chemistry 

 
Figure 1.  Single cell RNA-seq laboratory workflow – See text and [Krishnaswami 2016] for details.  
Abbreviations used: External RNA Controls Consortium RNA spike-in control (ERCC), RNase inhibitor (RNase-
In), template switching oligonucleotide (TSO), Dithiothreitol (DTT), and beta-actin (ACTB).  For Research Use 
Only.  Not for use in diagnostic procedures. 
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on an Illumina NextSeq® 500 instrument. In each of our pools we also include a small number of 
positive (diluted, purified human RNA from bulk samples) and negative controls (water only, 
ERCC only).  Sequencing results are quality controlled (QC) as described below, including the use 
of the laboratory-derived ACTB and ERCC Ct qPCR values, Bioanalyzer length distribution 
metrics, and picogreen cDNA concentration values. 

Our standard operating procedure (SOP) for data processing includes steps for primer and quality 
trimming, read alignment, transcript assembly, and expression quantification as summarized in 
Figure 2, and has been described in detail in a recent Nature Protocol publication [Krishnaswami 
2016].  After demultiplexing, cDNA, PCR, and library/bar code primer sequences and low quality 
reads are removed from the primary read-level data using Trimmomatic, producing the input reads 
for downstream steps.  The input reads are fed into several downstream pipelines - RSEM 
(Bowtie2/EM) for transcript quantification, and TopHat (Bowtie2/Cufflinks), fastQC, MEONCA 
and SCavenger for quality control metric assessment.  MEONCA and SCavenger are in-house 
developed methods that will be described elsewhere.   

 
 
 
 

 
 
Figure 2.  Single cell RNA-seq data processing workflow – Our standard operating procedure is based on the 
use of the Bowtie2/RSEM combination for sequence alignment, assembly, and transcript quantification.  In 
addition, the ouput of a variety of additional workflows produce quantitative metrics used for assessment of 
sample and sequence quality.  See text for details.  
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For the data included here, the following software and database versions were used:  

• GENCODE fasta and gtf files (http://www.gencodegenes.org/releases/current.html) 
Release 21 (GRCh38.p5);  
• FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/download.html) v0.0.14;  
• fastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) v0.10.1;  
• Picard toolkit (http://rseqc.sourceforge.net/) v1.137;  
• Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) v0.35;  
• Bowtie2 (http://sourceforge.net/projects/bowtie-bio/files/bowtie2/) v2.2.7;  
• SAM tools  (http://sourceforge.net/projects/samtools/files/samtools/) v1.3;  
• RSEM: (http://deweylab.biostat.wisc.edu/rsem/) v1.2.28;  
• Tophat (https://ccb.jhu.edu/software/tophat/index.shtml) v2.1.0;  
• Cufflinks (https://cole-trapnell-lab.github.io/cufflinks/) v2.2.1. 

One of the primary objectives of our 
informatics pipeline is to identify 
poor quality samples for possible 
exclusion, to determine the causes of 
poor quality for sample preparation 
process improvement, and to identify 
marginal quality samples for 
downstream bioinformatics 
“normalization”. Because the 
determination of transcriptional 
profiles at a single cell level pushes 
the limits of next generation 
sequencing technologies, the rigorous 
approach we use for quality control is 
perhaps the most important aspect of 
the Single Cell Genomics Lab at 
JCVI.   

Between the laboratory and data 
processing workflows described 
above, we collect 79 different 
quantitative measures that may reflect 
the quality of the input samples, 
processing steps, and resulting 
primary read-level data, which can be 
used to help address these objectives.  
Our approach is to use machine 
learning strategies, specifically 
random forest approaches, to classify 
individual sample data as either pass 

 
Figure 3.  fastQC results used to identify pass and fail samples 
– Quality statistics produced by fastQC for representative Pass (A, 
C, E, G) and Fail (B, D, F, H) samples include average Phred 
score across the length of the read (A, B), average Phred score for 
the entire read (C, D), GC per read (E, F), and Kmer distribution 
across the length of the read (G, H). 
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or fail for specific downstream analysis applications.  In order to illustrate our approach, we 
describe the preliminary results from our work to develop a pass/fail classification model for a 
collaborative project between the JCVI Single Cell Genomics Lab, the Lein Group at the Allen 
Institute for Brain Science, and Illumina, Inc. to determine the transcriptional profiles for 2272 
nuclei isolated from specific neo-cortex regions of post-mortem human brain. 
 

Manual evaluation of fastQC 
results for QC model training 

The first step in the development 
of machine learning classification 
models is to produce training data 
for model construction.  For our 
purposes, we used a set of high 
confidence pass/fail calls for 
individual samples based on the 
qualitative assessment of data 
produced by fastQC, which 
includes quality Phred scores, GC 
content, Kmer distributions, and 
sequence over-representation 
information, for a random set of 
selected samples.  Examples of 
these distributions are shown in 
Figure 3.  Pass samples generally 
exhibit high average quality per 
read across the entire length of 
the sequenced fragment (Figure 
3A & C).  In contrast, Fail 
samples exhibit a significant 
number of reads with low mean 
quality, and quality scores that 
fall off down the length of the 
fragments (Figure 3B and D).  
High quality Pass samples also 
show an average GC content 
around 40%, reflecting the GC 
content of the expressed human 
transcriptome (Figure 3E).  In 
contrast, some Fail samples show 
a second peak in the GC content 
distribution with a mean around 
48% GC (Figure 3F); this peak 
appears to be generated from 
ERCC reads, which are derived 
from bacterial genome sequences.  

 
Figure 4.  QC metrics in Pass and Fail samples – Single nuclei 
samples were annotated as Pass (P), Fail-ERCC (F-E), Fail-Phred (F-
P), and Marginal (M) based on subjective evaluation of the fastQC 
results (see text for details).  The quantitative levels of three different 
QC metrics for these four classes of samples are shown.  P-values were 
calculated using a 2-sided student’s t-test.  NN – NeuN-; NP – NeuN+ 

Pacific Symposium on Biocomputing 2017

569



 
 

 

Since we find that some Fail samples show reasonable Phred quality scores but over-
representation of ERCC reads and vice versa, we distinguish between Fail samples due to low 
quality scores (Fail-Phred) and Fail samples due to ERCC over-representation (Fail-ERCC).  
Finally, Pass samples show a Kmer content distribution in which distinct polyA and polyT peaks 
can be observed toward the beginning of the read due to the use of oligo-dT priming in 1st strand 
cDNA synthesis (Figure 3G), whereas Fail sample often show a more random pattern (Figure 3H). 

QC metric correlation with QC training data 
In order to produce training data for machine learning in the 2272 nuclei study, we selected 196 
samples at random, including 169 single nuclei samples and 27 controls (positive and negative), 
and performed a blinded qualitative evaluation of the fastQC data, producing three classification 
labels – Pass (152 samples, including all positive controls), Fail-Phred (29 samples), and Fail-
ERCC (15 samples) (all negative controls we correctly classified into one of the two Fail 
categories). Qualitative fastQC evaluation was chosen to produce training data since this approach 
is independent from the quantitative QC metrics produced by our core data processing workflows 
described above.  A few examples of the correlation between fastQC Pass/Fail calls and the 
quantitative QC metrics is shown in Figure 4.  For Fail-ERCC samples, the “percent unique reads” 
are significantly lower (p = 6.8E-11) than for the Pass samples (Figure 4A), probably due to the 
fact that with a greater proportion of ERCC reads, more duplicate reads would result.  For Fail-
Phred samples, the “percent trimmed/raw reads” are significantly lower than for the Pass samples 
(Figure 4B, p = 3.2E-43), presumably due to the fact that Trimmomatic removes reads of poor 
quality.  For Pass samples, the number of transcript isoforms detected tends to be generally higher 
than the number of transcript isoforms detected in either type of failed sample (Figure 4C).  
However, we noted that there appeared to be a subset of Pass samples that had relatively low 
isoform counts, similar to what we observed in the Fail samples.  It turns out that during the nuclei 
isolation step, we stain for the expression of a neuron-specific protein, NeuN, to ensure that we get 
a selection of both neuronal and non-neuronal cell types for our study.  When we compared data 
for NeuN+ and NeuN- passed samples, we found that the isoform counts were significantly 
different between the two major cell type categories (p = 1.8E-10), with NeuN+ nuclei and NeuN- 
producing an average of 12,162 and 6,233 transcript isoforms with >1FPKM, respectively. 
Machine learning for high throughput QC processing 

These quality annotation labels and QC metric values were then used to train the Random Forest 
algorithm as implemented in KNIME v3.1.2.  We generated 100,000 decisions trees that could 
distinguish the three categories of samples.  An example of a high scoring tree is shown in Figure 
5 in which “percent trimmed over raw” is used at the first level and is effective at distinguishing 
Fail-Phred sample from both Pass and Fail-ERCC, and “percent unique reads” is used at the 
second level to distinguish Pass from Fail-ERCC, as also seen in Figure 4.  A summary of the QC 
features that score high across the entire 100,000 decision tree collection is shown in Figure 6.  
Using this Random Forest classification model, all 196 samples in the training set were classified 
correctly with high confidence scores: 

• Pass: average confidence = 0.9689; standard deviation = 0.0524 
• Fail-Phred (F-P): average confidence = 0.8828; standard deviation = 0.0703 
• Fail-ERCC (F-E): average confidence = 0.8286; standard deviation = 0.0959 
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To test the classification accuracy of the resulting random forest model, we used an independent 
test set of 185 single nuclei samples classified using the same fastQC evaluation criteria applied to 
the training data, with 135 determined to be Pass samples, 29 determined to be Fails and 21 
determined to be Marginals. Application of the random forest model to these test Pass and Fail 
samples resulted in only 8 misclassifications (4.9%), for a classification accuracy of 95%.  
Marginal samples were split between Pass and Fail classification by the random forest model, with 
8 Marginals classified as Pass and 12 classified as Fail. 

Using this random forest model applied to the entire dataset, 79% of 2272 single nuclei samples 
passed quality control.  For these samples, the average number of reads after trimming was 
16,335,055 (±19,771,224), percent of hg38 mapped read was 33.04 (± 15.50), number of ERCC 
transcripts detected was 42.43 (± 4.37), and the number of genes detected at a level of >1FPKM 
was 6794 (± 2131), giving an average coverage of 793 reads per human gene detected.  In contrast 
for Failed-ERCC samples, the average number of reads after trimming was 10,333,560 
(±8,589,613), percent of hg38 mapped read was 12.18 (± 13.32), number of ERCC transcripts 
detected was 42.11 (± 4.73), and the number of genes detected at a level of >1FPKM was 2784 (± 
1401), giving an average coverage of 452 reads per human gene detected. For Failed-Phred 
samples, the average number of reads after trimming was 6,763,387 (±6,167,257), percent of hg38 
mapped read was 14.87 (± 12.54), number of ERCC transcripts detected was 39.60 (±12.14), and 
the number of genes detected at a level of >1FPKM was 2903 (± 1897), giving an average 
coverage of 346 reads per human gene detected.  Removal of these poor quality samples was 
found to produce tighter cell type clusters in downstream PCA/biSNE analysis (data not shown). 

 
Figure 5.  One of the 100,000 decision trees constructed from Random Forest training – The tree shows the 
different branch point levels, the feature used to segregate the branches at each level, and the segregation of the 
Pass, Fail-ERCC and Fail-Phred samples at each branch point.  The tree was truncated after the first three levels. 

Pacific Symposium on Biocomputing 2017

571



 
 

 

Discussion/Conclusion 

Many groups using sc/nRNA-seq to identify and quantify cellular diversity in complex tissue 
samples have recognized the critical importance of quality control procedures to obtain optimal 
results in downstream data analysis, and have used qualitative and quantitative assessment of 
single quality metrics for this purpose.  These include abnormal expression of housekeeping genes 
(e.g. ACTB, GAPDH) [Ting 2014, Treutlein 2014], outlier clustering [Zeisel 2015, Jiang 2016], 
median expression value cutoffs [Pollen 2014], and number of genes detected or read mapping 
rate [Kumar 2014], each with their advantages and disadvantages. In this paper we have 
demonstrated the use of a machine learning approach, specifically random forest decision trees 
with a large combination of wet lab and dry lab quantitative metrics, to objectively perform this 
QC classification.  The advantage of this approach is that not only does it provide for an objective, 
high-throughput pass-fail classification, but it also identifies those quantitative metrics that are 
most useful in identifying problematic samples.  

In this study, we found that there appear to be at least two classes of failed samples, and that the 
metrics useful in identifying each are different.  Failed samples with a second peak in the %GC 
content plot apparently due to reads derived from the ERCC spike-in control are identified by 
metrics like the % of exact duplicates and % of unique reads, presumably due to the fact that a 
relatively small number of transcripts derived from the ERCC control are responsible for a 
significant proportion of the total reads obtained from those samples.  In contrast, failed samples 
with relatively poor quality scores (low Phred scores) are identified by metrics like the % of 
trimmed over raw reads, presumably due to the impact of poor quality data trimming by the 
Trimmomatic software.  While there are some metrics that appear to be effective at identifying 
both classes of failed samples, e.g. the number of transcript isoforms with FPKM values greater 
than 1, these do not rank as high as the class-specific metrics in the useful feature list.  This 
suggest that identifying and distinguish different types of failure modes may be useful for building 
QC classification models using machine learning approaches.  And while both the three class 
prediction model used here and a two class prediction model constructed by grouping both fail 
categories into one showed perfect classification of the training data, the prediction confidence 
values for calling pass samples were slightly higher using the three class model. 

In addition, we also find that the use of metrics related to the number of genes or transcript 
isoforms detected for quality control purposes should be approached cautiously since these may 

 
Figure 6.  QC features most useful in Pass/Fail classification trees – The top ten QC metrics found useful for 
Pass/Fail sample classification are listed together with the number of trees in which they were used for branching 
at levels 1, 2, and 3, and the number of times they were considered as candidates at that given level (due to the 
feature down-sampling used by the Random Forest algorithm.  For example, percentTrimmedOverRawReads was 
considered as a candidate feature in 10977 level 1 branches and was selected as the best feature 10932 times. 
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vary between different cell types, as we observed between our NeuN+ neurons and our NeuN- 
glial cells, or between different cellular states (e.g. cell cycle phase or activation state). 

Recently, Ilicic et al. reported the use of support vector machine modeling to identify 
stressed/broken/killed cells, empty capture sites and sites with multiple cells in Fluidigm C1 flow 
cells using microscopic visualization as the gold standard for model training [Ilicic 2016].  They 
found seven features that were useful for classification independent of cell type and protocol – 
cytoplasm and mitochondrially-localized proteins, mtDNA-encoded genes, mapped reads, multi-
mapped reads, non-exonic reads, and transcriptome variance.  Differences between these and the 
features reported here could be due to the use of different quality metrics as input, the use of 
nuclei versus whole cells, or that different sorting platforms give rise to different poor quality 
modes.  In any case, the approach reported here is advantageous because it does not require visual 
microscopic inspection to produce the gold standard results for model training and therefor can be 
applied in a high throughput fashion to data from any cell sorting platform.  While the random 
forest model developed here has yet to be applied to a completely independent dataset, the test 
samples used to assess classification accuracy were derived from separate cDNA synthesis, PCR 
amplification, and library preparation reactions and sequencing runs. The fact that the model gave 
a 95% classification accuracy on this semi-independent dataset suggests that the feature included 
in the model are at least robust to technical batch effects.   

In conclusion, the use of both wet lab and dry lab metrics for the production of a QC classification 
model using random forest machine learning appears to be an effective objective strategy for the 
quality control of sc/nRNA-seq samples, providing further insights into the data features that are 
most useful for identifying problematic samples. 
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The availability of gene expression data at the single cell level makes it possible to probe the molecu-
lar underpinnings of complex biological processes such as differentiation and oncogenesis. Promising
new methods have emerged for reconstructing a progression ’trajectory’ from static single-cell tran-
scriptome measurements. However, it remains unclear how to adequately model the appreciable level
of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework
called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR)
that infers progressions from static single-cell transcriptomes by employing a continuous parametriza-
tion of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data
that highlight genes with expression and co-expression patterns that are associated with the inferred
progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolving
co-expression networks. We benchmark the method on simulated data to show that it yields accu-
rate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human
fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differenti-
ation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring
of gene-gene co-expression relations across the progression, the method reveals the rise and fall
of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new tran-
scription factors in neural differentiation including putative co-factors for the multi-functional NFAT
pathway.

Introduction

Understanding the dynamics of gene expression progression in a cell population as it traverses
a biological process such as differentiation has been an outstanding problem in modern cell
biology. These dynamics are characterized not only by the changes in cell-to-cell gene ex-
pression levels, but by the rewiring of gene regulatory networks as the cells transform from
one transcriptional state to another. Tracking these gene regulatory changes would pinpoint
coordination of biological function as gene modules are turned on or off throughout the pro-
gression.

Single-cell transcriptomics has given important insights into gene expression dynamics,
revealing the stochastic nature of gene expression and characterizing in detail the behavior of
small genetic networks.1–4 In their initial incarnation, these measurements were confined to
demanding microscopy protocols that assayed gene expression levels through time of only a
handful of genes. In recent years, advances in flow cytometry, microfluidics, and sequencing
technologies have enabled the interrogation of up to the whole transcriptome in hundreds to
thousands of cells.5–7 Application of these techniques to biological processes such as develop-
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ment provide snapshots of cell states through time and space.
Many computational methods have emerged to infer trajectories of connected state tran-

sitions from the static samplings of single-cell transcriptomes. The goal of these methods is to
provide a pseudotemporal ordering of cells in which neighboring cells are similar to each other,
capturing an overall biological progression. These approaches have been successfully applied
to elucidate complex transcriptional patterns and regulators in myoblast differentiation,8 B
cell development,9 and haematopoiesis.10 Nevertheless, cell orderings alone give little insight
into the state of gene regulatory networks across time. In addition, while most methods use
strategies to tackle biological and technical noise, none account for the dynamic, heteroscedas-
tic nature of the data. Further, only a few take into consideration uncertainties in pseudotime
assignments,11 making error estimates difficult to evaluate.

To address these challenges we propose a strategy, Single Cell Inference of MorphIng Tra-
jectories and their Associated Regulation (SCIMITAR), for inferring gene expression network
dynamics throughout biological progression from static, single-cell transcriptomes. SCIMITAR
gives a detailed, fully probabilistic description of the expression trajectory that, in contrast
with previous methods, explicitly accounts for heteroscedastic noise in the data. In addition,
it tracks the changes of gene-gene expression correlations at each point in the progression.
The probabilistic nature of SCIMITAR transition models allows for evaluating the shape of
the multivariate gene expression distribution as a function of biological progression, which we
show can be used to pinpoint co-regulatory cell states.

We benchmarked SCIMITAR’s inference capabilities in two scenarios. First, we tested its
ability to infer cell ordering and network rewiring from simulated transcriptomic measurements
where the underlying cell behavior was known. Second, we asked whether SCIMITAR could
yield insights in the developmental trajectory of human fetal neurons by analyzing recently
published fetal brain single-cell measurements. A likelihood ratio test designed for SCIMITAR
revealed 36 genes that significantly varied throughout the progression but that were missed by
standard differential expression between cell groups including genes in cornerstone develop-
mental pathways such as the hypoxia inducible factor 1 α (HIF1α), nuclear factor of activated
T cells (NFAT), and androgen receptor (AR) pathways. Further, by tracking SCIMITAR co-
expression matrices across pseudotime we were able to detect the evolution of co-regulatory
states, gene modules, and genes that gained and lost connectivity throughout the trajectory.

Results

Uncovering the full probability distribution progression underlying static
single-cell measurements with SCIMITAR

Recently, there has been an explosion of single-cell transcriptomic data in various biomedical
contexts and systems. A projection of the data from three such studies (refs8,10,12) in Fig 1A
using a locally linear embedding reveals that these datasets are characterized by distinct
groups of many cells interspersed with cells that fall along what appear to be isolines between
groups. This structure suggests a model that combines distributions for cell population density
and evolving cell states with heteroscedastic noise. One such model that could describe these
data is a continuous mixture of Gaussian distributions with constraints that allow only for
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smooth, continuous changes in parameters over the course of the progression. We call such
a model a Morphing Gaussian Mixture (MGM, see Methods and Fig 1B). The MGM has a
mean function, µ : [0, 1]→ Rn that threads through the data and is equipped with a covariance
matrix function Σ : [0, 1] → Rn×n that defines a Gaussian distribution at each point in the
progression, with n being the number of genes. The mean and covariance matrix functions
vary continuously throughout the [0, 1] interval, defining a probability P (x|µ,Σ, t) for each cell
gene expression vector x and pseudo time-point t ∈ [0, 1]. To ease inference, these mean and
covariance functions can be parametrized with different functional classes, such as polynomials,
splines, or Gaussian processes (see Methods). This probabilistic structure maps samples to a
smooth curve and allows points to veer away stochastically by modeling the structure of
the changing biological and technical noise. P (x|µ,Σ, t) captures the uncertainty of a cell
mapping to a particular pseudotime due to the changing covariance nature of the MGM. A
key advantage of this approach is that it replaces standard, grouped differential gene expression
analysis or differential co-expression analysis with a more sensitive test for potential gene-gene
regulatory relationships that change throughout the progression. Details of the MGM model
as well as inference of its parameters from data are given in the Methods section.

Benchmarking SCIMITAR in simulated data

To test our strategy, we asked whether SCIMITAR could infer the underlying cell ordering
and co-expression networks of simulated data where the ground truth was available. We tested
SCIMITAR’s cell order inference capabilities in two settings in which noise was added to
the system: 1) the noise is uncorrelated to the underlying trajectory and 2) the noise is
correlated with the trajectory. The first setting, adding noise uncorrelated with the trajectory,
tests robustness of the method in the presence of genes that are unrelated to the biological
progression and that confound ordering inference. The second setting tests how biological and
technical noise intrinsic to the system, including gene-gene correlated noise that change over
time, affect cell ordering inference.

For the first setting, we simulated data closely following the simulation procedure described
in ref.9 We simulated data in which 3 genes defined the true cell state and 7 genes represented
unrelated (uncorrelated) expression programs to the simulated progression. Simulations in
this scenario then, 3 dimensions of the data were ”signal” while 7 were ”noise”. To obtain the
three-dimensional trajectory, we performed a random walk for 600 steps and sampled a ’cell’
from a standardized normal distribution centered at the current point in the walk. We then
added seven dimensions of Gaussian noise. We generated several datasets with an increasing
noise magnitude (quantified as the standard deviation times the range of the trajectory). We
then used SCIMITAR to model these data and obtain the model’s optimal cell ordering. We
used SCIMITAR with three different functional classes (see Methods): third degree polyno-
mials, cubic splines, and Gaussian Processes with a squared exponential correlation function
(GP). We compared SCIMITAR’s performance with the cell orderings inferred by two popular
methods, Monocle8 and Wanderlust,9 and used the Pearson correlation coefficient to compare
the approaches (see Fig 2A). The best overall performers were all SCIMITAR models, with
Wanderlust coming in close second and Monocle performing slightly worse possibly due to its
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assumption of linearity in its dimensionality reduction step in agreement with previous stud-
ies.13 All methods were susceptible to the noisy dimensions uncorrelated with the trajectory.

For the second test that adds noise correlated with the trajectory, we simulated a curve,
µsim traversing a 10-dimensional space using 10 randomly-generated quadratic polynomials.
The correlated noise was simulated from the evolution of randomly generated Watts-Strogatz
networks and an additional set of quadratic polynomials with 6 different settings of signal-
to-noise ratios (see Supplemental Methods for a detailed description of this benchmark). We
found all methods performed similarly (Fig 2B), suggesting that noise intrinsic to the system,
including gene-gene statistical dependencies, equally confounds any cell ordering inference
method.

In addition to solving the cell ordering problem, SCIMITAR models track evolving gene-
gene correlations. We used the correlated noise simulations to test the accuracy of SCIMITAR’s
gene network rewiring inference. To this end, we compared the covariance functions inferred by
the polynomial, spline, and GP SCIMITAR versions. We measured the concordance of trends
between each entry of the predicted matrix functions Σpred

ij (t) and the corresponding entry of
the simulated values Σsim

ij (t) using the Pearson correlation coefficient (see Fig 2C). The spline
version of SCIMITAR produced the highest correlation coefficients while all versions were
substantially better than randomly-generated covariance matrix functions. Closer examination
of the three functional classes revealed that the GP version tended to overfit the data locally,
closely following local covariance structure even in regions where a few samples were present
while the polynomial version lacked the flexibility to model some complex twists and turns in
evolving true covariance structures. The spline version struck a balance between smoothing
inferences in intervals of the trajectory with few samples and maintaining flexibility to capture
non-linear trends. We therefore chose to use the spline functional class for SCIMITAR models
in the remainder of this study.

A differentiation model for human fetal neurons

In a previous study, Darmanis et al. obtained a transcriptomic map of the adult and fe-
tal brain using single-cell RNA-seq measurements.14 One of the findings of the study was a
continuous transition the between fetal replicating and quiescent neurons. We applied SCIM-
ITAR to infer cell ordering and network rewiring of these data to elucidate key regulatory
changes across the differentiation process. We downloaded these data from the gene expres-
sion omnibus (series identifier GSE67835) and obtained the subset corresponding to all fetal
neurons. We focused on all transcription factors that were expressed in at least 10% of the
cells, log-transformed the data and controlled for cell-cycle effects using scLVM.15 We then
fit SCIMITAR to the data and visualized the results in a two-dimensional locally linear em-
bedding (see Fig 3A). The visualization suggested a single linear trajectory that traversed
the fetal replicating and quiescent neurons which was captured by the SCIMITAR model.
To obtain progression associated genes, we used a likelihood ratio test tailored for SCIMI-
TAR models with dynamic noise (see Methods). The test revealed 92 genes with expression
that was significantly psuedotemporal-dependent (see Fig 3B). To obtain global insights from
these genes, we used hierarchical clustering with the Pearson correlation similarity metric to

Pacific Symposium on Biocomputing 2017

579



group them into 5 groups and performed Gene Ontology and KEGG pathway enrichment tests
on each group (see color groups in Fig 3B). Early-expressed genes (red and green clusters)
were associated with glucocorticoid receptors, heat shock factors, and signal transduction;
genes expressed in the middle of the progression (yellow and pink clusters) were enriched with
Maf-like proteins and cytokines; and the late-expressed genes (cyan cluster) had apoptosis,
neurogenesis, and alternative splicing enrichment. These enrichments correspond to multiple
observations in the literature. For example, heat shock factor proteins are well known to be
involved in early neurodifferentiation16 while glucocorticoid receptors and Maf-like proteins
are found to be expressed at different stages in hippocampal and developmental neurogenesis,
respectively.17,18 Further, neurodifferentiation has been found to be particularly enriched for
alternative splicing events.19

We then compared SCIMITAR’s progression associated genes to those obtained using an
ANOVA differential expression test between cells grouped according to their fetal replicating
or quiescent annotations. SCIMITAR uncovered 36 genes missed by ANOVA, most of which
were highly expressed in the middle of the progression, a detail that is lost when grouping cells
into two groups. These missed genes implicate different pathways whose genes were engaged
in progression dynamics. For example, five genes, BHLHE40, SMAD3, SP1, and SMAD4, of
the hypoxia inducible factor 1 α (HIF1α) pathway, involved in neural development,20 were
revealed to follow an ordered progression by the SCIMITAR model but missed using grouped
ANOVA differential expression (see Fig 3C). SCIMITAR revealed that the progression asso-
ciated genes of this pathway were mostly active in early stages of differentiation. SCIMITAR
also illuminated two other pathways: the Nuclear factor of activated T-cells (NFAT) and the
Androgen receptor pathway which is critical for neural stem cell fate commitment21,22 (see
Fig 3C).

We note that SCIMITAR’s progression associated genes did not include 7 genes from the
ANOVA list, false positives for which the variance was too large or where the statistic was
skewed by outliers in an otherwise lowly expressed gene. Nevertheless, three genes that seem to
be be differentially expressed by manual inspection (BCL11B, AFF1, and REST) were found
by ANOVA but missed by SCIMITAR, presumably due to a small subset of cells driving the
change between groups.

Evolving co-expression networks reveal defined co-regulatory states

We then used SCIMITAR’s inferred covariance functions to track changes in gene-gene con-
nectivity across the progression. We sampled 100 correlation matrices at regular intervals from
the covariance function, restricting the matrices to genes deemed progression associated. We
calculated a global distance matrix between networks using Frobenius distance to assess their
similarities and plotted the similarity values across pseudotime (see Fig 4A). As expected,
the strongest similarities were between networks that were neighbors in pseudotime. How-
ever, three network clusters could be appreciated in the matrix, suggesting three different
co-regulatory states. We obtained the consensus network of each state by averaging the net-
work members of the cluster. Then, we ranked each gene by comparing their co-expression
degree in each state to their co-expression degrees in the other two states using z-scores.
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The top 20 genes that gained the most connectivity in each state are listed in Fig 4B. All
of the gain-of-connectivity genes include genes that have been established as key players in
neurodifferentiation, such as PAX6, DLX1, and NEUROD6 and were enriched with neurode-
velopmental and neurogenesis GO terms.

To track highly connected gene modules of each state that significantly changed their con-
nectivity, we obtained gene modules for each co-regulatory state using affinity propagation
(with a dampening parameter of 0.5), finding 27 gene modules in total. We annotated these
modules by gene set enrichment and ordered them across pseudotime (see Fig 4C). This anal-
ysis revealed a coordinated functional response across the trajectory: modules in state 1 were
annotated with neural stem cell commitment, immune response, and protein trafficking, while
state 2 was enriched with embryonic development, neuron regulation, and pallium develop-
ment. State 3 had more diverse enrichments, from morphogenesis to membrane organelles,
suggesting a stage when cells start taking on mature neuron roles depleted of differentiation
potential. Importantly, this analysis pinpointed an NFAT-associated module to be most active
in co-regulatory state 2 (see Fig 4D). Most NFAT co-factors involved in neural development are
still unknown.23 The uncovered NFAT-associated module provides putative candidates for this
function. The full list of modules and their gene networks can be found in the Supplemental
Results (see below).

Discussion

An outstanding goal of systems biology is to understand the principles under which the gene
regulatory circuitry of a cell changes during a biological process. Single-cell transcriptomes
offer a fast way to obtain transcriptome-wide snapshots of these processes. When properly
analyzed, these data can be used to recover the principal trends of the biological progression,
but current methods do not model the dynamic gene-to-gene correlations in expression that
are the hallmarks of the underlying regulatory circuitry. Here, we presented SCIMITAR, a
strategy that leverages morphing Gaussian mixtures to track biological progression and model
the rewiring of these gene networks from static transcriptomes. SCIMITAR models account
for heteroscedastic noise and increase the statistical power to detect progression-associated
genes when compared to traditional differential expression tests. Further, the models allow for
detecting modes in co-expression structure in the trajectory: defined co-regulatory states that
represent potential metastable and transitionary cell states. We note that Gaussian mixtures
with non-diagonal covariance matrices suffer from the curse of dimensionality, which we have
tried to control for by using shrinkage estimators. Exploring the robustness of other types of
regularized estimators such as the graphical LASSO would be a logical next step to improve
confidence in the inferred morphing mixture models.

SCIMITAR is part of a recent wave of probabilistic methods for cellular trajectory recon-
struction from single-cell measurements.11,24 These types of models present several advantages,
such as assigning uncertainty estimates of cell orderings and providing a natural way for map-
ping new samples to a trained model — a necessary task for building queryable trajectory
maps with multiple progressions. Although SCIMITAR as presented cannot model branched
cellular trajectories such as those corresponding to multiple cell fate decisions, the framework
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can be readily extended by replacing the single-curve parametrization of the mixtures with a
branching structure, which deserves further investigation.

Methods

Morphing Gaussian Mixtures: correlated gene progression modeling with
no dimensionality reduction

Single-cell transcriptomic measurements are high-dimensional, with the number of variables
measured typically ranging from a few markers (generally no less than 48) to the full transcrip-
tome that can be upwards around 30000 transcripts. However, not every gene or transcript is
relevant to the biological system of interest and most are not expressed at all. Further, due to
the underlying gene regulatory networks, the expression patterns of many genes are correlated
and the strength of this correlation changes throughout the progression as the regulatory sys-
tem changes from one cell state to the next. These biological constraints put the data in some
low-dimensional manifold, a property that is used in various ways by cell ordering algorithms
to justify reducing the dimensionality of the dataset to a manageable number of dimensions.
Monocle, for example, reduces the data’s dimensionality to 2 dimensions using independent
component analysis and performs its calculations on a lower dimensional manifold. While the
procedure captures general aspects of the trajectory, 2 dimensions is generally not enough to
capture all of the relevant variability of the data and the reduction leads to loss of information
that can impact trajectory reconstruction (see e.g. our benchmarks in the Results sections and
other benchmarks in13,24). Other methods, such as Wanderlust, reduce the dimensionality in a
more principled way through nearest-neighbor calculations but forego capturing the changes
in gene-gene expression correlations over time. To address both of these shortcomings, we
introduce a model that retains the dimensionality of the dataset and tracks gene-gene cor-
relations throughout the trajectory. To this end, we extended Gaussian graphical models to
accommodate time-dependent changes in the mean and covariances of the model with time
being a latent variable.

Gaussian graphical models are one of the dominant frameworks for analyzing gene expres-
sion data, where the data is assumed to follow a multivariate Gaussian distribution defined
by a mean vector and a covariance matrix. Modeling the data becomes more challenging in
the presence of population structure where several different populations, each with its own
distribution, are intermixed. Gaussian mixture models, which posit that the data comes from
a finite combination of multivariate Gaussians, have been used successfully in this scenario.25

In static single-cell expression from a group of cells continuously undergoing a biological pro-
cess, such as differentiation, the boundaries between populations are blurred and the data is
best described as a continuous transformation between the first and last states. We model
this transformation by assuming that the data comes from a continuous Gaussian mixture,
parametrized by timepoints within the progression (the so-called pseudotime), which are un-
known. Let X be the data, p the number of genes, µ : [0, 1] → Rp,Σ : [0, 1] → Rp×p the mean
and covariance functions of the evolving populations that are time dependent, and γ a prob-
ability distribution on the [0, 1] interval representing cell population density at each pseudo
time-point. Then the probability of the data given the model M = {µ,Σ, γ} can be written as:
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P (X|M) =

∫ 1

0
γ(t)P (X|µ(t),Σ(t)) (1)

Here, t stands for the pseudotime in the progression. This model, which we name the
morphing Gaussian mixture model (MGM), differs from other mixture models in that we
require the mean and covariance structures to be described through continuous functions and
generalize other related models such as principal curves by inferring local covariance structure
in addition to the mean curve. The changing covariance structure allows the model to both keep
the dimensionality of the dataset and track co-expression changes throughout the progression.

To fit the model to the data, we use a maximum likelihood approach. As previously defined,
the parameters in the MGM model are difficult to infer, since optimization of the likelihood
function requires searching the space of all continuous functions. Additionally, the positive-
definite requirement on Σ(t) makes fitting the matrix function difficult. Therefore, we recast
the problem of fitting Σ(t) into fitting its pseudotime-dependant Cholesky decompositions:
Σ(t) = C(t)TC(t),∀t and impose a functional form to the µ(t) and C(t) functions. We consider
three different functional classes: polynomials, Gaussian processes with squared exponential
correlation models, and cubic, De Boor smoothing splines, a special case of Gaussian processes.

To fit the parameters of the model, we employ coordinate ascent. In the first step, we are
given a fixed set values for M and we calculate, for each sample x, the optimal pseudotime
topt in the [0, 1] interval for which P (x|µ(topt),Σ(topt)) is maximized. In the second step, given
optimal pseudotime values, we calculate the cell density γ by fitting kernel density estimator
to the assigned pseudo time-points. Finally, in the third step, given density weights γ and
pseudotime assignments, we find the µ and Σ functions that best fit the data. To achieve
this, we approximate µ(t) and C(t) locally by obtaining optimal values at the pseudo time-
points 0, 0.1, 0.2, ..., 1.0, inferring the local mean and covariance using each data point weighted
by their probabilities as given by γ, and leveraging these values to fit functions from the
desired functional class (e.g. a polynomial, spline, or Gaussian process). Because we may
have considerably less samples than genes, we use the Ledoit-Wolf-type estimator in the R
corpcor package to fit the covariance at each pseudo time-point. We repeat this procedure
until convergence, as evaluated by the Pearson correlation coefficient of current and past
pseudotimes, with stopping criterion r > 0.9. As initial values for pseudotime assignments to
our optimization routine, we use a de-noised one-dimensional locally linear embedding.26

Visualization of the data and SCIMITAR models

To visualize the data and models, we use 2-dimensional locally-linear embeddings, with num-
ber of neighbors set to 80% of the number of samples. We plot SCIMITAR means by sampling
100 equidistant points across the mean function and projecting to the embedding. To obtain
a projection of the SCIMITAR model’s probability density function, we obtain 1000 sam-
ples from the model, evenly spaced across pseudotimes in the [0, 1] interval, project to the
embedding, and plot a 2-dimensional kernel density estimator of the 1000 points.
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A progression association statistical test

To obtain genes whose expression is progression-dependent, we use a likelihood ratio test to
compare the SCIMITAR model of each gene’s progression and the null hypothesis where the
expression of the gene is ’flat-lined’, i.e. does not track with the model’s path. Specifically, we
calculate the statistic:

LR = log(Lnull(µ̂, σ̂))− log(Lscim(µ,Σ)) (2)

Where Lscim, Lnull are the likelihood functions of the SCIMITAR and null models, respec-
tively, with the null distribution defined as a normal distribution centered at the empirical
mean µ̂ and standard deviation σ̂ of all the data representing the case where the data is in-
dependent of the progression. To assess whether the null hypothesis should be rejected, we
obtain the distribution of LR under the null hypothesis using parametric bootstrapping with
1000 samples and compare the resulting ratios to the LR of the data. We use the Benjamini-
Hochberg procedure to correct for multiple comparisons, setting an FDR cutoff of 5%.
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Figures

Fig. 1. A. Survey of three different single-cell transcriptomic studies. From left to right: murine haematopoiesis
by Guo et al., early blood development by Moignard et al., and myocyte differentiation by Trapnell et al.
B. Overview of the SCIMITAR method. Trajectory modeling with dynamic and correlated noise of static
transcriptomes of asynchronous cells is achieved by iterating through optimal cell ordering and inference of a
continuous set of Gaussian distributions in a morphing mixture of Gaussian models (see Methods in text).
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Fig. 2. SCIMITAR in silico benchmark. A. Cell ordering results for three functional classes of SCIMITAR (a
third degree polynomial, a cubic spline, and Gaussian processes with squared exponential correlation model)
and two state-of-the-art methods Monocle and Wanderlust in a setting with noise uncorrelated to the trajec-
tory. B. Cell ordering results for noise correlated with the trajectory. C. Evaluation results of network rewiring
across biological progression for SCIMITAR’s three functional classes and random covariance functions.

Fig. 3. A. SCIMITAR model for fetal neuron differentiation, projected to a 2-dimensional locally linear em-
bedding. The data is plotted as circles in blue (fetal replicating neurons) and green (fetal quiescent nuerons)
while the SCIMITAR model’s mean is plotted in black and its projected PDF is plotted in orange. B. Nor-
malized SCIMITAR model means for genes that were deemed progression associated across the progression,
clustered into five different clusters using expression correlation throughout psuedotime. C. Expression levels
of several genes from three central neurodifferentiation pathways: the HIF1α, NFAT, and Androgen Receptor
(AR) pathways that were pinpointed by SCIMITAR associated progression tests.
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Fig. 4. A. Similarity matrix between co-expression matrices fitted in the SCIMITAR fetal neuron differentia-
tion model across pseudotime. Three different co-regulatory states can be appreciated in the matrix, marked in
blue, green, and red. B. Top 20 genes with the most gain-of-connectivity in each co-regulatory state alongside
their log co-expression degree. C. Evolution of annotated modules. Each column is a module and each row
is a gene annotation — enrichments are shown as −log(p − value) in the heatmap. Column colors denote
co-regulatory state. An NFAT-associated module of state 2 is highlighted in the red matrix
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Pooled sample analysis by mass cytometry barcoding carries many advantages: reduced antibody 
consumption, increased sample throughput, removal of cell doublets, reduction of cross-contamination by 
sample carryover, and the elimination of tube-to-tube-variability in antibody staining. A single-cell 
debarcoding algorithm was previously developed to improve the accuracy and yield of sample deconvolution, 
but this method was limited to using fixed parameters for debarcoding stringency filtering, which could 
introduce cell-specific or sample-specific bias to cell yield in scenarios where barcode staining intensity and 
variance are not uniform across the pooled samples. To address this issue, we have updated the algorithm to 
output debarcoding parameters for every cell in the sample-assigned FCS files, which allows for visualization 
and analysis of these parameters via flow cytometry analysis software. This strategy can be used to detect 
cell type-specific and sample-specific effects on the underlying cell data that arise during the debarcoding 
process. An additional benefit to this strategy is the decoupling of barcode stringency filtering from the 
debarcoding and sample assignment process. This is accomplished by removing the stringency filters during 
sample assignment, and then filtering after the fact with 1- and 2-dimensional gating on the debarcoding 
parameters which are output with the FCS files. These data exploration strategies serve as an important 
quality check for barcoded mass cytometry datasets, and allow cell type and sample-specific stringency 
adjustment that can remove bias in cell yield introduced during the debarcoding process.  

 * This work is supported in part by the University of Virginia Department of Biomedical Engineering, CIRM Basic 
Biology II Grant RB2-01592, and NIH F32 GM093508-01.
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1.  Introduction 

1.1.  Sample multiplexing for flow cytometry and mass cytometry with cell barcoding 

Sample multiplexing, also referred to as pooled sample analysis, is a general approach that has been 
applied to several biological assays, including ELISA immunoassay1, next-generation DNA 
sequencing2,3, fluorescence-based flow cytometry4, and mass cytometry5–7. In this approach, 
individual samples are labeled with unique identifiers, and then pooled together for processing and 
measurement. These unique identifiers can be thought of as sample-specific barcodes. After 
processing and measurement, the pooled sample dataset is deconvolved using these barcodes to 
recover individual sample data for further analysis (Fig. 1A). 

 

Figure 1. Mass cytometry barcoding overview. (A) General strategy for pooled sample analysis. (B) Flow and mass 
cytometry-specific advantages to cell barcoding for pooled sample analysis. (C) Binary cell barcoding strategy for flow 
and mass cytometry, in which every cell is labeled either positively or negatively on barcode-dedicated channels. 

The obvious advantages gained by sample multiplexing are a) reducing the time and resources 
required to analyze multiple samples, and b) improving the comparability between samples, because 
they are processed identically after pooling. Major advantages specific to flow cytometry and mass 
cytometry include reduced antibody consumption, increased sample acquisition rate, and the 
elimination of tube-to-tube variability in antibody staining conditions (Fig. 1B).  

Sample multiplexing for fluorescence-based flow cytometry is performed with cell-reactive dyes 
that bind irreversibly to accessible nucleophiles on the cell4. These accessible nucleophiles include 
free thiols present on cysteine residues, and free amines present on lysine residues and at the N-
terminus of proteins. While not strictly required, cell permeabilization greatly improves cell 
barcoding performance by increasing the number of accessible nucleophiles available on each cell. 
Multiple levels of fluorophore labeling can be achieved – previous studies have demonstrated 96-
sample multiplexing with only 3 dedicated fluorescence channels: Alexa Fluor 700 (4 staining 
levels), Pacific Blue (4 staining levels), and Alexa Fluor 488 (6 staining levels)4. This multi-level 
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staining approach allows for a high level of multiplexing with limited measurement channels, but 
relies on uniform levels of dye reactivity between all cell types and samples. 

If there is considerable variability in labeling reagent uptake between cell types or sample types, a 
simpler binary cell barcoding approach can be applied to improve the fidelity of cell sample 
assignment at the deconvolution step. Because each cell sample is labeled either positively or 
negatively on each barcode-dedicated channel, the two populations are better separated with less 
potential for overlap (Fig. 1C). This approach is favored for mass cytometry cell barcoding, because 
the lanthanide and palladium-based barcode reagents react rapidly with cells even at 4°C5,7, making 
the labeling reaction effectively stoichiometric and therefore more sensitive to variability between 
the samples in cell number, cell type/size, the presence of cellular debris, and residual bovine serum 
albumin (BSA) from the wash buffer. Using a binary barcode scheme requires more barcode-
dedicated measurement channels than multi-level labeling, but allows for greater sample assignment 
fidelity during deconvolution while still permitting over 40 molecular measurements per cell with a 
staining panel made up of lanthanide-based mass cytometry antibodies, I127-IdU to mark S-phase 
cells8, and cisplatin as a viability stain9. 

1.2. Doublet-filtering cell barcode scheme 

Cell doublets (as well as triplets, quadruplets, and higher-order cell clusters) pose a significant 
challenge for single-cell analysis. When analyzing or performing fluorescence-activated cell sorting 
(FACS) on cell samples with known and well-defined cell types, such as whole blood or primary 
blood mononuclear cells (PBMCs), cell doublets are for the most part an annoyance that can be 
gated out using cell surface markers and light scatter properties. In certain defined settings, the study 
of cell doublets by flow cytometry has even proved to be illuminating with respect to cell adhesion 
and cell-cell interactions10. However, during exploratory analysis of uncharacterized cell samples 
and cell types, cell doublets are especially problematic, because they may be falsely interpreted as 
a novel cell type that shares the molecular characteristics of its two component cells. 

Fluorescence-based flow cytometry has forward scatter (FSC) and side scatter (SSC) parameters 
that can be used to identify and remove cell doublets by two-dimensional gating11. Mass cytometry 
does not have a comparable measurement parameter, but a binary barcode scheme has been 
developed that can identify and remove cell doublets as well as higher-order clusters7. Instead of 
using every possible binary combination, this doublet-filtering barcode scheme uses a limited subset 
of binary combinations, such that any doublet combination will result in an “illegal” combination 
that is recognized as a doublet and removed from the dataset. A binary barcode scheme with n 
dedicated measurement channels will provide 2n unique barcode combinations, but the doublet 
filtering binary barcode scheme only uses n-choose-k combinations, where k = n/2. 6 palladium 
isotopes are often used for cell barcoding because they are incompatible with the DTPA-based 
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polymer used to label antibodies with lanthanide metals12. Instead of multiplexing 64 samples with 
all binary combinations (26) of the palladium isotopes, the doublet-filtering scheme only allows 20-
sample multiplexing (6-choose-3) with palladium-based barcoding reagents (Fig. 2A). Because each 
barcode combination in this scheme is positive for exactly 3 palladium isotopes (Fig. 2B), any cell 
that is positive for 4 or more palladium isotopes will be identified as a cell doublet and removed 
from the dataset (Fig. 2C). 

 

Figure 2. Doublet filtering barcode scheme. (A) Sample multiplexing with exhaustive (2n) and doublet-filtering (n-
choose-k) barcode schemes. (B) Palladium isotope combinations for doublet-filtering barcode scheme. (C) Doublet 
identification by “illegal” barcode combination viewed in the mass trace scanning window of the mass cytometer. 

This doublet-filtering scheme has become part of the standard mass cytometry workflow for many 
laboratories, and was incorporated into the third-generation HeliosTM CyTOF® mass cytometer. Each 
user should consider the benefits of each approach for their experiment, because in some cases 
increased sample multiplexing could be more valuable than doublet removal. However, the recent 
description of ruthenium and osmium-based cell barcoding reagents suggests that high-level 
multiplexing with simultaneous doublet-filtering is now within reach13, without having to give up 
any of the traditional mass cytometry measurement channels such as the lanthanide series metals. 

1.3. Sample deconvolution by sequential gating and Boolean gating strategies 

After pooled sample analysis, sample-specific barcodes are used to recover individual sample data 
for analysis. Different approaches have been applied to this deconvolution step, including cell type-
specific gating followed by sequential 2-D barcode gating4 or Boolean 1-D barcode gating5. Two 
drawbacks from these gating approaches are 1) time-consuming manual gating, and 2) the potential 
for cell loss or sample mis-assignment. In situations where the separation between barcoded 
populations is not large enough to be separable (Fig. 3A), the researcher must decide whether to 
throw out cells that reside in this intermediate space (Fig. 3B), or to split the populations and accept 
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that some cells may be incorrectly assigned (Fig. 3C). In barcoded samples there is very often at 
least a small number of cells present in this intermediate zone that cannot be assigned to a specific 
sample by this debarcoding method. Usually this population is minor as shown in Figure 1C, but 
results like Figure 3A can also occur, particularly if the cell number in one or more samples is not 
estimated accurately resulting in uneven barcode labeling between samples. For this 1-D or 2-D 
gating strategy, boundaries can be drawn algorithmically using distribution shape and percentile 
cut-points, but the exact placement will depend on how the competing desires for cell yield vs. 
sample assignment accuracy. 

 

Figure 3. Traditional gating method on poorly-separated barcode sample. (A) Overlapping positive and negative barcode 
populations. (B) Intermediate cells can be thrown out to increase barcode deconvolution stringency. (C) Intermediate 
cells can be assigned to increase barcode deconvolution yield. 

1.4. Sample deconvolution by single-cell debarcoding algorithm 

In order to recover as many cells as possible in an automated and unbiased manner, a novel method 
for barcode deconvolution was previously developed, termed single-cell debarcoding7. This method 
is designed to perform especially well with the problematic “intermediate zone” cells. Instead of 
population-based gating, it looks at each cell individually, and asks “which sample barcode does 
this cell most closely resemble?” Sample assignment and the level of confidence associated with it 
is calculated by the separation distance between normalized positive and negative barcode channel 
measurements (Fig. 4A). The choice of separation distance used for this calculation depends on the 
binary barcode scheme being used. For exhaustive non-doublet-filtering barcode schemes, the 
largest separation distance is identified. For doublet-filtering barcode schemes, the distance between 
the top n/2 and bottom n/2 normalized barcode intensities is used, whether or not this is the largest 
separation distance present. If the separation distance is large, there is high confidence that the 
barcode sample assignment is correct. If the separation distance is small, there is low confidence 
that the barcode sample assignment is correct and these cells may be discarded depending on the 
deconvolution stringency desired. 

Pacific Symposium on Biocomputing 2017

592



  

 

Figure 4. Single-cell debarcoding algorithm. (A) After normalization of the individual barode channel intensities, 
separation distances (indicated by a red line and the letter “d”) are calculated for every cell. In this example, a 6-channel 
doublet-filtering barcode scheme was used. Therefore, event 1 does not receive a sample assignment because it appears 
to be a doublet with 4 positive barcode channels and a small separation distance between the top 3 and bottom 3 barcode 
intensities. Event 5 has low normalized intensities for all 6 barcode measurement channels, and therefore appears to be 
“debris.” (B) The relationship between separation distance cutoff and debarcoder cell yield. Each colored line represents 
one of the 20 samples in a 6-metal, doublet-filtering, pooled sample dataset. Cell yield decreases with increasing 
separation distance cutoff stringency, but plateaus somewhat between 0.1 and 0.6. (C) Mahalanobis plots of every 
barcode-by-barcode biaxial plot for a single assigned cell sample. Every cell is colored by mahalanobis distance, from 
low (0-red) to high (30-blue). 

The single-cell debarcoding software tool was released as a MATLAB standalone executable 
(https://github.com/nolanlab/single-cell-debarcoder)7 that does not require a MATLAB installation 
(http://www.mathworks.com/products/compiler/). This software tool performs debarcoding and 
sample assignment in a semi-automated manner, presenting the user with visualizations that aid in 
the choice of two key debarcoding parameters: the separation distance cutoff which affects sample 
assignment stringency and cell yield (Fig. 4B), and the mahalanobis distance cutoff which is used 
to trim outliers (Fig. 4C). Standard practice for the single-cell debarcoder is to choose a separation 
cutoff distance that is as stringent as possible without severe cell loss, such as approximately 0.5 in 
Figure 4B. Most separation distance plots follow a similar trend, with a plateau in the center flanked 
by steep declines in the 0-0.1 range (debris and cell doublets) and approaching 1 (all cells will 
eventually fail the stringency test). Mahalanobis plots are more variable, depending on the mix of 
cell types in each sample. There is no specific rule or recommendation for setting the mahalanobis 
distance cutoff, but the default setting of 30 is a good starting point for 6-metal/20-sample 
palladium-barcoded samples. After the user selects values for the separation distance cutoff and 
mahalanobis distance cutoff parameters, the single-cell debarcoder tool outputs every deconvolved 
cell sample as an FCS file. 

1.5 Limitations and drawbacks to using fixed-value debarcoding cutoff parameters 
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Applying the same parameter cutoffs to each sample while debarcoding as previously described7 is 
not optimal, because each sample was barcode-stained individually and will therefore vary in 
barcode staining intensity and population-level variance. If all samples are similar (in terms of cell 
type, cell number, cellular debris, and residual BSA concentration) and the cell barcoding protocol 
is performed precisely, then barcode staining will be fairly uniform across every sample. Frequently 
this is not the case however, resulting in considerable variability of barcode staining between cell 
samples and large differences in sample behavior with respect to the debarcoding parameters, 
especially the normalized barcode separation distance cutoff (Fig. 5A). 

 

Figure 5. Cell barcode variability and its consequences. (A) Cell samples representing 20 different cell types were 
barcoded by the 6-palladium doublet-filtering method and then pooled for analysis. The amount of barcode reagent 
added to each sample was adjusted according to cell number in each sample to normalize barcode staining intensity. 
Variability in barcode separation distance was observed between the samples, but is only weakly correlated to barcode 
staining intensity, as measured by the 6-metal summed barcode intensity medians for each sample. (B) Three of the 
twenty barcoded cell samples, which show highly variable barcode separation distance levels, precluding a single 
optimal cutoff value. (C) Apoptotic cells with elevated levels of p53, cleaved-PARP, and cisplatin labeling have reduced 
barcode separation distance, and could be unintentionally discarded from analysis with a typical debarcoding workflow. 
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In this scenario, no single cutoff value for barcode separation distance is optimal for every sample, 
forcing the researcher to choose between depleting cells of interest in some samples, or enriching 
for cellular debris in other samples (Fig. 5B). In addition to cross-sample differences, different cell 
types can be depleted or enriched within a single sample due to differences in barcode staining 
behavior based on cell size, cell identity, or cell state (Fig. 5C). These sample-specific and cell type-
specific effects are usually minimal, but have the potential to introduce bias into the analysis and 
conclusions drawn from barcoded mass cytometry experiments. Therefore, each barcoded dataset 
should be investigated to detect the extent of these effects, and correct for them if necessary. 

2. Methods 

2.1 Output single-cell debarcoding parameters with each FCS file for visualization and analysis 

With the previously released debarcoding tool7, investigating the possibility for barcode-related 
enrichment or depletion of specific samples and cell types required laborious and time-consuming 
back and forth between rounds of debarcoding and FCS file analysis. Side-by-side comparison of 
FCS files debarcoded with iterative values for the debarcoding parameters was necessary to detect 
cell type or sample-specific effects. To obviate the need for this slow and inefficient analysis, we 
have updated the debarcoding software tool to output the debarcoding parameter values for each 
cell as additional data columns in the FCS file. This update allows for visualization of the barcode 
parameters, and analysis of how they interact with the other measured parameters and cell types of 
interest. The MATLAB source code for the updated software tool as well as pre-compiled 
executable files that do not require MATLAB installation are available to download at 
https://github.com/zunderlab/single-cell-debarcoder. 

2.2 Post-assignment application of debarcode stringency filter and outlier trimming 

 

Figure 6. Sample-specific stringency adjustment by individual gating on debarcode parameters. (A) FCS output of the 
debarcoding parameters allows different strategies for stringency filtering. The option for individually-tailored 2-D 
gating on normalized barcode separation distance and mahalanobis distance is presented. (B) Two cell samples from 
Fig. 6A are highlighted to illustrate the population-level differences in barcode parameters between samples. 
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In addition to visualization and analysis, outputting the debarcode parameters in the FCS file has 
another practical benefit: stringency filters can be turned off during the debarcoding step and applied 
after the fact instead. This gives the user flexibility in their choice of stringency filtering: they may 
apply fixed parameters as in the previous version of this method, or perform sample-specific two-
dimensional gating on the debarcode parameters (Fig. 6A). Whichever method is chosen, the user 
is given the tools to explore these parameters and their relationship to other cell measurements, 
which will aid in the choice of filtering strategy and its implementation. Some users may prefer 
fixed parameter stringency filtering because it is simpler and less time consuming, but users with 
complex, variable samples should consider individually-tailored stringency filtering, which requires 
more time to implement but helps prevent the introduction of sample-specific biases (Fig. 6B). 

3. Results 

3.1. Precision Debarcode Stringency Filtering 

The newly updated single-cell debarcoding software tool functions identically to the previous 
version, but with two additions: 1) values for the normalized barcode separation distance and 
mahalanobis distance are output for every cell, and 2) default parameters for debarcoding are set as 
“barcode separation threshold = 0” and “mahalanobis distance threshold = inf” (Fig. 7A). These 
default parameters ensure that every cell is assigned to a sample for FCS output and can be filtered 
after the fact. This differs from the fixed-parameter filtering which took place at the debarcoding 
step in the previous software version, resulting in an additional FCS output for unassigned cell 
events. Outputting the entire dataset (Fig. 7B) with this new method allows for precision stringency 
filtering by gating on the debarcode parameters (Fig. 7C). This gating will typically be performed 
using flow cytometry/FCS analysis software, and can be done iteratively and in combination with 
more fundamental cell type and dataset-specific analyses.  

 

Figure 7. Debarcode stringency gating overview. (A) 20-sample Pd-based doublet-filtering barcode sample, ungated. 
(B) Barcode stringency trimming by 2-D gating on the normalized barcode separation distance vs. mahalanobis distance. 
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3.2 Identification and Reduction of Debarcoding-induced Sample Bias 

 

Figure 8. Sample-specific debarcode stringency gating reduces unbalanced enrichment of cleaved-PARP-positive cells. 
(A) Two options for stringency gating are displayed in magenta: fixed-parameter and sample-specific. (B) Cleaved-
PARP intensity color scale applied to the plot from Figure 8A reveals that fewer cells with elevated cleaved-PARP 
levels fall within the fixed-parameter gate in sample 1 compared to samples 2 and 3. (C-E) The percentages of cleaved-
PARP-positive cells present in the bulk-gated, individually-gated, and ungated populations. 

Sample-specific debarcode gating on the normalized separation distance and mahalanobis 
parameters provides the greatest advantage over the previously used fixed-parameter debarcoding 
method when there is variability in the debarcode parameters between samples (Fig. 8A), which can 
lead to uneven distribution of specific cell types across the debarcoded samples. Cells with elevated 
cleaved-PARP levels are associated with lower separation distance and higher mahalanobis distance 
(Fig. 8B). This leads to disproportionate enrichment for cleaved-PARP cells in some samples when 
using fixed-parameter debarcode filtering (Fig. 8C), but is ameliorated by sample-specific gating 
(Fig. 8D), which more closely matches the ungated sample ratios (Fig. 8E). 

4. Discussion 

This updated method for single-cell mass cytometry debarcoding allows for visualization and 
analysis of the debarcoding parameters, and how they specifically relate to every other cell 
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measurement. This can be used to detect any cell type-specific or sample-specific effect of the 
debarcoding process on the underlying cell data of interest. The source code and Win/Mac 
executable software are available to download from https://github.com/zunderlab/single-cell-
debarcoder. We recommend that this analysis be performed on every debarcoded dataset as a data 
quality check, particularly when mixed cell types and sample types are barcoded together. In 
addition to data quality verification, the output debarcoding parameters in every assigned FCS file 
can be used to guide sample-specific stringency filtering that can be performed after the fact rather 
than during the debarcoding process. This allows multiple stringency levels to be tested rapidly 
using flow cytometry/FCS analysis software, where multiple iterations of 1-D or 2-D gating can be 
used while monitoring the effect on cell type-specific and sample-specific cell yield as well as 
overall data quality. One limitation to this method is that stringency filtering is not automated, and 
currently relies on hand-drawn gates. While this method is optimally used to reduce cell yield and 
enrichment bias between cell samples and cell types that vary in barcode staining behavior, sample-
specific or cell type-specific manual gating has the potential to introduce bias. As with any other 
hand-drawn gating analysis, the barcode gating strategy should always be presented in addition to 
further analysis in order to mitigate this potential for user-introduced bias. In the future, stringency 
filtering could be automated with sequential, percentile-based gating steps; or more complex 
computational methods. 
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Mouse brain transcriptomic studies are important in the understanding of the structural heterogeneity in the brain. 
However, it is not well understood how cell types in the mouse brain relate to human brain cell types on a cellular 
level. We propose that it is possible with single cell granularity to find concordant genes between mouse and human 
and that these genes can be used to separate cell types across species. We show that a set of concordant genes can be 
algorithmically derived from a combination of human and mouse single cell sequencing data. Using this gene set, we 
show that similar cell types shared between mouse and human cluster together. Furthermore we find that previously 
unclassified human cells can be mapped to the glial/vascular cell type by integrating mouse cell type expression 
profiles. 
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1.  Introduction 

Mouse models are an important part of biomedical research and are routinely used as a stepping-
stone towards treatments for humans – gleaning knowledge from high-throughput low risk 
experiments. Translating this knowledge requires a firm understanding of similarities between 
these two species [1-2]. Homologous genes exist between these species and these genes often play 
similar roles in the brain [3]. However, the biochemical pathways within each species have subtle 
to extreme differences leading to subsets of homologous genes without exact mechanistic overlap 
in the brain [4]. To address the issue of identifying functionally similar homologous genes we 
propose the concept of concordant genes defined as gene homologs that mechanistically behave 
similarly between two species [5]. Specifically, we hypothesize that concordant genes between 
mouse and human exist and that those genes can be algorithmically derived from combined 
mouse-human data. We also hypothesize that based off of these concordant genes we can 
determine cell type matching between mouse and human. Specifically in this study we focus on 
the comparison of brain cell gene expression profiles between mouse and human to identify 
concordant gene expression patterns in the brain tissue associated with different cell types taking 
advantages of recent development in single cell transcriptomics for brain cells. We hope that the 
single cell granularity of these comparisons will augment the tissue level comparisons of the 
human and mouse brain transcriptome [6]. 
 
RNA sequencing (RNA-Seq) in the past has been used to study brain structure, development, and 
disease [7]. Recently RNA-Seq has become more granular in the form of single cell RNA 
sequencing (scRNA-Seq) which is an important tool in the study of tissue heterogeneity due to its 
unique ability to characterize transcriptomes at the cellular level [8]. Recent advances in single 
cell transcriptomics in the brain have provided researchers with an influx of new data spanning 
different brain regions, diseases, and species [9]. Specifically, the Linnarsson group amassed a 
large single cell dataset from the mouse cortex and hippocampus which was clustered into 
multiple cell types based expression profiles [10]. Subsequent to the mouse single cell 
transcriptomic study, the Zhang group created a large human brain scRNA-Seq dataset from 
postmortem brain tissue and clustered the cells into unique cell types based on expression profiles 
[11]. Because of the availability of both datasets we believe that in-depth comparative analyses of 
these two datasets is fundamental to our understanding of neuronal cell types, the distribution of 
these cell types, and the evolution of brain anatomy in these two species. Furthermore a clear 
understanding of concordant genes in both human and mouse provides valuable information on 
how mouse studies can be translated to human research. We provide a methodology and gene set 
that can be used for these comparative studies and hopefully for future translational research. We 
demonstrate the method by not only identifying concordant cell types between mouse and human 
brains with the same set of concordant feature genes, but also matching un-categorized cells in the 
human brain to a salient cell type based on mouse brain information. 
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2.  Methods 

2.1.  Data normalization and cleaning 

The mouse scRNA-Seq unique molecular identifier (UMI) counts [12] were downloaded from the 
Data section of the Linnarsson lab website (http://linnarssonlab.org/) and human scRNA-Seq 
transcripts per million (TPM) data was downloaded from the Links section of the SCAP-T website 
(scap-t.org). Since these data files contain various numbers of genes with different order, we 
preprocessed the files by scanning matching gene symbols between files then sorting the gene 
symbols so that the orders were consistent. While this process may not be able to identify all 
homologous genes, it provides a large list for us to extract concordant genes. The shared gene 
symbols in the human and mouse datasets were retained for further study (Figure 1). Within the 
human dataset there were genes that were originally left out of analysis by the original authors due 
to low expression, resulting in some cells with low number of expressed genes. Because of this, 
such human cells as well as human cells without annotation in the metadata were also removed 
from further analysis, resulting in 3,086 human cells each containing 13,355 genes. The mouse 
dataset resulted in 3,005 cells each containing expression values from 13,355 genes. Both human 
and mouse data then were transformed into comparable units. Each dataset was log2 transformed 
and the expression values converted into the within cell z-scores. 
 
 

 
Figure 1. Workflow of data normalization (i) and three step feature selection method (1-3). 

2.2.  Feature selection 

We developed a three-step approach to find concordant genes between mouse and human based on 
gene expression profiles (Figure 1). This feature selection was performed to identify genes that 
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were informative at separating cell type but uninformative at separating mouse from human cells. 
Genes that meet this criterion would be more useful at identifying similar cell types across species.  
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Figure 2. Number of retained features as a function of p-value cutoffs. 
 
First, the human and mouse data matrices were concatenated such that the first 3086 columns 
consisted of human cells and the last 3005 columns consisted of mouse cells. For each gene in the 
data matrix, a one-way ANOVA was performed grouped by species to detect genes with 
significantly different expression level between human and mouse. Only genes with p-values 
larger than 0.1 were kept. This was done to remove genes that would separate cells by species. 
Because we are removing the significant genes from our gene set in Step 1, a greater threshold 
makes our criterion for retaining genes more strict than using a standard significance level. 
Second, the human and mouse matrices were separated and in each separate matrix a one-way 
ANOVA was performed on the remaining genes grouped by cell type label and using a threshold 
p-value of 0.01 – any genes found with a p-value of 0.01 or less were retained. The 0.01 threshold 
was used to provide stricter criteria for retained genes that were informative about cell type. The 
0.1 and 0.01 p-value cutoffs used in the feature selection method are near the inflection point of 
retained features as a function of cutoff p-value (Figure 2). Third, the intersection of retained 
genes from human and mouse were retained in the final dataset such that genes that existed in both 
human and mouse gene sets after Step 2 were retained in the final combined mouse-human gene 
set. 
To compare the differences between cell types and in concordance with previous single cell 
studies [13], principal component analysis (PCA) was applied to the human and mouse datasets 
prior to feature selection. The first 2 principal components were then plotted to visually show the 
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differences in cell types and species (Figure 3). After feature selection, principal cross-species 
cell-type clusters can be viewed in the PCA of the first two principal components colored by 
species (left) and cell type (right) (Figure 4). 

2.3.  Functional annotation of retained concordant genes 

When selecting features, it is important to study the relation of these feature/gene sets to the 
functional, anatomic, and phenotypic relationships that are being selected for. If there are 
functional relationships related to a phenotype, then the feature selection method targeting that 
phenotype is likely more robust. The retained genes from the feature selection step were used as 
input for the DAVID functional annotation software [13-14]. The functional annotation clusters 
were reviewed for over represented terms that can be attributed to neural pathways and cell types. 
We display the three most highly enriched terms within the three most highly enriched clusters 
from the DAVID functional annotation clustering (Table 1). 

2.4.  Clustering cells using Gaussian mixture models 

Gaussian mixture models are effective in clustering microarray expression profiles [16]. We apply 
Gaussian mixed models (GMMs) in the mouse and human scRNA-Seq data to cluster the cells 
into principal cell types and to compare the relative proportions of human and mouse cells within 
each cluster. To perform the GMM we used the first two principal components, the same 
components used in the PCA plot of cell types. Four GMMs were fit to the data with two, three, 
four and five components respectively. The cells were clustered into three major cluster using the 
three component GMM fit in concordance with the three major cell types present in the human 
dataset. The remaining GMM fits were used in comparison against the three-component GMM fit. 
 
Principal cell types of the mouse and human labels were compared in the PCA space to determine 
the most similar cell types between both species. To quantitate the mouse-human overlap the 
mouse and human data were split into three groups from the three major cell types in the original 
publications. Human cells were split into 3 major groups from their original labels [11]. All “Int” 
labeled cells were considered Interneuron. All “Ex” labeled cells were considered pyramidal. All 
“NoN” (No Nomenclature) labeled cells from a C1 Fluidigm chip with reduced mapping rates 
were without a biologically derived label but were considered a singular group. Similarly, mouse 
cells were also split based on cell type label mapping to GMM clusters [10]. All cells labeled 
Interneurons were still considered Interneurons. All S1 Pyramidal and CA1 Pyramidal were 
considered Pyramidal. All Oligodendrocytes, Microglia, Endothelial, Astrocytes, Ependymal and 
Mural were considered Glial/Vascular cells. All human and mouse cells that were contained 
within each GMM cluster were compared by the their original cell type labels to the labels of the 
GMM cluster. For each cluster a fisher exact test was conducted to calculate the odds ratios and 
confidence intervals between published cell type labels and GMM predicted cell types. 
 
The VennX package in MATLAB was used to convert the cell type labels into Venn Diagrams to 
show overlap with both three component GMM predicted cell types and original mouse/human 
cell type labels from their original publications. 
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3.  Results 

3.1.  Feature selection 

Prior to feature selection the human and mouse cells created two clusters separated by species. The 
mouse cells formed sub-clusters within the major mouse clustering of cells. The human cells 
formed one main cluster with little differentiation (Figure 3). 

 
Figure 3. PCA of all human and mouse cells after normalization/cleaning. Left is colored by species, mouse (yellow) 
and human (red). Right is colored by cell type (36 cell types). 
 
After feature selection, 358 concordant genes were retained, which are informative in terms of 
distinguishing cell types and uninformative in terms of separating species. As a result, human and 
mouse cells were no longer completely separate from each other. The mouse cell types still have 
more variability than the human cell types in the PCA space but cells from both species are 
contained within the same major clusters of cells (Figure 4). 
 

 
Figure 4. PCA of all human and mouse cells after normalization/cleaning and feature selection. Left is colored by 
species, mouse (yellow) and human (red). Right is colored by cell type (36 cell types). 
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3.2.  Functional annotation of concordant genes 

Functional annotation analysis of the concordant gene set revealed GO terms related to binding, 
ion transport and neural cells. The third most highly enriched annotation cluster was that of the 
GO terms axon, cell projection and neuron projection with an enrichment score of 1.57 (Table 1). 
Cluster 7 (not displayed) also contained many neuron related ontology terms. 
 
Table 1. Functional annotation clustering using DAVID. Shown below are the three most highly enriched clusters and 
three most highly enriched terms within each cluster.  
Category Term PValue Fold Enrichment Bonferroni 

Annotation Cluster 1 Enrichment Score: 1.670  

SP_PIR_KEYWORDS atp-binding 0.008 1.573 0.939 

SP_PIR_KEYWORDS nucleotide-binding 0.010 1.478 0.969 

GOTERM_MF_FAT GO:0032559~adenyl ribonucleotide binding 0.012 1.463 0.997 

Annotation Cluster 2 Enrichment Score: 1.594  

GOTERM_BP_FAT GO:0006826~iron ion transport 0.002 8.868 0.979 

SP_PIR_KEYWORDS iron transport 0.007 10.076 0.919 

GOTERM_BP_FAT GO:0000041~transition metal ion transport 0.012 4.347 1.000 

Annotation Cluster 3 Enrichment Score: 1.568  

GOTERM_CC_FAT GO:0030424~axon 0.010 3.027 0.946 

GOTERM_CC_FAT GO:0042995~cell projection 0.036 1.611 1.000 

GOTERM_CC_FAT GO:0043005~neuron projection 0.056 1.877 1.000 

3.3.  Clustering cells using gaussian mixture models 

Gaussian mixture models showed major patterns within the cell profiles. Interneurons from both 
human and mouse (red and yellow respectively)(Figure 5) clustered in the same GMM. Whereas 
human pyramidal/projection neurons clustered (green) clustered with the remaining 2 cell types in 
mouse (S1 pyramidal, CA1 pyramidal). It is also worth consideration that the non-biologically 
labeled “NoN” human cell types in purple are mapped to a third cluster that begins to appear at 3 
GMM components that contains the remaining 6 mouse cell types (mural, endothelial, microglia, 
ependymal, astrocytes, oligodendrocytes) (Figure 5). 
 
The GMM clustering using three components (BIC = -9.08×104) split the cells into three groups 
that can be roughly defined as Interneurons (red), Pyramidal cells (green) and Glial/Vascular cell 
types (blue) (Figure 6: Top left). After identifying these three groups and comparing the mouse 
and human labels the GMM labels it was found that these three groups, Interneurons, Pryamidal 
cells, and Glial/Vascular cells are very closely mapped between both mouse and human. Also the 
“NoN” cell type cluster found in the human scRNA-Seq paper were clearly and uniquely clustered 
with the mouse Glial/Vascular cells (Figure 6 bottom right) with no significant difference between 
Glial/Vascular mouse cells and “NoN” human cells on PC 1 p-value = 0.41. 
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Figure 5. Gaussian mixture model clustering of human and mouse cell types where top left: two components, top 
right: three components, bottom left: four components and bottom right: five components. 
 
The cell types predicted by the three component GMM were representative of the original cell 
type labels. The interneuron GMM had an odds ratio of 2.00×103 and confidence interval of 
(1.16×103,3.46×103), the pyramidal GMM had an odds ratio of 9.93×102 and a confidence interval 
of (6.84×102, 1.44×103), and the glial/vascular GMM had an odds ratio of 1.15×102 and a 
confidence interval of (91.34, 1.44×102) (Figure 6). The GMM cluster for glial/vascular cells had 
a higher false negative rate than the other GMM clusters due to incorrect clustering of 
glial/vascular labeled mouse cells. 
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Figure 6. Comparing GMM clustering of human and mouse cells versus reported cell types. A) SVD components 
colored by GMM predicted clusters red (interneurons), green (pyramidal) and blue (mural/vascular). B-D are Venn 
diagrams comparing reported human and mouse cell types with GMM predicted cell types. The following superscripts 
represent if the point was included + or excluded – from species and GMM cluster. The colors from left to right 
consist of Human+-GMM- (blue), Human+-GMM+ (green), Human--Mouse--GMM+ (blue), Null set (yellow), Mouse+-
GMM+ (orange), Mouse+-GMM- (green). B) GMM Interneurons cluster (red in panel A) with mouse and human 
interneuron labeled cells. C) GMM Pyramidal (green in panel A) with mouse and human pyramidal labeled cells 
(“CA1, S1” and “Ex” respectively). D) GMM Glial/Vascular (blue in panel A) with mouse glial/vascular labeled cells 
and human “NoN” labeled cells. 

4.  Discussion 

4.1.  Insights 

In this study we found that through feature selection it is possible to find informative gene sets that 
can be used across species. This feature selection of “concordant gene sets” is an important 
application of single cell data that has multiple downstream applications in relation to cross 
species modeling, especially in translation of preclinical studies. It is important to note that the 
data used to find the concordant genes cannot be paired by sample which makes correlation 
matrices impossible to generate. Without correlation matrices to discover concordant genes, the 
gene sets must be derived from ulterior methods such as minimizing redundant gene sets through 
machine learning [17] or grouped statistical tests like ANOVA. 
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4.1.1.  Scalability 

The feature selection method is based on ANOVA which is calculated across multiple groups. 
Unlike t-tests, this facet of ANOVA makes the feature selection method scalable in relation to 
number of species and cell types being studied. Because of this, finding concordant gene sets 
between many organisms and cell types simultaneously is possible and should be pursued. 

4.1.2.  Functional relevance 

The annotated concordant gene set had a clear relationship to the brain through gene ontology 
which is an important control due to the tissue origin [18]. It is important to note that gene sets 
with no functional overlap to the phenotype being selected for could potentially be selecting for 
unknown associated phenotypes. The functional ontology analyses of this concordant gene set 
shows that there is selection of genes with direct relation to neuronal phenotypes. Because of the 
enrichment of phenotypically similar ontology terms, a case can be made that seemingly 
phenotypically dissimilar ontology terms are more likely to have an unknown but direct 
relationship to our concordant gene set. 

4.1.3.  Evolutionary potential 

Concordant gene sets also contain unique evolutionary information. Gene homologs which 
express differently between two species (Discordant genes) potentially do not share exactly the 
same functionality. Discordant genes may have the same down-stream effects but the biological 
mechanism may have changed [6] such that the same quantity of mRNA is not produced across 
species. Concordant genes are informative because they could represent pathways that are 
relatively conserved between through the evolution of species. 

4.1.4.  Medical and research potential 

In the medical realm concordant gene sets could be of use in translational research. Much of 
research is conducted in model organisms and using concordant gene sets gives the user an ability 
to distinguish between transcriptional changes that likely cause similar phenotypes or likely do not 
between the model and human. Though we do not immediately condone the clinical use of 
concordant genes at the present these concordant gene sets could help to quickly and efficiently 
integrate cross-species knowledge to improve translational research. 

4.1.5.  Future work 

The scalability of cell type and species number should be tested upon the arrival of comparable 
data in other species. Aside from the direct feature selection of concordant genes multiple 
comparisons could be carried out to create hierarchical concordant gene sets for higher granularity. 
Another option to improve granularity would be to test models that include interaction variables 
between species, brain location, and cell type. With the generation of concordant gene sets cross-
species deconvolution could become more accurate than with more heuristic approaches. Also 
concordant gene sets can be used in classification of cell types across species. With further 
refinement of the procedure human cell types could be classified using mouse expression profiles 
which would require refinement of feature selection and of classification algorithms and validation 
of such methods on another dataset. 
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4.1.6.  Importance of single cell granularity 

Single cell technologies in the form of fluorescence-activated cell sorting (FACS) and flow 
cytometry have been effectively used to model cell heterogeneity [19] before the advent of single 
cell transcriptomics. Through FACS sorting [20] and flow cytometry [21] deriving the 
transcriptome of a single cell is much higher throughput than original methodologies that required 
manual isolation of single cells [22]. Without the single cell granularity of these techniques, it 
would be impossible to study concordant genes effectively at the cellular level and acquire the 
sample sizes large enough to properly study concordant gene sets, especially when many species 
and phenotypes are involved. Only through these recent advances in scRNA-Seq is it possible to 
properly glean enough information about cell types to model across species. 

4.2.  Limitations 

There are some limitations to this study, which included the use of zscores as the measurement of 
expression. This measurement makes the assumption that the data has a normal distribution. 
Because of the nature of scRNA-Seq data the distribution is negative binomial. It was important to 
use zscores because other normalization techniques would not be effective. Quantile normalization 
introduced artificats in the data that made it unrepresentative. Conversion of UMI counts to TPM 
alos posed a problem because TPM is based on aligned reads opposed to tag counts from UMIs. 
Aside from normalization, the diversity of cell types in each dataset also potentially introduced 
bias. The human dataset consisted of fewer major cell types than the mouse dataset. The mouse 
dataset contained more glial cell types while the human dataset had higher granularity within 
interneurons and pyramidal cells. 

5.  Conclusion 

We were able to find a concordant gene set between mouse and human brain cells that had direct 
functional ontology relationships to the brain. The concordant gene set allowed us to reduce the 
distance between cell types of different species allowing separation of cell type regardless of each 
cell’s species. Through the study of these aggregate cell types the biologically unresolved human 
cell type “NoN” (No Nomenclature) was able to be categorized as Glial/Vascular. Furthermore we 
show that our methodology is scalable to multiple species and cell types to find concordant gene 
sets between multiple species and these concordant genes sets are important stepping stones 
toward evolutionary and translational research goals. 
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Tumors are composed of heterogeneous populations of cells. Somatic genetic aberrations are one form of 
heterogeneity that allows clonal cells to adapt to chemotherapeutic stress, thus providing a path for resistance 
to arise. In silico modeling of tumors provides a platform for rapid, quantitative experiments to inexpensively 
study how compositional heterogeneity contributes to drug resistance. Accordingly, we have built a 
spatiotemporal model of a lung metastasis originating from a primary bladder tumor, incorporating in vivo 
drug concentrations of first-line chemotherapy, resistance data from bladder cancer cell lines, vascular density 
of lung metastases, and gains in resistance in cells that survive chemotherapy. In metastatic bladder cancer, a 
first-line drug regimen includes six cycles of gemcitabine plus cisplatin (GC) delivered simultaneously on 
day 1, and gemcitabine on day 8 in each 21-day cycle. The interaction between gemcitabine and cisplatin has 
been shown to be synergistic in vitro, and results in better outcomes in patients. Our model shows that during 
simulated treatment with this regimen, GC synergy does begin to kill cells that are more resistant to cisplatin, 
but repopulation by resistant cells occurs. Post-regimen populations are mixtures of the original, seeded 
resistant clones, and/or new clones that have gained resistance to cisplatin, gemcitabine, or both drugs. The 
emergence of a tumor with increased resistance is qualitatively consistent with the five-year survival of 6.8% 
for patients with metastatic transitional cell carcinoma of the urinary bladder treated with a GC regimen. The 
model can be further used to explore the parameter space for clinically relevant variables, including the 
timing of drug delivery to optimize cell death, and patient-specific data such as vascular density, rates of 
resistance gain, disease progression, and molecular profiles, and can be expanded for data on toxicity. The 
model is specific to bladder cancer, which has not previously been modeled in this context, but can be 
adapted to represent other cancers.  

 
1.  Introduction 
1.1.  Tumor heterogeneity and drug resistance 

Intratumoral heterogeneity is increasingly recognized as a major contributor to cancer progression, 
metastatic potential, and drug resistance.1,2 Metastatic tumors that arise from the primary site are 
generally established from single clones, but may also display initial genetic heterogeneity.3,4,5 

Sub-clonal cell phenotypes with varying metastatic potential and drug resistance have also been 
shown to develop in 90% of lung metastases within weeks of establishment in mice.5 This 
heterogeneity can lead to differential drug response within or among metastases, with newly 
arising clones developing additional resistance.5 After the death of sensitive cells and continuing 
replication of resistant survivors, the spatial dynamics of drug diffusion and accumulation during 
later drug delivery cycles may change.  

A bottleneck in clinical research studies of drug resistance is the lack of tumor sample 
measurements over the course of treatment from the same patient that can be used to explore the 
relationship between tumor polyclonality and drug resistance.6 By building explicit computational 
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models with  evolving dynamics, we can manipulate, visualize, and quantitatively analyze patterns 
of resistance that emerge in a growing tumor. Here, we have created a spatiotemporal model of 
bladder cancer metastasis to the lung that includes cycles of drug delivery, tumor vascularity, and 
clumped clonal populations with different drug sensitivities. We model how a heterogeneous 
tumor responds to the standard first-line regimen of gemcitabine plus cisplatin (GC). Results show 
that a 100 cell simulated tumor, composed of four clonal populations ranging from highly 
sensitive to highly resistant cells will not be completely killed by this regimen, and will grow 
while gaining cross-resistance to both gemcitabine and cisplatin. In this work we aim to model 
drug response in bladder cancer metastases and establish a baseline set of results that can be 
extended to model additional visceral sites, determine how varying tumor composition affects 
drug response, and determine how altering drug scheduling will affect drug response. 

1.2.  Prior spatiotemporal models of drug delivery, tumor heterogeneity, and resistance 

Our model is a cellular Potts model, which represents cells and chemical fields on a spatial lattice, 
interacting and evolving over time. Spatiotemporal models have been used to represent disease 
development and drug delivery in a variety of cancers, and have generated observations that are 
not easy to measure in real biological systems.7–9 They have incorporated parameters such as 
response to oxygen, information sources provided to the cell such as nutrients and toxicity, and 
distance from the information source.8 Spatiotemporal cancer therapy models have used cell cycle, 
chemotherapy, and radiation data to predict changes in tumor size during treatment. Some have 
included more specialized events and data, such as bystander effects (in which tumor cells assist in 
killing damaged cells) resulting from radiotherapy10 and patient data from CT scans in models of 
brain cancer.11,12 These models have successfully produced qualitatively and semi-quantitatively 
comparable results to in vitro studies, mouse models, and patient outcomes, showing the promise 
of spatiotemporal modeling for in silico oncology. To our knowledge, there are no existing 
spatiotemporal models of drug delivery to lung metastases arising from bladder cancer. 

Tumor heterogeneity and resistance have been explored with spatiotemporal methods, 
including two agent-based models (one incorporating game theory for trade-offs between 
proliferation and migration), field theory, a cellular automaton/cellular Potts model, and a pure 
cellular automaton. Interestingly, in three of these models,13,14,15 slowing of the cell cycle was an 
important predictor of resistance, whether due to cells being driven into quiescence by drugs, by a 
shortage of oxygen and nutrients, or from initial heterogeneity between clonal populations in their 
endogenous cell cycles; cells with inherently slow growth were reservoirs for survival during 
therapies that depend on cell division.14,15 This last model is the most similar to ours, and is part of 
a comparison of spatiotemporal implementations, showing that there are trade-offs between 
performance and resolution for different model types, but that similar types parameterized to the 
same system will produce cross-validating results. The simulated tumor in ref. 15 was composed 
of cell populations having heterogeneous cell cycles that changed in response to oxygen, 
chemotherapy, and radiation (in a 300×300 cellular Potts model). Our model similarly includes 
cell cycles and chemotherapy, but is different in that it creates a site-specific tumor environment 
incorporating vascular density specific to metastases to the lung, with in vivo concentration curves 
for drug delivery, and initial and gained resistance modeled using bladder cancer cell lines. In both 
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models, the spatial arrangement of vessels creates a drug concentration unique to each cell in a 
simulation, allowing spatially driven phenomena to emerge.  

1.3.  Bladder cancer drug regimen and cell response 

Annually, it is estimated that there will be nearly 77,000 new cases of bladder cancer with over 
16,000 succumbing to the disease.16 Overall survival has not improved since 1989.16 The most 
aggressive form, muscle-invasive bladder cancer, occurs in 30% of patients.17 Treatment is radical 
cystectomy, requiring removal of the bladder and sometimes surrounding tissues, followed by 
chemotherapy. The 5-year survival rate varies from 25-50%. Failure is likely due to occult 
metastases present before treatment, with the most common visceral metastatic sites in the liver 
and lungs.17,18 Patients with inoperable locally advanced or metastatic cancer who undergo GC or 
methotrexate/vinblastine/doxorubicin/cisplatin (MVAC) regimens have a 5-year overall survival 
of 13%, but a progression-free survival of 9.8%.19 Those with lung, liver, or bone18 metastases 
have a 5-year overall survival rate of 6.8%.19 Here, we model this last group of patients, with 
aggressive metastatic disease localized to the lung. 

The standard regimen defined by the National Comprehensive Cancer Network (NCCN) for 
metastatic bladder cancer includes six 21-day cycles, with GC delivered simultaneously on day 1 
(or cisplatin instead on day 2) and gemcitabine alone on day 8.20 For patients with muscle-invasive 
or metastatic cancer, who cannot receive cisplatin, monotherapy regimens without cisplatin 
produce no long-term disease-free survival, with a median survival of six to nine months.17 This 
was reflected in initial runs of the model, with rapid acquisition of resistance during cisplatin or 
gemcitabine monotherapy regimens. Reported efficacy of such regimens is derived from clinical 
trials. Computational models of drug delivery can additionally be used to generate hypotheses at a 
small scale where we can explore mechanisms of drug action and drug resistance, as well as adjust 
the regimen in a consequence-free environment where results for 18 weeks of time course data can 
be obtained in just hours.  

Cisplatin and gemcitabine are genotoxic agents, damaging DNA and causing a cell to undergo 
apoptosis during cell division. Cisplatin incorporates into DNA as platinum-DNA adducts,21 
whereas gemcitabine is a nucleoside analog that interrupts DNA synthesis and triggers apoptosis.22 
The 50% inhibitory concentration (IC50) is a concentration of drug that inhibits a cellular process 
by 50%. IC50 for cytotoxicity and drug accumulation in cells are linearly correlated for both 
cisplatin and gemcitabine, especially at clinically relevant concentrations, which tend to be at the 
lower end of cytotoxicities measured in vitro.23–25 There is also a linear relationship between tissue 
platinum concentration and tumor size reduction.26 These relationships were used to parameterize 
cellular accumulation of the two drugs. 

Synergy between gemcitabine and cisplatin occurs during pre-treatment with gemcitabine or 
co-treatment with GC in ovarian and neuroblastoma cells.27,28 In these studies, one in four and one 
in five cell lines did not respond synergistically. Patients with non-small-cell lung cancer also 
responded better to a day 1 combination of gemcitabine and cisplatin than to day 1 cisplatin alone 
(30.4% response compared to 11%, p<1e-4), with improved median time to progression and 
improved overall survival.29 Synergy in cisplatin during the GC regimen is an important dynamic 
that we include in the model. 
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2.  Methods 
2.1.  Summary of model design 

Our model represents a partially drug-resistant lung metastasis that arose from a primary bladder 
tumor, containing four clonal cell patches with different sensitivities to gemcitabine and cisplatin. 
The drugs are delivered through vasculature in the tumor at levels found in patient plasma based 
on the regimen dosages. Drugs diffuse from vessels with effective diffusion coefficients measured 
in tumor tissue, and accumulation is a cell-type-specific proportion of drug concentration at the 
cell site. Synergy between the drugs causes increased intracellular cisplatin accumulation. If cells 
attempting to replicate have accumulated enough drug to reach their IC50 or greater, they will 
either die with 50% probability or increase their resistance. Finally, when a cell divides, its 
accumulated drug is halved between the two child cells. Drug delivery frequency and dosage are 
from the basic GC drug regimen for metastatic bladder cancer (see Fig. 1 for model). 

Tumor and vessel cell types are represented, along with cell division, cell death, and clearance 
of dead cells as a proxy for the immune system. Vascular density for lung metastases is equal to 
the ratio of microvessel density between primary and lung metastases in non-clear cell renal cell 
carcinoma.30,31 Further biometric parameters, derivations, fits for drug concentrations in patients, 
and their sources can be found in Table 1. Model permutations include runs with and without 
synergy, variations on the drug regimen, and variations in rates of resistance gain in the cells.  

The modeling platform is Compucell3D (CC3D),32 an integrated programming and 
visualization environment for cellular Potts models. Cellular Potts models couple mobile, single-
cell agents to a cellular automaton process at the cells’ surfaces. Cell agents live on their own 2-D 
or 3-D lattice, and chemical fields can be layered on in other lattices. Partial differential equations 
for drug diffusion are solved using the Forward Euler method. For more explicit descriptions of 
the cellular Potts model for modeling drug delivery in tumors, please see Kanigel Winner, et al.,33 
and Extended Methods are available at https://synapse.org/MetHet. In short, pre-defined biological 
rules comprise an energy function that drives the behavior of the cellular automaton process at the 
cell surface during each Monte Carlo time step (MCS). Meeting the rules (by convention) lowers 
this energy or keeps it the same, allowing biologically reasonable cellular events contributing to 
growth, division, and death (though stochasticity can be added). Cell death, cell type switches due 
to drug accumulation, and drug delivery calculated from continuous functions (fits to patient 
plasma drug concentrations) are expansions of the basic CC3D model coded in a Python wrapper. 
These processes are non-stochastic. More modeling methods, details of parameter acquisition, and 
source code that is plug-and-play in CC3D can be found at https://synapse.org/MetHet. 

2.2.  Specifics of biological parameters and model dynamics 

• IC50 data for gemcitabine and cisplatin sensitivity in 18 bladder cancer cell lines were 
acquired from the Genomics of Drug Sensitivity in Cancer (GDSC) database.34 

• Cell growth and division occurred in all cancer cells. Replication rate was approximated from 
the averages of 14 cancer cell lines varying in metastatic capacity (31 to 33 hrs.).22,36,37 

• Cisplatin and gemcitabine in normal cells (lung and phagocytic cells) were given accumulation 
rates for the bladder cancer cell line (SW780) closest to the middle of the range for both drugs. 
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• Acquired resistance was modeled as an increase in the IC50 of any cell that survived an IC50 

accumulation of gemcitabine or cisplatin at division time, increasing the chances of being 
below IC50 and another gain in resistance at the next division time. The quantity to be added 
to the IC50 for each gain in resistance (Table 1) was derived from bladder cancer cell lines, 
passaged to increase resistance, as the increase per division required to acquire maximum 
resistance over one year (“quick”) or two years (“slow”) for cells with a 30-hour cell cycle.35 

• Cell accumulation rate and peak of gemcitabine is linearly correlated with concentration in 
vitro and in vivo.38 In bladder cancer cells, cytotoxicity is linearly correlated with gemcitabine 
concentration,25 and accumulation is correlated with IC50.36 Cisplatin DNA lesion counts are 
linearly correlated with concentration.27 We therefore fit cellular accumulation rates for both 
gemcitabine and cisplatin linearly to the IC50 of each cell type, with some modifications.36,39 

• Cells at IC50 for both gemcitabine and cisplatin at division underwent two chances at death. 
• Gemcitabine and cisplatin were modeled with the same effective diffusion coefficient as 

sodium fluorescein.40 For details on this choice, please see ref. 33. Both molecules diffused at 
the same rate in all cell types except for blood vessel, which either took away molecules, 
ostensibly into flowing blood, or delivered them from the vessel surface. 

. 

Figure 1. Flow chart of events in the model at each time step, reflecting body- and cellular-scale processes 
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3.  Results 

3.1.  No standard or alternate regimen prevents regrowth of a drug resistant tumor 

In preliminary simulations containing only GC dual-sensitive cells, cells declined over time and 
the population was killed late on day 48, five days after the third round of GC. However, for an 
initial tumor with three additional cell types that had increased resistance to gemcitabine, 
cisplatin, or both, neither the standard GC regimen (Figs. 2,3), nor an unrealistically high rate of 
delivery of gemcitabine could kill all cells. 

The initial 2-D tumor of 100 cells consistently quadrupled to 400 cells in 14 to 15 days. At 
simulation end, 0 to 18 days after the last round of drug (depending on the simulation) the domain 
was completely filled with drug-resistant tumor cells, primarily cisplatin-resistant and GC dual-
resistant cells, as well as a sub-population of the most GC dual-resistant seed population. Within 

Table 1. Model parameters and fits to data 

Parameter Value Units Source 

Cell diameter (BC* T24 line, aggressive/invasive) 30 µm 42 
Eff. diffusion coefficient sodium fluorescein 6.40E-06 cm2/s 40 
Division time (mean, S.D.) 30, 1 h 22,36,37 
Time from death to complete phagocytosis 24 h 43 
Fraction cross-sectional microvessel area in metastasis 
from urinary system cancer to lung 

0.146  30 

Pixel dimension 1 cell  
Cisplatin resistance gain per survived division 0.125 – 0.25 + IC50 35 
Gemcitabine resistance gain per survived division 0.05 – 0.1 + IC50 35 
IC50 cis. accumulation for initial cell lines.  
Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

0.8106177157, 
3.774888444, 
6.586828431, 
5.923917064 

µM  
per cell 

calculated 
using fit 
from 44 

IC50 gem. accumulation for initial cell lines. 
Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

0.000017923, 
270.913928515, 
0.145644144, 
46.134163935 

µM  
per cell 

calculated 
using fit 
from 36 

Accumulation rates of cis. in initial cell lines. 
Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

7.98701E-05,  
6.82909E-05,  
7.42347E-06,  
5.46716E-05 

* cis. 
(µM) at 
cell site 
per MCS 

fit from 44 

Accumulation rates of gem. in initial cell lines. 

Seed gem. & cis. sensitive, Seed res. gem./sens. cis., 
Seed res. cis./sens. gem., Seed gem. & cis. resistant 

4.41575E-04,  
2.68443E-04,  
4.41518E-04,  
4.22858E-04 

* gem. 
(µM) at 
cell site 
per MCS 

fit from 36 

Fit for cisplatin plasma concentrations during 3h 
infusion (top) and decay (bottom) 

= 0.11*hrs3  
- 0.83*hrs2  
+ 2.2*hrs - 2.6E-16 
= 57.4124 * e(-1.0927 * hrs) 

µM 46 

Fit for gemcitabine plasma concentrations 
during 30m infusion (top) and decay (bottom) 

= 6.8*(min/15 - 1) + 7.3 
= 101.3452 * e(- 0.0676 * min) 

µM 45 

Synergy multiplier for cisplatin accumulation 2.5  27,28 
Total Monte Carlo (simulation) Steps (126 days) 11,916,800   
Time in one Monte Carlo Step (MCS) 0.914 s  

* Bladder Cancer 
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six hours of regimen start, the two most sensitive cell types reached the IC50 for gemcitabine 
accumulation. While some of these sensitive cells died, some went on to propagate as sub-clones 
with gained resistance. 

 

3.2.  Effects of acquired resistance 

3.2.1.  Ability of cells to gain resistance increases likelihood of dual resistance 

When acquired resistance was allowed to arise in the cell populations, cells with acquired 
resistance comprised the majority of the final tumor (Figs. 2, 3). GC dual-resistant sub-clones 
arose at day 43, after the third cycle of GC, suggesting that increased dosage or delivery rate prior 

Cisplatin
Gemcitabine

Seed res. gem./sens. cis.

Dead 

Acquired cisplatin resistant

Seed res. cis./sens. gem.

> IC50 gem. accumulation

Seed gem. & cis. sensitive

Blood vessel

> IC50 cis. accumulation

Acquired gemcitabine resistant 

Acquired gem. & cis. resistant

Seed gem. & cis. resistant

Cell Population Legend
300

250

200

150

100

50

0

N
um

be
r o

f c
el

ls

Days 1 8 22 4330 51 64 72 85 93 106 114 126

Snapshot of the tumor prior 
to the start of a GC regimen
cycle

Cell position

Ce
ll 

po
sit

io
n

Snapshot of the tumor  
6 hours after the start 
of a GC regimen cycle

Day 126 tumor

Cell position

Ce
ll 

po
sit

io
n

Figure 2. A simulation with random uniform “slow” to “quick” acquired resistance for all cells, and drug synergy 
in all cells. Pulses of gemcitabine and cisplatin or gemcitabine alone for the first-line chemotherapy regimen are 
displayed and matched to the simulation. Cells in the simulation were seeded in 100-cell tumors shown in the top-
leftmost simulated tumor diagram. The row of simulated tumors on the top represent the state of the tumor before 
the start of a chemotherapy cycle; the row of simulated tumors on the bottom represent the state of the tumor 7 
hours after a GC cycle. Resistant seed cells, cells with dual resistance, and cells with cisplatin resistance 
composed the final population as shown as the final simulated tumor after 126 days of treatment. 
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to this time point may help to keep cross-resistant strains from arising. Interestingly, the fastest 
rate of acquired resistance for both gemcitabine and cisplatin drove cells with acquired resistance 
to cisplatin to dominate the population. 

 

3.2.2.  Simulated tumors show complete resilience to even intense treatment 

In simulations with an added pulse of gemcitabine at  day 18 during each cycle (we mirrored the 
timing of the 28-day regimen, which has an additional gemcitabine infusion on day 18), we found 
an earlier rise of the GC dual-resistant phenotype, and more gemcitabine-resistant cells. We also 
applied single-drug regimens with cisplatin or gemcitabine alone at standard frequencies. Cells 
with resistance to the treatment drug were the majority of the final population.  

To try treatment prior to all cells entering a new cell cycle (30 hrs) while using a potentially 
tolerable regimen, we shifted the three pulses of gemcitabine to the first three days of each 21-day 
cycle, at every 24 hours, in addition to the standard cisplatin every 21 days. This caused the end 
state to be dominated by GC dual-resistant cells. Finally, we pulsed gemcitabine every 24 hours 
for 126 days, with cisplatin every 21 days. The tumor was not killed, and the simulated tumor 
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Figure 3. (A) Quickly-acquired resistance and (B) slowly-acquired resistance resulted in tumors composed 
primarily of cells with newly acquired resistance, with a smaller population of highly GC dual-resistant seed 
cells. Quickly-acquired resistance drove the tumor toward greater cisplatin resistance. 
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area was fully repopulated, primarily with cisplatin-resistant cells after 126 pulses of gemcitabine 
reduced the gemcitabine-resistant populations. 

 

3.3.  In the absence of acquired resistance, diffusion of drug via cell division allows survival 

In simulations where cells did not acquire resistance, populations primarily composed of cells that 
randomly survived an IC50-cisplatin division (Fig. 4A) repopulated the simulation space. A 
subpopulation of initial highly GC dual-resistant seed cells also survived. Because of the division 
of drug equally between two progeny cells, acquired resistance was not required for tumor 
repopulation, suggesting that cells reaching IC50 accumulation may survive in vivo without newly 
acquired resistance. In simulations with synergy and resistance (Figs. 2, 3), one clone in the 
original tumor died during the second round of GC at day 21 (teal-colored; IC50cisplatin = 14.0µM 
in range 2.6µM to 225.2µM). When synergy and the ability to gain resistance were absent, this 
cell type comprised a substantial portion of the final tumor, the most heterogeneous final tumor in 
our models (Fig. 4B). Hence, for the most resistant seed cells, and in less resistant seed cells in 
which synergy may not be active, no acquisition of extra resistance was required for repopulation. 
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Figure 4. In simulations without acquired resistance, models were considered (A) with drug synergy between 
gemcitabine and cisplatin and (B) without synergy. The final tumor was composed of cells that survived 
division after reaching either cisplatin IC50 accumulation, or gemcitabine IC50 accumulation. Cells that 
survived both gemcitabine and cisplatin IC50 levels did not arise. When there was no synergy in cisplatin (2.5× 
normal accumulation rate, B), an extra cell type (teal-colored) derived from the seed populations remained. 
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4.  Discussion 

In this work, we were able to capture population-level responses to chemotherapy stress in a 
model of lung metastasis arising from the bladder. Unless the initial tumor was comprised of 
highly sensitive cells, the in vivo concentration and timing of the standard first-line regimen did 
not kill the metastasis. Cells were then able to proliferate and fill the simulation space after 
completion of treatment. A striking result was that in tumors without any ability to acquire 
resistance, some cells survived the IC50 threshold and were able to repopulate the space. When 
tumors were allowed to acquire resistance, there was consistent emergence of cells that had 
coordinately increased resistance to both gemcitabine and cisplatin around 43 days. This occurred 
after the third cycle of GC, suggesting that early aggressiveness in treatment may be important in 
avoiding cross-resistant sub-clones. In terms of drug-directed cell selection, when cells were given 
the ability to acquire resistance, even at slower rates described in vitro, final tumors were 
composed of a majority of cells with acquired resistance. Because metastases starting from single 
clonal populations in the lung have been shown to develop sub-clones within weeks of 
establishment,5 and because cell lines and living tumors are known to gain resistance mutations 
over time, metastases with large proportions of cells with acquired resistance is a likely scenario in 
a patient, and the model likely reflects selection in vivo. 

Qualitative comparisons can be made between prior data and model outcomes. Overall, the 
acquired resistance model produced rounds of cell death under drug concentrations in patients, 
showing that the parameters are biologically reasonable. The results are consistent with survival 
data for patients with inoperable locally advanced or metastatic bladder cancer undergoing a GC 
or MVAC regimen; those who had lung, liver, or bone metastases had a 5-year overall survival 
rate of 6.8%.19 The likelihood of a patient presenting with a completely drug-sensitive metastatic 
population is low, creating low likelihood of complete cell killing in the tumor. Similarly, in the 
model, we saw only the most sensitive populations being eradicated by the standard regimen. A 
patient’s metastatic population might have been completely sensitive if metastasis was recently 
established from a sensitive primary cell and lacked the time t o gain genetic heterogeneity. Less 
likely still, several weeks or more after establishment, the metastases may have either not gained 
new genetic heterogeneity, or simply not acquired resistance through genetic aberrations. Finally, 
cells in the model had IC50s derived from cell lines, and some cells died at in vivo drug 
concentrations, suggesting that cell line data reasonably reflects the range of resistances found in 
patients’ tumor cells. While these comparisons to patients and cells are speculative, they are 
valuable observations for generating hypotheses and represent opportunities for empirical 
validation as we develop the model further. 

When acquisition of resistance was removed, some cells that had initial resistance survived 
and propagated. This “resistance” occurred because accumulated drug was divided in half between 
offspring, giving both sensitive and resistant primary sub-clones more time to grow and replicate 
before reaching IC50, with proliferation outpacing the delivery of drug. This result, in which cells 
randomly evade death without incorporating new resistance mechanisms, emphasizes the 
importance of considering growth rate in an aggressive metastatic population.  
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To estimate the number of doses required to actually kill a metastasis, we simulated delivery 
of gemcitabine every 24 hours over 126 days, along with synergistic cisplatin every 21 days. Even 
this unrealistic regimen did not kill the tumor, and drove it to gain cisplatin resistance. Increasing 
gemcitabine dosage, in combination with increasing the frequency of cisplatin at lower doses 
should be explored in the future. Additionally, drug regimens that incorporate other drugs besides 
cisplatin and gemcitabine will be explored in future iterations of the model.  

There are caveats to this approach that we must consider. Our model is small (20×20×1 cells) 
for relatively fast computation so that many scenarios could be explored. Although this size still 
allowed differential effects to emerge between different drug scenarios, and computational costs 
scaled proportionally to the number of cells during growth from 100 to 400 cells, larger grids will 
be part of future work, hopefully approaching the clinical detection limit for lung metastases. The 
system modeled is specific to bladder cancer; however, lung is a common metastatic site for many 
other cancers. This and the available data on vascularity at urogenital metastatic sites helped 
justify the choice of the system modeled. Additionally, the model is simple and general, in part 
because a GC regimen is used in a variety of cancers, and can be relatively easily adapted to other 
metastatic or primary sites by replacing parameters in the code. The primary bottleneck to 
adaptation to other cancers will be the availability of empirical data to derive model parameters.  

The model may be allowing consistent tumor survival despite an aggressive drug regimen due 
to a cell cycle time of 30h +/-1h (S.D.); slower- (or even faster-) cycling cells may create different 
dynamics. Drug is not delivered from vessels outside of the tumor, inherent cell death rates are not 
included, and the immune system is not directly considered. Most importantly, although the model 
can be manipulated unrealistically, useful hypothetical regimens must include practical 
considerations for regimens given to patients. If a new regimen kills more cells, perhaps the 
immune system will have a greater chance to reduce a smaller residual population. A simple 
increase in cell kill under an organizational and dosing scheme reasonable for patients is therefore 
a goal for this modeling process and the subject of future studies. 

Finally, our model results recapitulate prior work by Powathil et al.15 regarding the importance 
of accounting for cell cycle in drug delivery. Also our results concur with aspects of Waclaw et 
al.,41 showing that after cell kill opens up space in the tumor, it takes only one or two cells to 
repopulate the vacant area with a new more resistant sub-clone. Such cell behavior is extremely 
difficult to track through time in a patient, and even in experimental models such as mice. 
Therefore, the importance of spatiotemporal models incorporating realistic parameters, with 
behavior that can be tracked over time to clinically relevant outcomes, cannot be underestimated. 
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 Single-cell analysis can uncover the mysteries in the state of individual cells and enable us to construct new models 

about the analysis of heterogeneous tissues. State-of-the-art technologies for single-cell analysis have been 

developed to measure the properties of single-cells and detect hidden information. They are able to provide the 

measurements of dozens of features simultaneously in each cell. However, due to the high-dimensionality, 

heterogeneous complexity and sheer enormity of single-cell data, its interpretation is challenging. Thus, new 

methods to overcome high-dimensionality are necessary. Here, we present a computational tool that allows efficient 

visualization of high-dimensional single-cell data onto a low-dimensional (2D or 3D) space while preserving the 

similarity structure between single-cells. We first construct a network that can represent the similarity structure 

between the high-dimensional representations of single-cells, and then, embed this network into a low-dimensional 

space through an efficient online optimization method based on the idea of negative sampling. Using this approach, 

we can preserve the high-dimensional structure of single-cell data in an embedded low-dimensional space that 

facilitates visual analyses of the data. 
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1.  Introduction 

Many traditional biological experiments have been conducted on bulk-cell populations1 with an 

assumption that cells in the same group share homogeneous properties. However, some evidence1-3 

shows that heterogeneity can exist even within a small group of cells. The assumption based on 

homogeneity of each cell group can mislead averages and does not properly explain small but critical 

changes in individual cells. Each cell can have different biological properties such as cell sizes, gene 

expression levels, RNA transcripts, and bio marker expressions. These variations can be very 

important to answer previously unsolved questions in stem cell research, cancer biology, and 

immunology. Single-cell data analysis has contributed to understand the various and important 

behaviors of individual cells1-15. 

The recent development of single-cell technologies has also improved the analysis to be more 

reliable and reasonable. For example, mass cytometry4,16 can measure up to 60 parameters at the 

same time for tens of thousands of individual cells. In addition, single-cell RNA sequencing 

techniques17,18 also have been widely used, which deal with hundreds of or thousands of parameters 

per cell.  

Even though the advanced single-cell technologies can provide quality data, such data sets are 

still difficult to analyze. Traditionally, single-cell data are analyzed in a biaxial scatter plot for two 

variables at once19. However, this method requires the order of dimension squared to represent all 

pairwise relationships between variables, which is computationally expensive. In addition, scatter 

plots cannot capture multivariate relationships between more than two variables. Thus, new 

computational methods have been developed for analyzing single-cell data. For instance, SPADE6 

tries to find hierarchies of high-dimensional single-cell data showing cellular heterogeneity by 

clustering of down-sampled cytometry data, constructing minimum spanning trees, and up-sampling. 

However, this method considers not each cell itself but cell groups and their behaviors on average. 

X-shift12 is recently developed to discover cell subsets and visualize them based on a weighted k-

nearest neighbor density estimation. 

Another approach to deal with the high-dimensionality of single-cell data is to use 

dimensionality reduction techniques. Some researchers applied principle component analysis 

(PCA)20 to find low-dimensional projections of single-cell data21,22. Although PCA is possibly the 

most popular method of dimensionality reduction, it is a linear projection method. Thus, it cannot 

capture nonlinear structures in single-cell data. In order to address this issue, advanced methods 

based on nonlinear dimensionality reduction have been developed. Both viSNE8 and ACCENSE10 

are based on an algorithm called t-Distributed Stochastic Neighbor Embedding (t-SNE)23. viSNE 

applies t-SNE to mass cytometry data and reveals biologically meaningful relationships from bone 

marrow and leukemia data. ACCENSE combines the results of t-SNE with kernel-based density 

estimation and finds subpopulations of given single-cell data sets. However, the runtime complexity 

of t-SNE is 𝑂(𝑛2), and that of its accelerated version, Barnes-Hut-SNE24 is 𝑂(𝑛 log 𝑛) where 𝑛 is 

the number of cells. Thus, both methods require excessive computational time for large-scale single-

cell data sets with hundreds of thousands or millions of cells. 
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In this paper, we propose a scalable embedding-based visualization method for large-scale and 

high-dimensional single-cell data based on a new graph embedding algorithm, LargeVis25. The 

proposed method constructs a k-nearest neighbor (k-NN) network to find the structure of similarities 

between high-dimensional single-cell data. This process is accelerated by an approximate k-NN 

construction method based on random projection trees26 and neighbor exploring30. This approach 

optimizes a probabilistic utility function to embed the high-dimensional single-cell data into a low-

dimensional space (2D or 3D). For efficient training, the utility function is approximated using 

negative sampling28 that was introduced in word2vec28. The runtime complexity of our method is 

linear with regard to the number of cells, which is faster than previous single-cell visualization tools 

such as viSNE8 and ACCENSE10.  

2.  Methods 

We propose a new approach for visualizing high-dimensional single-cell data via efficient 

dimensionality reduction based on LargeVis25. The algorithm consists of two steps: constructing an 

approximate k-NN network to find the similarity structure between high-dimensional single-cell 

data and embedding the constructed network into a 2D or 3D space while preserving the high-

dimensional structure in an easily visualized low-dimensional space. Pairwise similarity between 

single-cell data points is determined by the distance between them in their marker expression 

representation space. The core assumption is that numerical proximity in the marker space is 

proportional to cell similarity. 

Figure 1. Outline of high-dimensional single-cell data visualization: constructing a k-nearest neighbor network and 

embedding the network into a 2D space. 

2.1.  Notation 

We denote a set of high-dimensional single-cell data as 𝒳 =  {𝑥𝑖|𝑥𝑖 ∈ ℝ𝑝, 𝑖 ∈ [𝑛], 𝑝 > 3} , 

where  𝑝   is the dimension of measurements and  𝑛   is the number of cells in the data; and the 

embedded representations of cells are denoted as 𝒴 =  {𝑦𝑖|𝑦𝑖 ∈ ℝ2 𝑜𝑟 ℝ3, 𝑖 ∈ [𝑛]}  in a low-

dimensional space. 

Pacific Symposium on Biocomputing 2017

625



 

 

 

2.2.  Construction of a k-nearest neighbor network 

Constructing a k-nearest neighbor (k-NN) network is a very crucial step in many applications of 

machine learning such as a distance-based similarity search, manifold learning, and topological data 

analysis. Finding the exact k-NN network for large-scale single-cell data is time-consuming because 

it requires 𝑂(𝑛2)  time to compute all pairwise distances between all cells in the data set. 

Approximate methods for constructing a k-NN network have been developed, all of which have a 

tradeoff between speed and accuracy. Common approaches include locality sensitivity hashing29, 

neighbor exploring methods27, and partitioning methods based on random projection trees26, k-d 

trees31 and k-means trees31. 

As suggested by LargeVis25, we develop a fast method to construct an approximate k-NN 

network. We first partition the whole high-dimensional space into two subspaces and generate a tree 

having only a root node. A set of single-cells in each partitioned subspace belongs to child nodes of 

the root node. Then, for the two subspaces that each set of single-cells in the child nodes belongs to, 

we partition each subspace into two sub-subspaces and generate two child nodes for each child node 

of the root node. The single-cells in each sub-subspace are assigned to each generated child nodes’ 

child node. By continuing to partition the space iteratively, we can build a tree that assigns a group 

of single-cells belonging to partitioned small subspaces to its nodes. When the number of cells in a 

certain node is equal to or less than a predefined threshold, we stop the iterations. The single-cells 

in each leaf node are considered to be a candidate of approximate nearest neighbors. The generated 

tree is called a random projection tree.  

By generating many random projection trees, we can increase the accuracy of the construction 

of a k-NN network, but it is time consuming. Instead of building many random projection trees, we 

use a neighbor search method in order to enhance both the accuracy and the efficiency. Specifically, 

we search the neighbor 𝑗 of the neighbor of each node 𝑖 assuming that its neighbor’s neighbor is 

likely to be its neighbor also30. If the number of neighbors of node 𝑖 is less than k, the method pushes 

some searched neighbor’s neighbor 𝑗 into the set of nearest neighbors of the node 𝑖. By iteratively 

doing this procedure, we can improve the accuracy of the construction and finally find our 

approximate k-NN network. Regarding the accuracy of the k-NN network construction, one can 

refer to the paper of largeVis25, which dealt with several benchmark tests for the accuracy. The k-

NN network construction process has linear time complexity because we build only a few random 

projection trees and because searching a certain node’s neighbor’s neighbor requires just a few 

iterations.  

We then calculate the weight of each pairwise edge that represents the similarity structure of the 

constructed network using the Gaussian kernel, which was also used by t-SNE23,24. The conditional 

probability that the edge from data 𝑥𝑖 to 𝑥𝑗 is observed is first computed by: 

 

𝑝𝑗|𝑖 =
exp (−‖𝑥𝑖 − 𝑥𝑗‖

2
2𝜎𝑖

2⁄ )

∑ exp(−‖𝑥𝑖 − 𝑥𝑘‖2 2𝜎𝑖
2⁄ )(𝑖,𝑘)∈𝐸

 

 𝑝𝑖|𝑖 = 0 

(1) 

where the parameter 𝜎𝑖 is determined by setting the perplexity, and 𝐸 is the set of all edges in the k-

NN network. To make the network symmetric, the weights are defined as: 
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 𝑤𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
 (2) 

where 𝑛 is the number of input single-cell data. Since the number 𝑘𝑛 is much smaller than the 

number of all pairs (𝑛2), the constructed k-NN network is sparse. The sparsity of the k-NN network 

can make us compute 𝑤𝑖𝑗 within linear time complexity. Through the steps, our method can find the 

similarity structure of high-dimensional single-cell data within linear time complexity 𝑂(𝑘𝑛). 

2.3.  Network embedding into a low-dimensional space 

Embedding the constructed k-NN network is intended to preserve local and global network topology 

such that neighbors in the network are near each other in a low-dimensional space. First, for two 

nodes 𝑣𝑖 and 𝑣𝑗 , LargeVis25 defines the probability that they come from the same neighborhood, i.e. 

the probability that we can observe the edge between two nodes in the k-NN network, as: 

 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖, 𝑦𝑗) = 𝑓(dist(𝑦𝑖 , 𝑦𝑗)) 
(3) 

where 𝑓 is a transformation function to map the distance between 𝑦𝑖 and 𝑦𝑗 into a probability value. 

The function 𝑓 satisfies the idea that when the distance between two low-dimensional points is 

small, the probability observing the connection between them is high. After considering some 

candidates like a multinomial logistic model and a sigmoid function, we chose 𝑓(𝑥) =
1

1+𝛼𝑥2  (𝛼 >

0) due to its computational simplicity. The selected function 𝑓 does not require any normalization 

across the data set, thus only 𝑂(𝑛)  runtime is needed for objective evaluation and gradient 

calculation in the embedding optimization (see below). In addition, we can control the thickness of 

the tail of the function 𝑓 by controlling 𝛼. When 𝛼 becomes smaller, its tail gets thicker. When 𝛼 =

1, 𝑓 is Student’s t-distribution with degree of freedom one except a scaling factor 
1

𝜋
. On the other 

hand, t-SNE23 uses the Gaussian kernel 𝑝𝑖𝑗 of (1) and a t-distributed kernel 𝑞𝑖𝑗 =
(1+‖𝑦𝑖−𝑦𝑗‖

2
)−1

∑ (1+‖𝑦𝑘−𝑦𝑙‖2)−1
𝑘≠𝑙

 

to measure its high-dimensional and low-dimensional similarity, respectively. By minimizing the 

Kullback-Leibler divergence between two similarities through gradient descent, t-SNE finds its low-

dimensional embedding. The gradient of its cost function contains the normalization term of 𝑞𝑖𝑗. 

Computing the term requires 𝑂(𝑛2). To avoid inefficiency, accelerated t-SNE24 uses Barnes-Hut 

algorithm32 and reduces its time complexity from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛). Two versions of t-SNE are 

more expensive than our approach. 

Like LargeVis25, we chose Euclidean distance as a distance metric in a low-dimensional space 

because computing Euclidean distance between embedded single-cell data is simple. In addition, we 

can map each calculated distance to one of the various probability function values since the range 

of Euclidean distance is [0, ∞). 

To embed the high-dimensional data, we define a log likelihood utility function (4) that considers 

both the probabilities of all edge connections 𝐸  of the constructed k-NN network and the 

probabilities of all negative edges 𝐸𝐶 . Negative edges mean that pairwise single-cell connections 

that are not observed in the k-NN network. This idea originally comes from noise-contrastive 

estimation (NCE)33, which considers estimation that differentiates its observed data from noise using 

nonlinear logistic regression. Using the idea of NCE, we want to discriminate the same type of cells 
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from different types of cells. Specifically, by maximizing the first term of (4), we can make similar 

single-cells become closer to each other in a low-dimensional space, and by maximizing the second 

part of (4), we can make dissimilar single-cells move away from each other. 

 𝐽 = ∑ 𝑤𝑖𝑗 log 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖 , 𝑦𝑗)

(𝑖,𝑗)∈𝐸

+ ∑ 𝛾 log(1 − 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖, 𝑦𝑗)

(𝑖,𝑗)∈𝐸𝐶

) 
(4) 

However, considering all negative edges is computationally expensive or even intractable when 

input data are very large. Thus, instead of using all negative edges, we use the idea of negative 

sampling28. This approach considers only a few samples drawn from a noise distribution. We 

assumed 𝑃𝑛(𝑗) ~ 𝑑𝑗
3/4

 as the noisy distribution where 𝑑𝑗is the degree of node 𝑗, which was used in 

word2vec28. By letting 𝑀 the number of negative samples, we can redefine the utility function as: 

 
𝐽 = ∑ 𝑤𝑖𝑗 log 𝑝(𝑒𝑖𝑗 = 1|𝑦𝑖 , 𝑦𝑗)

(𝑖,𝑗)∈𝐸

+ ∑ 𝔼𝑗𝑘~𝑃𝑛(𝑗)𝛾 log(1 − 𝑝(𝑒𝑖𝑗𝑘
= 1|𝑦𝑖 , 𝑦𝑗𝑘

)

𝑀

𝑘=1

) (5) 

Then, we optimized (5) by applying asynchronous stochastic gradient descent (ASGD)34. It is a 

powerful optimization technique which can be efficiently parallelized and can make our algorithm 

more scalable. ASGD can be used in this context because the network constructed by the first step 

is sparse and there are few memory access conflicts between the threads we used. The learning rate 

is determined by 𝜌𝑡 = 𝜌(1 − 𝑡/𝑇) where 𝑇 is the total number of edge samples25, and the initial 

learning rate 𝜌0  is determined by considering the properties of input single-cell data. The time 

complexity of each SGD step of (5) is 𝑂(𝑀). For a large number of data set, the number of SGD 

iterations is usually proportional to the number of the given data set, 𝑛. Thus, the time complexity 

of the optimization is 𝑂(𝑀𝑛), which is linear with respect to the number of samples.  

3.  Experiments and Discussion 

3.1.  Data and data processing 

We used mass cytometry data that are provided by X-shift12. They consist of 10 data sets that contain 

mice bone marrow samples stained with surface markers, and each of them has 51 parameters. 

Instead of using all of them, we used 39 surface marker expressions12,35 that were utilized for mass 

cytometry experiments of the immune system reference framework35. In addition, the data was 

processed through noise thresholding and asinh transformation, i.e. 𝑦 = asinh(max(𝑥 − 1, 0) /5) 

like X-shift12 and viSNE8 applied. The data sets also offer 24 gating annotations of each cell, which 

were used to distinguish cells in visualization and compare the clustering performance of viSNE 

and our method. 

3.2.  Experimental setting 

We compared our method with viSNE8 because it is a state-of-the-art method of single-cell 

visualization based on nonlinear embedding like our approach. Before implementing both 

algorithms, we set the parameters of each method. viSNE is based on Barnes-Hut-SNE24, which has 

two parameters: perplexity and theta that controls the tradeoff between speed and accuracy. In our 
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experiments, we set the two as 30 and 0.5, respectively. Our method allows for more control and 

therefore has more parameters: number of trees, number of neighbors, perplexity, number of 

negative samples, rho, gamma, and alpha. We set the parameters considering our input data set. The 

first three parameters are related to constructing a k-NN network. The number of trees and neighbors 

can determine the shapes of a k-NN network, and perplexity is related to computing edge weights 

of section 2.2. The other parameters are related to network embedding. The number of negative 

samples is M of (5), rho is the initial learning rate, gamma is the weight of negative edges, and alpha 

determines the thickness of the tail of 𝑓. Table 1 shows the parameters we tuned for our visualization. 

Table 1. Parameters for constructing a k-NN network and for network embedding 

Parameters for constructing a k-NN network 

Number of trees Number of neighbors Perplexity 

20 – 100 20 – 150 10 – 50 

Parameters for network embedding 

Number of 

negative samples 
Rho Gamma Alpha 

5 – 10 1 – 10 1 – 10 < 1 

 

All experiments for measuring the computation time were performed on a machine with Intel 

Xeon E5-2650 CPUs running at 2.30GHz. 40 threads were used except the experiments about the 

effectiveness of multiple threads. 

3.3.  Results 

3.3.1.  Visualization 

Figure 2 represents the visualization for mice bone marrow replicate 7 data set12. Overall, the same 

type of cells forms a dense subset. The number of a certain class of cells such as HSC in the data set 

was so small that they were difficult to distinguish from other cells and to find in our visualization. 

Except these cells, we can see clearly that the same type of cells gathers together and different types 

of cells move away from each other in a two-dimensional space. In addition, we can find some 

similar cells to stay together in Figure 2. For example, similar cell types like Intermediate Monocytes 

(red) and Classical Monocytes (yellow) appear close to each other. Two types of B cells (purple and 

light green) are also stay near each other.  

In addition, we applied viSNE to the same data set. viSNE also represented cell subpopulations 

very well. The same type of cells was grouped together, and it can clearly distinguish different types 

of cells. In the experiments, our method tended to form denser and rounder clusters than viSNE but 

to have more randomly scattered samples. Due to the space limit, the visualization results of viSNE 

are shown through our web-based visualization tool (see section 4). We also compare our method 

with other embedding methods such as PCA in the tool. 

Pacific Symposium on Biocomputing 2017

629



 

 

 

 

Figure 2.  Visualization of our method for bone marrow replicate 7 data set. 

3.3.2.  Computation time 

One of the main goals of our method is to make visualization of high-dimensional single-cell data 

be faster and more scalable. Thus, we compared the computation time between viSNE8 and our 

method for various cases. In addition, to test the scalability and parallelizability, we measured the 

effectiveness of speedup with respect to the number of threads. 

To measure the computation time and evaluate the scalability with respect to the size of the data 

set, we constructed 8 single-cell data sets that contained 5,000, 10,000, 25,000, 50,000, 75,000, 

100,000, 250,000, and 500,000 data, respectively. For each data set, cells were uniformly sampled 

from the union of 10 data sets (total number: 841,644). Each data set contained 39 parameters and 

were preprocessed by noise thresholding and asinh  transformation before sampling. Figure 3(a) 

shows that our method was faster than viSNE for all 8 sampled data sets and our method is easier 

to make scalable. The total computation time of our method consists of two computation times: one 

is for constructing a k-NN network and the other is for embedding the network. Figure 3(b) shows 

how much time we needed for each step. 

In addition, we tested the parallelization of our method in the multi-core setting. Since our 

method uses asynchronous stochastic gradient descent (ASGD)34 for training, it can be more 

accelerated by using multiple threads. We measured the computation time of our method when 

dealing with the union of all 10 single cell data sets with respect to the number of threads. By 

increasing the number of threads from 1 to 8, we measured the effectiveness of the multiple threads 

for our method. When we used 8 threads simultaneously, the speedup rate was 4.1 times faster than 

single-thread implementation in Figure 3(c). The results show that our method can be easily 
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parallelized and can be made more scalable through a multi-core system. 

 

(a) (b) (c) 

Figure 3. (a) Comparison of the computation time of viSNE and our method with respect to the number of single-cell 

data samples. (b) Separate analysis of the computation time for constructing a k-NN network and for embedding with 

regard to the number of single-cell data samples. (c) Effectiveness of the multiple threads for speedup of our method. 

3.3.3.  Clustering 

In this section, we compared the quality of embedding by comparing the performance of clustering. 

In our experiments, we first applied one of the off-the-shelf clustering algorithms, k-means 

clustering20 to the embedded vectors by viSNE8 and those by our method. Next, we measured the 

performance of clustering using hand-gated annotations of each cell. Specifically, we followed the 

process of X-shift12 to compare the clustering result and hand-gated labels and to calculate F1-

measures. As the number of clusters changed from 2 to 100, we computed F1-measures for each 

cluster that a label was assigned to by the Hungarian algorithm36. This process was applied to our 

10 data sets, and we obtained an average F1-measure sum. As another performance measure, we 

obtained maximum F1-measures for each data set across all the number of clusters and took a 

median. 

 As the input of clustering, we used the two-dimensional vectors embedded by viSNE8 and our 

method. We compared an average F1-measure sum of both methods and a median of maximum F1-

measures. Figure 4(a) shows that the clustering performance of our method was better than that of 

viSNE across all the number of clusters with respect to an average F1-measure sum. In addition, we 

compared a median of maximum F1-measures of viSNE and our method. Our two-dimensional 

embedding obtained 14.68 while viSNE obtained 13.23 as its median. Our method also 

outperformed viSNE for this metric. 

Since our method is developed mainly for visualization, two or three dimensional vectors are 

usually used as a result of embedding. However, the algorithm can embed high-dimensional single-

cell data into another arbitrary low-dimensional space other than a two- or three-dimensional space. 

The vectors embedded in a higher-dimensional space than a space for visualization can lose less 

intrinsic information about original high-dimensional single-cell data. Thus, they can be used to 

enhance the performance of clustering. We clustered the data by using 5-, 10-, 15- and 20-

dimensional representations obtained by our embedding. 

Figure 4(b) shows that the performance of clustering was improved when we used the vectors 
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with higher dimensions than two. The performances as we used 10-, 15-, and 20-dimensional vectors 

are similar to each other and better than the performance as we used two- or 5-dimensional vectors. 

 

(a) (b) 

Figure 4. (a) Comparison of the clustering performance of viSNE and our method when using two-dimensional vectors 

with respect to the number of clusters. (b) Comparison of the clustering performances when we changed the dimension 

of our embedding. 

4.  Interactive Visualization 

To better aide analysis, we also introduce an interactive web browser based visualization tool 

featured in Figure 5. It allows researchers to examine their own data quickly by enabling 

functionality like mouse-over, zoom, pan, brushing, and linking on the embedded data. Users can 

color data by quantities of marker values as well as qualitative gate information. One can select 

arbitrary groups of single-cell data points, tag them, and save them for downstream analysis. We 

provide code, documentation, and video demonstrations to reproduce experiments and apply our 

methods to new single-cell data through the linka. All code is made available under an MIT license. 

  

Figure 5. Screen shot of web browser based visualization developed in python. The left scatter plot depicts the result of 

our proposed method and on the middle, a PCA projection of the data. The right plot describes embedded expressions 

                                                                    

a https://github.com/nate-russell/SVHD-Single-Cell 
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of a specific marker with respect to a certain projection. Color assignment and data selection labeling are also available 

through widgets at the bottom left. Some data statistics and the table to the right show all provided marker data and meta 

data regarding the single-cell data. 

5.  Conclusion 

In this paper, we introduced a new visualization method for large-scale and high-dimensional single-

cell data based on LargeVis25, which consists of two parts: constructing an approximate k-NN 

network and embedding the constructed network into a low-dimensional space. Since the both steps 

have linear time complexity, our method is scalable and readily for analyzing large-scale single-cell 

data sets with hundreds of thousands or even millions of single cells. Specifically, our experiment 

results showed that the proposed method is much faster than viSNE8, a state-of-the-art single-cell 

visualization method. In addition, through the experiments about clustering, we showed that the 

quality of our embedding is better than that of viSNE on cell identity mapping with respect to F1-

measures. We also provide a web based interactive visualization tool and all necessary code and 

documentation to extend this approach to new data. 
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