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In this paper we derive a method for evaluating and improving techniques for selecting
informative genes from microarray data. Genes of interest are typically selected by ranking
genes according to a test-statistic and then choosing the top k genes. A problem with this
approach is that many of these genes are highly correlated. For classification purposes it
would be ideal to have distinct but still highly informative genes. We propose three different
pre-filter methods — two based on clustering and one based on correlation — to retrieve
groups of similar genes. For these groups we apply a test-statistic to finally select genes of
interest. We show that this filtered set of genes can be used to significantly improve existing
classifiers.

1 Introduction

Even though the human genome sequencing project is almost finished the analysis
has just begun. Besides sequence information, microarrays are constantly delivering
large amounts of data about the inner life of a cell. The new challenge is now to
evaluate these gigantic data streams and extract useful information.

Many genes are strongly regulated and only transcribed at certain times, in
certain environmental conditions, and in certain cell types. Microarrays
simultaneously measure the mRNA expression level of thousands of genes in a cell
mixture. By comparing the expression profiles of different tissue types we might
find the genes that best explain a perturbation or might even help clarify how cancer
is developing.

Given a series of microarray experiments for a specific tissue under different
conditions we want to find the genes most likely differentially expressed under these
conditions. In other words, we want to find the genes that best explain the effects of
these conditions. This task is also called feature selection, a commonly addressed
problem in machine learning, where one has class-labeled data and wants to figure
out which features best discriminate among the classes.  If the genes are the features



describing the cell, the problem is to select the features that have the biggest impact
on describing the results and to drop the features with little or no effect. These
features can then be used to classify unknown data. Noisy or irrelevant attributes
make the classification task more complicated, as they can contain random
correlation. Therefore we want to filter out these features.

Typically, informative genes are selected according to a test statistic or p-value
rank according to a statistical test such as the t-test. The problem here is that we
might end up with many highly correlated genes. Besides being an additional
computational burden, it also can skew the results and lead to misclassifications.
Additionally, if there is a limit on the number of genes to choose we might not be
able to include all informative genes. Our approach is to first find similar genes,
group them and then select informative genes from these groups to avoid
redundancy.

Besides t-like-statistics, there are many different techniques applicable. There
are non-parametric tests like TNoM1 (which calculates a minimal error decision
boundary and counts the number of misclassifications done with this boundary) or
Wilcoxon rank sum/Mann-Whitney2 (which test statistic is identical3 to the Park4

score). It creates a minimal decision boundary too, but incorporates the distance
from the boundary into the score. T-like statistics such as Fisher5 and Golub6 put
different weights in the variance and number of samples. The Mutual Information
score results from entropy and information theory, and the B-score7 comes from
Bayesian decision theory. Vapnik8 describes an interesting method to optimize
feature selection while generating support vector boundaries for SVMs.

In this paper we will compare classification done with five different test
statistics: Fisher,5 Golub,6 Wilcoxon,2 TNoM,1 and t-test2 on three different publicly
available datasets, Golub,6 Notterman16 and Alon9. We will propose two algorithms
based on clustering and one based on correlated groups to find similar genes. We
then show that these prefiltering methods yield consistently better classification
performance than standard methods using similar numbers of genes.

The rest of the paper is organized as follows: Section 2 will review important
methods needed for our proposed approach. Section 2.1 will introduce Microarrays.
Section 2.2 describes a method for evaluating different feature selection sets using
support vector machines and a technique called leave-one-out cross-validation. In
section 2.3 we will review clustering techniques used in this paper. In section 2.4 we
will discuss how reducing redundancy in a dataset can help with the final
classification process and elucidate why redundancy can cause problems for
classification tasks. In section 2.5 we propose new methods to select genes from
clusters using correlation, clustering and statistical information about the genes. In
section 3 we will present results using our proposed approach on three publicly
available data sets. Section 4 contains conclusions and future research directions.



2 Methods and Approach

2.1 Microarrays

A typical microarray holds spots representing several thousand to several tens of
thousands of genes or ESTs (expressed sequence tags). After hybridization the
microarray will be scanned and converted into numerical data. Finally the data
should be normalized. The purpose of this step is to counter systematic variation
(e.g. difference in labeling efficiency for different dyes, compensation for signal
spill over from neighboring spots10) and to allow a comparison between different
microarrays11. The data we work with is already background-corrected and
normalized, and we do not address these problems in this paper.

2.2 Validation, Classification

As we are proposing new gene selection schemes we want to measure their
performance and allow a comparison. All schemes provide us with a set of
informative genes that will be used for future classification. Assume we have n
samples. Leave-one-out cross-validation (LOOCV) is a technique where the
classifier is successively learned on n-1 samples and tested on the remaining one.
This is repeated n times so that every sample was left out once. To build a classifier
for the  n-1 samples, we extract the most revealing genes for these samples, and use
a machine learner. With this classifier we try to classify the remaining (left out)
sample. Repeating this procedure n times gives us n classifiers in the end. Our error
score is the number of mispredictions. We use support vector machines (SVMs12) as
the classification method as these are very robust with sparse and noisy data.

2.3 Support Vector Machines

Supports Vector machines (SVMs) expect a training data set with positive and
negative examples as input (i.e., a binary labeled training data set). Then they create
a decision boundary (the maximal-margin separating hyperplane) between the two
groups and select the most relevant examples involved in the decision process (the
so-called support vectors). The construction of the hyperplane is always possible as
long as the data is linearly separable. If this is not the case, SVMs can use ‘kernels’,
which provide a nonlinear mapping into a higher dimensional feature space. If a
separating hyperplane in this feature space is found, it can correspond to a nonlinear
decision boundary in the input space. If there is noise or inconsistent data a perfectly
separating hyperplane may not exist. Soft-margin SVMs12 attempt to separate the
training set with a minimal number of errors. In this paper we used Bill Noble’s
SVM implementation 1.3 beta now called gist13.



2.4 Clustering

Cluster analysis is a technique for automatically grouping and finding structures
in a dataset. Clustering methods partition the dataset into clusters, where similar data
are assigned to the same cluster whereas dissimilar data should belong to different
clusters. Fuzzy clustering14 deals with the problem that there is often no sharp
boundary between clusters in real applications. Instead of assigning an element to
one specific cluster there is a membership probability for each cluster. In doing so an
element can be a member of several clusters. Fuzzy clustering can be seen as a
generalization of k-means15 clustering. We used the FCMeans Clustering MATLAB
Toolbox V2-0.

2.5 Reducing Redundancy

Now that we have reviewed all the methods we need, we will return to the problem
of feature selection. Table 1 shows a list of 7 genes from Notterman’s Adenoma16

dataset sorted by increasing p-value. For gene M18000 the expression value is
generally higher in Adenoma than in Normals with the exception of Adenoma 1 and
Normal 2. Looking at X62691 the same is true. Both genes have a very low p-value
and would be pulled out by conventional methods, which focus on genes with the
lowest p-values. Biologists are often interested in a small set of genes (for financial,
personal workload or experimental reasons) that describes the perturbation as well as
possible. Therefore we are limited in the number of genes to extract and e.g.
assuming we could only extract 2 genes we would pull out the first two genes as
they have the lowest p-value. However we would not get much additional
information using the second gene as it shows the same overall pattern. It would be
better to include a gene that provides us with extra information.

Table 1: Expression values for 7 selected genes of Adenoma and normal tissues, sorted by p-value.

Adenoma
 

Normal
 

Accession
Number 1 2 3 4 1 2 3 4

t-test
p-value

M18000 705.41 1227.27 959.35 951.56 359.83 711.08 485.33 431.19 0.014
X62691 387.91 577.57 578.45 546.54 227.26 436.65 306.94 239.33 0.016
M82962 91.85 16.27 12.61 61.62 187.44 76.90 181.38 186.53 0.017
U37426 0.47 7.05 6.30 3.40 -3.88 1.58 -2.99 -2.91 0.018
HG2564 2.33 0.54 1.58 3.82 -2.91 -2.11 1.00 -2.91 0.019
Z50853 35.43 26.03 51.49 41.22 27.68 15.80 12.46 15.99 0.022
M32373 -48.02 -28.20 -64.62 -56.95 -15.05 -16.86 -7.97 -34.88 0.022



Table 2: Correlation between Adenoma genes from table 1

 M18000 X62691 M82962 U37426 HG2564 Z50853 M32373
M18000 1.000
X62691 0.961 1.000
M82962 -0.944 -0.971 1.000
U37426 0.973 0.975 -0.983 1.000
HG2564 0.592 0.653 -0.553 0.529 1.000
Z50853 0.514 0.616 -0.633 0.597 0.614 1.000
M32373 -0.509 -0.590 0.602 -0.580 -0.619 -0.874 1.000

Looking at the correlation values in table 2 we can see that the first four genes
have an absolute correlation greater than 0.94. Not surprisingly highly correlated
genes show the same misclassification pattern and in fact we find that the first four
genes also have the same pattern of consistent outliers in Adenoma 1 and Normal 2.
In order to increase the classification performance we propose to use more
uncorrelated genes instead of just the top genes. We expect the phenomenon
illustrated by this example to be a general one. By just using the k best ranking genes
according to a test-statistic we would select highly correlated genes. Correlation can
be a hint that the two genes belong to the same pathway, are coexpressed or are
coming from the same chromosome. In general we expect high correlation to have a
meaningful biological explanation. If, e.g., genes A and B are in the same pathway it
could be that they have similar regulation and therefore similar expression profiles.
If gene A has a good test score it is highly likely that gene B will, as well. Hence a
typical feature selection scheme is likely to include both genes in a classifier, yet the
pair of genes provides little additional information than either gene alone. Of course
we could just select more genes in order to capture all relevant genes. But not only
would more genes involve higher computational complexity for classification but it
also can skew the result if we have a lot more genes from one pathway. Furthermore
if there are several pathways involved in the perturbation but one pathway has the
main influence, we will probably select all genes from this pathway. If we then have
a limit for the number of genes we might end up with genes only from this pathway.
If many genes are highly correlated we could describe this pathway with fewer
genes and reach the same precision. Additionally, we could replace correlated genes
from this pathway by genes from other pathways and possibly increase the
prediction accuracy. The same issue might be true when selecting a lot of genes as
well, but it is more compelling when we have a limited budget of genes and can only
select a few genes.

Our method for gene selection will therefore be to prefilter the gene set and
drop genes that are very similar. For the remaining genes we will apply a common
test statistic and pull out the highest-ranking genes. One way to find correlated genes
would be to calculate the correlation between all genes. In our first method we



selected from the best genes (best according to a test statistic) those that have a pair-
wise correlation below a certain threshold. A simple greedy algorithm accomplishes
this selection – the k-th gene selected is the gene with highest p-value among all
genes whose correlation to each of the first k-1 is below the specified threshold. This
method is called “Correlation” in the figures below. Greedy algorithms are of course
simple, but often give results of poor overall quality due to their myopic decision-
making. As an alternative allowing a more global view of the data, we also consider
clustering algorithms. Clustering is very versatile as it can use different distance
functions (Euclidean, Lk, Mahalanobis, and correlation), and different underlying
models, shapes and densities, which are not captured by just correlation. In this
paper we compared clustering and correlation methods. We used a fuzzy clustering
algorithm because it assigns a membership probability for a cluster for each gene
and may therefore capture the fact that some genes are involved in several pathways.
Although a cluster does not automatically correspond to a pathway it is a reasonable
approximation that genes in the same cluster have something to do with each other
or are directly or indirectly involved in the same pathway. Our basic approach is to
cluster the genes, and then to select one or more representative genes from each
cluster. The details how many genes from which cluster depend on the “quality” of
each cluster and will be discussed below.

2.6 Assigning quality to cluster

Once we have done the clustering we know that genes in a cluster show similar
expression profiles and might be involved in the same pathway. Since we want to
have as many pathways as possible involved in our list of significant genes, we
would like to sample from each cluster/pathway. But it would not be fair to treat
each cluster and gene equally. The size of the clusters as well as the quality of a
cluster play a role, i.e. how close together are the genes, how far away are they from
the cluster center. If a cluster is very tight and dense it can be assumed that the
members are very similar. On the other hand if a cluster has wide dispersion the
members of the cluster are more heterogeneous. To capture the biggest possible
variety of genes, it would therefore be favorable to take more genes from a cluster of
bad quality than from a cluster with good quality. To determine the quality for the
fuzzy clustering algorithm we used the membership probability for a gene. We said
that an element belongs to the cluster to which it has the highest membership
probability. The cluster quality is then assessed by looking at the average
membership probability of its elements.

A high cluster quality means low dispersion, and the closer the quality gets to 0
the more scattered the cluster becomes. In our first clustering algorithm we decided
that no matter how bad the quality and how small the size of the cluster we should
get at least one element from each cluster. Our reasoning is as follows. First, if the



cluster size is very small but there is a very good gene in it, we do not want to miss
that cluster. Second, by eliminating a cluster we lose all the information of that
pathway, so getting at least one representative plays a role like pseudocounts. Third,
if we have a cluster that is extremely correlated, we would have a very high quality
score and therefore may not pick any gene from that cluster. But this one gene from
that cluster might have had a very good contribution to the discrimination process.

The drawback is that a cluster might represent a pathway that is totally
unrelated to the discrimination we look for. If the cluster then has a bad quality we
might pick a lot of genes from that cluster even though they are not informative. To
counteract this problem we implemented the possibility to mask out and exclude
clusters that have an average bad test statistic p-value (this method is called
“Masked out Clustering” in the figures, whereas “Clustering” refers to the method
where we look at all clusters and do not mask out any). Lastly we want to have
genes that have a high discriminatory power, i.e. can explain the symptoms. This can
be achieved by using an appropriate test statistic.

3 Results and Discussion

For our experiments we selected three different publicly available microarray
datasets, Alon9(40 Adenocarcinoma and 22 normal samples), Golub6(47 ALL and 25
AML leukemia samples) and Notterman16(18 tumor and 18 normal samples). We
compared five different test statistics: Fisher5, Golub6, Park4, TNoM1, and t-test and
ran our three different filtering algorithms described above: Correlation, Clustering,
Masked out Clustering. The performance of the feature selection was calculated
using SVM and LOOCV scores.

For each possible combination of test statistic and clustering algorithm we
evaluated the performance varying the number of clusters between 1 and 30 and the
number of selected features between 2 and 100. We used the Euclidean distance
metric and a fuzzy clustering softness of 1.2 (where 1 would be hard clustering and
infinity is everything belonging to all clusters). For SVM we chose an RBF kernel
function and used data normalization in the feature space.

We also calculated the LOOCV performance using all available data (i.e. not
reducing the number of genes but using all of them). The result was that LOOCV
produced 6 false classifications in the Alon’s colon dataset, resulting in an error of
9.7%. In Golub’s leukemia dataset LOOCV produced 2 false classifications,
resulting in an error of 2.8% and in Notterman’s carcinoma dataset LOOCV made 1
false classification, resulting in an error of 2.8%.

Figure 1 shows a 3d plot of the LOOCV performance varying the number of
clusters selected between 1 and 10 and the number of features chosen between 10
and 100 in steps of 10. The plot shows the clustering algorithm without masking out.



Figure 1: LOOCV performance for Alon’s data set using clustering and conventional methods

There are no values for 10 features and more than 10 clusters, as well as 20
features and more than 20 clusters, as one of our constraints is that each cluster has
at least one member in the feature set. So we can never have more clusters than
features selected.

In the leftmost ribbon (starting in the lower left corner and going up to the top
left corner) we can see the performance varying the number of features and using
just one cluster (i.e. this is our standard comparison line, as this reflects just
selecting features by test-statistic). The whole plot seems very flat once we have
more than 30 features. But notice the darker spots in the middle (between 10 and 20
clusters), that reflect very low LOOCV scores. One reason that there is a high peak
for less than 30 features is that the t-test selects highly correlated and therefore
redundant genes, which makes it hard for the underlying SVM to learn a good
classifier. The average correlation of the top 10 genes selected with the t-test is 0.85.

Figure 2 compares different test statistics on a given data set using the first
clustering algorithm. Notice that Fisher and Golub behave very similarly as do Park
and TNoM, but t-test has (besides the big bulk at only a few features) a very flat and
robust behavior. Fisher and Golub seem to have a higher variance in classification
but their best classification performance is similar to t-test. They achieve their best
results with 6-25 clusters. TNoM and Park achieve their best results for fewer
clusters (in the range of 1-6) and in fact they seem not to benefit from the clustering
as much as t-test, Fisher or Golub do.



Figure 2: Comparison of different test statistics

For Notterman’s carcinoma dataset the standard classification process already
achieves 0% error when using more than 10 features but we can still improve the
classification when using 10 features or less. Using only that few features we still
manage to have a 0% error with most of the test statistics. Due to space restrictions
figures are not shown here but can be accessed online17.

Now consider how the LOOCV performance of our clustered result compares to
the conventional methods (depicted as normal). In figure 3 we plot the normal score,
the clustered scores (the minimum error score over all trials with cluster size from 2
to 30), the clustered scores with masking out and the correlation scores for the
LOOCV performance for each of the five test-statistics. Here we did not plot the
number of errors (plots for this are available online17), that reflect the efficiency of
the classification but a ROC18 (receiver operator curves) score (i.e., the area under
the ROC graph, which takes both false negative and false positive errors into
account and reflects the robustness of the classification). We can see that almost
always the filtered performance is better than the conventional method. Another
noticeable fact is that without clustering, TNoM would have on average the best
LOOCV performance of the five scores for Alon’s colon dataset. An explanation
might be that TNoM, as a nonparametric test, extracts less correlated genes and
therefore already does a good job in selecting different genes.



Figure 3: Comparison of test-statistics and different prefilter methods for Alon’s data set

In the top 30 t-test genes in Alon’s dataset, we have an average correlation of
0.79, whereas in the top 30 TNoM genes, we have only an average correlation of
0.56. Wilcoxon (also a nonparametric test) achieves the best result of all the tests
(when comparing 30 features) and can reduce the absolute LOOCV error to 5.17 The
average correlation of the top 30 Wilcoxon genes is 0.43.

Doing the same comparison on Golub’s dataset yields figure 4. In Alon’s
dataset it seemed that TNoM was on average the best test statistic whereas in
Golub’s leukemia dataset Wilcoxon performs best. We still see that clustering can
lower the error in most of the cases. A remarkable fact is that with clustering we
achieve 0% error with the t-test when using more than 50 features. Notice that we
had 2 errors when using all the data. Here, not only can feature selection reduce the
number of genes to find, but it can also decrease the error.

Although clustering for feature selection generally seems to improve the
LOOCV error, the least improvements were obtained using it in conjunction with the
Wilcoxon rank sum test and the best performance improvement was achieved using
it together with t-tests. As illustrated above the reason for that could be that the t-test
generally finds more correlated genes. The nonparametric tests do not take values
into account and calculate their scores purely based on rank information what seems
to have a positive effect on selecting fewer correlated genes.



Figure 4: Comparison of different prefilter methods for Golub’s data set

4 Conclusion and further research

In this paper we presented three novel prefilter methods to increase
classification performance with microarray data. There is no clear winner between
the three proposed methods and it depends largely on the dataset and parameters
used.  All the proposed feature selection methods find a subset that has better
LOOCV performance than the currently used approaches. One question not
addressed here is how to find the correct number of clusters. It is pretty expensive to
try all possible numbers for clusters to find a setting that provides us with a good
LOOCV performance. One direction for future work would be to estimate the
number of clusters using a BIC19 (Bayesian Information Criterion) score or switching
over to model based clustering20.

We addressed the problem of feature selection and outlined why feature
selection has to be done and how it can be done without losing crucial information.
The question not answered here is how many features/genes should be chosen in the
end. One could argue to choose exactly that many genes as necessary to achieve the
lowest LOOCV error. But in the end it comes down to a tradeoff between false
positives and false negatives. The more genes we have in our set of interest (the
feature set) the more genes might also be real candidates. The extreme would be to
take all genes. Then we definitely have all candidates but also a very high
percentage of false positives. The other extreme would be to take no gene at all.
Then we would not mispredict anything to be a real gene but would have a very high
false negative rate. The final answer on how many genes to select can only be
answered by the biologists who must judge how much time they can invest in
examining these genes further and which false positive/negative rate they will
accept.



We feel, however, that for any fixed size the methods outlined here are likely to
identify sets of genes that are stronger predictors than sets found by standard
methods, which should be of significant value for diagnostic purposes as well as for
guiding further exploration of the underlying biology.

Acknowledgment

Thanks to Bill Noble for his helpful suggestions. JJ and RS were supported in part
by NIH grant NHGRI/K01-02350. WLR and JJ were supported in part by NSF DBI
62-2677.

References

1 A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini. Tissue
classification with gene expression profiles. RECOMB, (2000).

2 J.L. Devore, Probability and Statistics for Engineering and the Sciences, 4th edition, Duxbury Press,
(1995).

3 Own unpublished results
4 P.J. Park, M. Pagano, M. Bonetti: A nonparametric scoring algorithm for identifying informative

genes from microarray data. PSB:52-63, (2001).
5 C.M. Bishop: Neural Networks for Pattern Recognition, Oxford University Press, (1995)
6 T.R. Golub, D.K. Slonim, et al. Molecular classification of cancer: Class discovery and class

prediction by gene expression monitoring. Science, 286:531-537, (1999).
7 I. Lonnstedt and T. P. Speed.  Replicated Microarray Data.  Statistical Sinica, (2002).
8 J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for

SVMs, Advances in Neural Information Processing Systems 13. MIT Press, (2001).
9 U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack and A.J. Levine: Broad patterns

of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays PNAS 96:6745-6750, (1999).

10 Y.H. Yang, M.J. Buckley, S. Dudoit, T.P. and Speed: Comparison of methods for image analysis
on cDNA microarray data. Technical report (2000)

11 Y. H. Yang, S. Dudoit, P. Luu and T. P. Speed. Normalization for cDNA Microarray Data. SPIE
BiOS, (2001).

12 C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning, 20:273-297, (1995).
13 http://microarray.cpmc.columbia.edu/gist/
14 J.C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-

separated clusters", Journal of Cybernetics, 3:32--57, (1973).
15 A.K. Jain, R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, (1988).
16 D.A. Notterman, U. Alon, A.J. Sierk, A.J. Levine: Transcriptional Gene Expression Profiles of

Colorectal Adenoma, Adenocarcinoma and Normal Tissue Examined by Oligonucleotide Arrays,
Cancer Research 61:3124-3130, (2001).

17 http://www.cs.washington.edu/homes/jj/psb
18 C.E. Metz, Basic principles of ROC analysis, Seminars in Nuclear Medicine, Vol 8, No. 4, 283-

298, (1978).
19 G. Schwarz: Estimating the dimension of a model. Annals of Statistics, 6:461-464 (1978).
20 K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery and W. L. Ruzzo, Model-based clustering and

data transformation for gene expression data, Bioinformatics 17:977-987 (2001).




