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We consider the problem of phylogenetic placement, in which large numbers of sequences (often next-
generation sequencing reads) are placed onto an existing phylogenetic tree. We adapt our recent work
on phylogenetic tree inference, which uses ancestral sequence reconstruction and locality-sensitive
hashing, to this domain. With these ideas, new sequences can be placed onto trees with high fidelity
in strikingly fast runtimes. Our results are two orders of magnitude faster than existing programs
for this domain, and show a modest accuracy tradeoff. Our results offer the possibility of analyzing
many more reads in a next-generation sequencing project than is currently possible.
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1. Introduction

In the past few years, advances in sequencing technology have enabled the study of microbial
communities from diverse environments, such as soil,1 ocean,2 and the human body.3 Microbial
ecologists are interested in the diversity of bacteria in a given environment, their evolutionary
origins, and their metabolic relationships. They answer these questions by collecting sequence
data from environmental samples and then comparing them to reference sequences from known
microbial lineages.

Phylogenetics provides a natural framework for investigating the microbial diversity in
these environments. Most microorganisms can be approximately located on the tree of life
for bacteria, and then communities or environments can be characterized by the relative
abundance of certain taxa.4 Or, unusual sequences can be a focus for further investigation
and directed sequencing.5 The first step, however, is to locate each sequence on the tree.

While many phylogenetic algorithms have been developed over the years, the current flood
of sequence data from next-generation sequencing presents new challenges for traditional meth-
ods. The massive amounts of data generated by NGS make traditional phylogenetic inference
computationally prohibitive; indeed, in metagenomic contexts, a common first step is to clus-
ter a data set, possibly consisting of millions of reads and instead analyze just the hundreds
or thousands of cluster centres, which discards much valuable data.4 Another problem is that
environmental sequencing produces short sequence reads, instead of full gene sequences. This
is partly due to inherent difficulties of assembling reads in the presence of sequences from many
different species. For example, reads generated by Illumina have length ≈ 200 bp, which does
not provide sufficiently strong phylogenetic signal for full phylogenetic inference. Maximum
likelihood phylogenies from incomplete sequences tend to be biased towards grouping highly
overlapping sequences together.6

These problems have recently motivated researchers to focus on placing individual envi-
ronmental sequences into a fixed phylogeny, instead of performing full phylogenetic inference



on the entire set of sequences. This has several advantages. The computational cost is greatly
reduced, as the number of topologies that need to be considered is linear in the size of the
tree for each sequence. By considering each query sequence separately, we also hope to avoid
the biases associated with sequence overlaps. There are currently several programs performing
this task, called phylogenetic placement .6–8 Unfortunately, their speed is insufficient to place
millions of reads, as we see in Section 4.3.

Recently, we have developed a fast and accurate phylogenetic reconstruction algorithm.9

Our algorithm uses hash tables to identify closely related sequences without having to estimate
all
(
n
2

)
distances between sequences. Here, we adapt our technique to phylogenetic placement.

More specifically, we develop the first algorithm that places sequences in a known reference
phylogeny with running time sub-linear in the number of taxa in the reference tree. We show
that our methods are both theoretically grounded and practically useful.

Our algorithm is based on several ideas. First, we use a hash table technique known as
locality-sensitive hashing10 to find a sequence in the tree that is close to the query sequence,
in sublinear time. To make sure that such a sequence exists in the tree, we infer ancestral
sequences at internal nodes of the reference tree. Finally, we use local search to find the optimal
placement of the query sequence in a neighbourhood of the tentative placement discovered by
locality-sensitive hashing. The running time of this procedure is determined by the number of
hash tables needed to find a close enough sequence in the tree, which in turn depends on the
lengths of the edges of the tree. Specifically, if p is an upper bound on the mutation probability
on any edge, and p < 1/2−

√
1/8, then we show that we can do the locality-sensitive hashing,

which is the runtime-determining step, in O(nγ(p) log2 n) time for each sequence to place, where
γ(p) is always less than 1; the overall runtime is thus O(mnγ(p) log2 n) to place m new sequences
onto a reference tree of n taxa. In practice, we choose to use a constant number of hash tables,
reducing this phase to O(log n) time, though there is some runtime required for local search.

A novel algorithmic idea in this paper is to build the hash tables from slowly-evolving
alignment columns. This reduces the probability of a mutation having occurred between two
sequences in one of the hash table columns, which causes the algorithm to require fewer hash
tables to guarantee a hash table collision.

We evaluate our algorithm on a number of synthetic and real data sets. The accuracy of our
algorithm is lower than that of pplacer,6 while its running time is around 2 orders of magnitude
faster, making it a useful tool for handling large data sets. The current implementation of the
local search phase of our method is distance based, and we expect that its accuracy could be
substantially improved using maximum likelihood, at modest cost in running time.

2. Related work

Many tools determine the taxonomic origin of environmental sequences. These tools can be
roughly divided into three categories: those based on phylogenetic modelling, those based on
sequence composition, and those based on homology search. Gerlach11 provides a recent survey
of these methods.

Recently, researchers have developed several tools for placing environmental sequences
onto a reference phylogeny. These methods generally take O(n) time to insert a sequence



in a tree of n taxa. MLTreeMap8 was the first tool designed for this task. the Evolutionary
Placement Algorithm7 and pplacer6 offer more efficient implementations of the same approach,
which places a sequence optimally at each edge of the phylogeny, and then assigns the overall
maximum likelihood placement as the answer for each individual sequence.

Some software pipelines for analyzing metagenomic data sets employ full phylogenetic
reconstruction. These include TreePhyler12 and CARMA.13 While much progress has been
made in fast phylogeny reconstruction in recent years,9,14,15 reconstructing the full tree remains
much slower than other classification methods.

Another approach is to build a classifier to discriminate between taxonomic groups at dif-
ferent levels of the Linnaean hierarchy. These classifiers do not attempt to model phylogenetic
relationships between different taxa, but instead treat the problem as a supervised classifica-
tion problem at each level of the hierarchy. The features used are usually derived from the
k-mer composition of the sequence, which bypasses the need for aligning sequences. Many such
classifiers have been developed, including PhyloPythia,16 TACOA,17 and PhyMM.18 Taxy19

uses mixture models and k-mers to estimate the relative abundance of different taxonomic
groups in a set of sequences, without attempting to classify each sequence in detail. Taxo-
nomic classifiers are often faster than phylogeny-based methods, but they do not offer the
same explanatory power. Moreover, classifiers based on k-mers tend to behave badly on short
sequences, as they lack sufficient information to distinguish different clades.

Yet another class of approaches uses BLAST20 to determine evolutionary proximity of
sequence reads to known species. Here, environmental sequences are expected to generate
BLAST hits with the sequences they are closely related to. Several algorithms exist for map-
ping sets of BLAST hits to taxonomic classifications, including MEGAN21 and SOrt-ITEMS.22

Unfortunately, if the only close relatives to a sequence in a tree are internal nodes, this ap-
proach will fail; our method will avoid this problem due to our inference of internal sequences.
The BLAST-based approach is also very fragile to short reads.

3. The algorithm

3.1. Overview

The input to the algorithm consists of three parts: the reference phylogeny T , on n taxa,
which includes tree edge lengths; the multiple alignment A of the n sequences in the reference
phylogeny; and a set of m query sequences, each aligned to that reference alignment. Our goal
is to assign each query sequence to the edge where it joins the tree.

Our algorithm consists of the following steps. The first three are a preprocessing phase, and
the resultant data structures could be stored for use, if a given tree and multiple alignment
are going to be used to analyze many different sets of reads.

(1) Estimate evolutionary rates for each column of the reference alignment.
(2) Reconstruct ancestral sequences at each internal node of the reference phylogeny using

maximum likelihood.
(3) Build a collection of hash tables, keyed on slowly-evolving columns of A. Add the keys for

both leaf sequences and ancestral inferences into the hash tables.



(4) For each query sequence y:

(a) Look for collisions between y and the hash tables. Choose the closest sequence x col-
liding with y.

(b) Examine the neighbourhood of x in T . For each edge e in that neighbourhood, estimate
the distance between e and y. Output the closest edge to y.

In what follows, we explain the details and the motivation behind each of these steps. For
a more detailed discussion of the theoretical issues in this method, the reader is referred to
our previous paper on phylogeny reconstruction.9

3.2. Locality-sensitive hashing

For a given query sequence y, we want to find sequences in T whose distance to y is small. We
use a classical result by Indyk and Motwani10 who solve a similar problem using a collection
of randomized hash tables. We design hash tables so that the probability of y colliding with
a similar sequence is high, and the probability of colliding with a distant sequence is low.
We independently construct many such hash tables so that the probability y collides with a
close sequence in at least one hash table is high. Locality-sensitive hashing has been applied
to many problems in bioinformatics, such as motif finding.23

Specifically, Indyk and Motwani solve a related problem, the (r1, r2)-approximate Point
Location in Equal Balls ((r1, r2)-PLEB):

Input: A set of n sequences P in {0, 1}k, a query sequence q, and radii r1 < r2
Output: Does there exist a sequence p ∈ P within Hamming distance r1k from q? If so,

output “yes” and a sequence within r2k of q. If there is no sequence in P within Hamming
distance r2k from q, output “no”. Otherwise, output either “yes” or “no”.

Indyk and Motwani’s solution constructs nr1/r2 hash tables, each keyed on c log n randomly
chosen sequence positions, where c depends only on r2. Given y, a point within distance r1 of it
has probability at least n−r1/r2 of colliding with y in each hash table, while points further than
r2 from q have O(1/n) probability of colliding. After inspecting a constant number of collisions
with q, we can find, with constant probability, a point whose distance from q is at most r2;
if we boost by running O(log n) times independently, the success probability is 1 − n−α, for
any choice of α. Finding an (r1, r2)-approximate near neighbour for a query point q with high
probability takes O(nr1/r2 log n) hash table lookups, each on a key of length O(log n) bits.

For large trees, parameter r2 can be very close to the expected Hamming distance of unre-
lated sequences.9 For binary characters, r2 converges to 1

2 ; similar constants can be computed
for other mutation models, alphabets, and baseline letter frequencies.

Finding all neighbours within r1 normalized Hamming distance of a sequence y thus takes
O(n2r1+ε log2 n) time with high probability. The additive constant ε, which converges to 0 as
n grows, accounts for error in distance estimates and that r2 converges to 1/2 as n grows. We
use O(n2r1+ε log n) hash tables, each of which requires O(log n) time to examine, and we take
O(log2 n) time examining the hash table hits.



3.3. Ancestral states

For locality-sensitive hashing to work, we have to ensure that our hash tables contain sequences
sufficiently similar to the query sequence. If the query sequence branches out from an edge
in the reference phylogeny that is not adjacent to a leaf, its distance from any leaf sequence
may be too long for locality-sensitive hashing to work if we only index leaf sequences. We
reconstruct ancestral sequences in the reference tree, using maximum likelihood, and add
these reconstructions to the tables as well. The crucial question is how well the reconstructed
ancestral sequences resemble the actual historical sequences: if a query is near an internal node
in the true tree, and that node’s sequence has been reconstructed well, it will likely result in
a hash table hit, even with few hash tables.

There are several known upper bounds on the probability of incorrectly reconstructing an
ancestral character from the leaf characters. This error probability depends on the edge lengths
in the phylogeny. If most edges in T are very long, the number of errors in the reconstructed
sequences will grow with the level of the internal node, and the reconstructed states at deep
nodes of the tree will be junk, so adding them to the hash table will be pointless. On the
other hand, if the edges are short enough, speciation outpaces mutation, and it is possible to
reconstruct the ancestral state with guaranteed accuracy that does not depend on the size of
the tree.

Evans et al.24 have shown that for Cavender-Farris characters, if all the edge lengths

correspond to mutation probabilities less than 1
2 −

√
1
8 , then internal sequences will be re-

constructed with accuracy at least a constant strictly above 1
2 . Similar results exist for more

realistic evolutionary models, including the GTR model for DNA sequences.25 Gascuel and
Steel26 established a similar result for trees generated from the birth-death process. This is an
important complement to the result by Evans et al., since birth-death trees will usually have a
limited number of long edges. While the mathematical details of these results differ depending
on the evolutionary model and branch length distribution, they all suggest the possibility of
reasonably accurate ancestral sequence reconstruction for trees whose branches have moderate
lengths.

The following is a useful bound by Steel.27

Theorem 3.1. Let T be a phylogenetic tree where all mutation probabilities across edges are
equal to pg < 1/8. The probability perr of incorrectly reconstructing the root state using Fitch
parsimony is bounded by

perr <
1

2
−
√

(1− 4pg)(1− 8pg)

2(1− 2pg)2
< 1− 4pg

We have shown9 that this bound also applies to trees with variable edge lengths if Felsen-
stein’s maximum likelihood algorithm is used, rather than Fitch parsimony. Felsenstein’s algo-
rithm has optimal probability of correctly reconstructing ancestral states among all possible
algorithms.

With the bound on perr, we can determine the number of hash tables (and thus the runtime)
required to find a node in the tree that is close to the true placement of the query sequence



y. Suppose sequences evolve according to the Cavender-Farris model. Let gerr be the distance
corresponding to a mutation probability of perr. If the evolutionary distance between y and
the node that joins it to the tree is gquery, the effective evolutionary distance between the
query and the nearest sequence in the tree is at most gquery + g/2 + gerr. This corresponds to
a mutation probability of 1

2 −
1
2(1 − 2pquery)(1 − 2pg)

1/2(1 − 2perr). The number of hash tables
required is thus bounded by

n1−(1−2pquery)(1−2pg)1/2(1−2perr)

Table 1 shows the running times of the hashing time for a single query, for different values of
pg, assuming for simplicity that pquery ≤ pg.

In practice, we do not know the upper bound on the distance of query sequences to the
tree. The values in Table 1 should be understood only as illustration of the theoretical basis for
our method. In the current version of the software, the number of hash tables per alignment
region is fixed at 4, as this value gave good results for phylogenetic tree reconstruction, and
maintains moderate memory use.

Table 1. Runtime of inserting a new taxon into a tree with n taxa, as a function
of the maximum edge mutation probability

pg 0.01 0.02 0.05 0.075 0.10

runtime n0.05 log2 n n0.10 log2 n n0.27 log2 n n0.43 log2 n n0.61 log2 n

3.4. Local search

Our near-neighbour search procedure finds sequences that are in the vicinity of the correct
placement for query sequence y, with high probability. However, it does not guarantee that the
optimal placement is one of the edges adjacent to the node found. We estimate the distance
between y and each edge e = (x1, x2) near of the colliding sequence x as:

d̂(y, e) =
1

2
(d̂(x1, y) + d̂(x2, y)− d̂(x1, x2)),

estimating d̂(a, b) via the probabilistic model of evolution.
If x1 and x2 are reconstructed ancestral sequences and reconstruction errors at x1 and x2

are independent, then they will not bias the estimate d̂(y, e), as the additive terms in distance
estimates associated with the reconstruction error will cancel out. We examine all edges within
distance d̂(x, y) of node x. The edge e∗ with smallest estimate is chosen as the placement of
y, with pendant edge length d̂(x, e∗). If T has many very long and very short edges, this will
prove slow; in practice this situation is quite rare. If we assume a minimum size for each edge,
and a maximum size beyond which we consider d̂(x, y) too long to be meaningfully estimated,
the neighborhood is of constant size.

For simplicity of implementation, the current implementation of the algorithm ignores
possible dependencies between reconstruction errors. These dependencies could be ameliorated
by using some of the techniques discussed in our previous paper.9 We leave that as future work.



3.5. Accommodating for different read locations

In some cases, the sequences being placed are short reads, much smaller than the total length
of the alignment, and their positions are distributed randomly across the alignment.28 We need
multiple sets of hash tables to make sure that each read is covered by at least one set of LSH
tables. We solve this problem by using a sliding window approach. We construct groups of
hash tables, each corresponding to short regions of the alignment, so that each query sequence
maps to at least one set of hash tables. Specifically, if all reads have at least k′ bases, we divide
the alignment into blocks of length k′/2, and build a separate set of hash tables for each block.
We then sort the reads by their starting position in the alignment and progressively process
each block of hash tables, from the beginning to the end of the alignment. This ensures that
we never have to store more than one set of hash tables in memory. While the sorting process
adds a factor of logm to the running time per query sequence (where m is the number of query
sequences), in practice this cost is negligible, and can be avoided with counting sort.

3.6. Choosing slow-evolving sites

So far, we have assumed all sites in the alignment evolve at the same relative rate. This is
not true in practice, as genomes, proteins and RNAs contain conserved regions or individual
sites. Rate heterogeneity across sites poses both statistical 29 and computational30 challenges
for phylogenetic inference. However, in our case, we can take advantage of rate heterogeneity
across sites to improve the speed and accuracy of our algorithm. The running time of the
LSH procedure depends on the effective mutation rate between the query sequence and the
nearest sequence in the tree. By choosing hash table keys from slowly evolving columns, we
reduce the number of hash tables needed to ensure a collision with the same probability, or,
equivalently, we enable more distant sequences to be placed correctly using the same number
of hash tables. This is particularly important since biologists are often interested in detecting
previously unknown clades, many of whom are only distantly related to the known organisms.5

We identify slowly-evolving columns by estimating the maximum likelihood relative evolu-
tionary rate for each column in the reference alignment, using the classical Newton-Raphson
method. On the other hand, we also discard near-constant columns where the most common
character appears in more than 95% sequences, as these are not informative.

An important question is how many slowest-evolving columns to choose. If too many
columns are chosen, their average mutation rate will be relatively high. On the other hand, if
we choose too few columns, this will lead to a huge variance in the Hamming distances on these
columns, which will cause hashing to be less informative about the true evolutionary distances
between sequences. We choose to randomly choose from the 200 slowest-evolving columns (not
including the near-constant columns), or the bottom 50% slowest-evolving columns, for short
alignments.

4. Experiments

4.1. Data sets

Our experiments used both simulated and real data. We generated synthetic short read data
sets from a simulated 16S rRNA alignment on n = 78132 sequences from the FastTree paper.14



The length of the alignment was m = 1287 bases. The data were generated as follows. First, k
taxa were chosen at random from the alignment, and the reference subtree induced by these
taxa on the true tree was recorded. We then generated 100,000 simulated short reads. Each
short read was generated by sampling with replacement from the n−k sequences not included
in the reference tree, and keeping m′ contiguous positions, starting at a uniformly-chosen
position. The read length m′ was chosen from a Gaussian distribution with mean 200 and
standard deviation 20.

For the real data set, we used a metagenomic 16S rRNA Illumina library from Alert,
Nunavut, Canada.31 The reads were located in the V3 variable region of the ribosomal RNA.
The sequences were clustered at 97% identity, which resulted in 27848 sequences with a mean
length of 152 bases, aligned to a reference alignment of 2759 sequences using Infernal.32 For
placement, we used a reference 16S tree from the Living Tree Project.33 The diameter of the
tree was 1.46 mutations per site, and the average distance between two nodes was 0.54.

4.2. Accuracy

Table 2 shows the results of our algorithm and pplacer on the synthetic data sets. Our al-
gorithm was less accurate than pplacer, but placed reads within 3 edges from the correct
location over 90% of the time. For larger trees, both algorithms tended to place sequences
farther from their correct edges in terms of the topological distance (TD). However, the evolu-
tionary distance (ED) between placements and correct locations tended to be lower for larger
trees. Larger reference trees contained more short edges which were hard to distinguish for
both algorithms. The magnitude of these effects was similar for LSHPlace and pplacer.

Table 2. Accuracy of LSHPlace and pplacer on three simulated data sets. LSHplace is less
accurate, but still reasonably close for all data set sizes.

data set
huge.1, 1000 taxa huge.1, 5000 taxa huge.1, 10000 taxa

method % correct ED TD % correct ED TD % correct ED TD
LSHPlace 51.2 0.054 1.12 48.6 0.033 1.17 46.1 0.028 1.34
Pplacer 79.0 0.011 0.30 74.0 0.007 0.39 69.1 0.006 0.51

The predictions of both programs disagreed much more on the real data set. Only 10% of
reads were placed on the same edge by both Pplacer and LSHPlace. The average topological
distance between a pplacer prediction and an LSHPlace prediction for the same sequence was
14 edges, with evolutionary distance 0.20 mutations per site. The medians of these distances
were 10 and 0.15, respectively. We suspect that the accuracy of our algorithm might have
been impacted by the presence of many near-constant sites in the alignment, which could
have had an adverse effect on the accuracy of distance estimates. Obviously, future work is
key to learning more about the accuracy difficulties we encounter with real data.

4.3. Running times and scalability

The running times for both programs are shown in Table 3. Each runtime corresponds to
placing 100,000 reads into a tree of the given size. In all cases, LSHPlace is around 1.5 to 2



orders of magnitude faster than pplacer.

Table 3. The time to place 100000 taxa
into a tree, as a function of the number
of taxa in the tree

taxa 1000 5000 10000
our algorithm 7m 12m 17m

pplacer 3.8h 6.4m 18.8h

5. Conclusion

We have presented LSHplace, a new algorithm for phylogenetic placement. By using locality-
sensitive hashing, and including inferred ancestral sequences in the hash tables, our algorithm
allows us to approximately locate new sequences onto an existing phylogenetic tree extremely
rapidly; a local-search procedure allows us to then find an optimal placement quickly for each
new sequence. Our work can be used in a variety of domains, but we expect it will be especially
useful in the context of metagenomic sampling, where millions of sequence reads are generated
and analyzed at the same time to characterize environments. Experimental results, while
preliminary, are encouraging, and show that our algorithm speeds up the process of placement
by two orders of magnitude; we currently also take an accuracy penalty, but we expect this
may be ameliorated by incorporating maximum likelihood inference into the program, which
we are currently exploring. Future work will also explore the importance of alignment quality
in the placement process.
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