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Machine Learning (ML) methods are now influencing major decisions about patient care, new 
medical methods, drug development and their use and importance are rapidly increasing in all 
areas.  However, these ML methods are inherently complex and often difficult to understand and 
explain resulting in barriers to their adoption and validation. Our work (RFEX) focuses on 
enhancing Random Forest (RF) classifier explainability by developing easy to interpret 
explainability summary reports from trained RF classifiers as a way to improve the explainability 
for (often non-expert) users. RFEX is implemented and extensively tested on Stanford FEATURE 
data where RF is tasked with predicting functional sites in 3D molecules based on their 
electrochemical signatures (features). In developing RFEX method we apply user-centered 
approach driven by explainability questions and requirements collected by discussions with 
interested practitioners. We performed formal usability testing with 13 expert and non-expert users 
to verify RFEX usefulness. Analysis of RFEX explainability report and user feedback indicates its 
usefulness in significantly increasing explainability and user confidence in RF classification on 
FEATURE data. Notably, RFEX summary reports easily reveal that one needs very few (from 2-6 
depending on a model) top ranked features to achieve 90% or better of the accuracy when all 480 
features are used.  
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1. Introduction, Background and Motivation

Machine Learning (ML) methods applied on large amounts of biological, medical and life science 
data for use in academic, R&D and business environments are now influencing major decisions 
about patient care, new medical methods, drug development and their use and importance are 
rapidly increasing in all areas.  However, algorithms and software implementing ML methods are 
inherently complex and often difficult to understand and explain both to non-experts as well as 
experts. In addition, ML training databases used to derive predictive models are often large and 
complex, with noisy data, and in many cases are imbalanced containing much fewer positive class 
samples than background samples making commonly used “average” classification accuracy 
measures inadequate.  All this makes it very challenging to understand, evaluate and be confident 
about results of ML performance. The interest in explaining how ML systems work is lately also 
driven by general public and funding agencies given the penetration of ML in all aspects of our 
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lives and not only in bio-science. This is indicated by articles in popular press, many recent blogs,  
new DARPA program on explainable AI [1], FDA requirements for future data mining [2]), as 
well as by recent workshops focused on this subject (e.g. 2016 ICML Workshop on Human 
Interpretability in Machine Learning; PSB 2018 Workshop on Machine Learning and Deep 
Analytics for Biocomputing: Call for Better Explainability) . Problems arising with the lack of 
explainability are being increasingly documented and discussed [3]. However, review of the 
published scientific literature on explainability in ML shows that very few research efforts and 
methods focus specifically on ML explainability. In addition, there is practically no work 
following the tried-and-true best practice of “user centered design” in which one engages users 
who are the ultimate judges and beneficiaries of explainability.  We believe that the importance 
and benefits of being able to explain why and how ML decisions models make their decisions to 
non-ML experts and experts alike (e.g. explainability) are critical and must be addressed. We can 
further define explainability in ML as model explainability - why and how the trained ML model 
works overall, and sample explainability - how ML made a decision for a specific data sample 
(e.g. sample under investigation or sample from the training database). ML training is outside of 
our scope since it is usually well explained.  Note that the ML approach can be reproducible but it 
still may not be sufficiently explainable. The improved explainability of ML in biocomputing and 
other areas will result in the following benefits: a) increased confidence of application and domain 
experts who are key decision makers (and who are often non ML-experts) in adopting ML; b) 
better testing and prevention of cases where ML approach produces results based on 
fundamentally wrong reasons (e.g. based on features not available in real application, wrong data 
in training databases or imperfect algorithm); c) easier evaluation, audit and  verification of ML 
results for granting agencies, government organizations like FDA, and editors/publishers who 
need to decide what is being published and with what level of detail; d) simplification and 
reduction of the cost of application of ML in practice (e.g. by knowing which smaller feature 
subsets produce adequate accuracy more cost effective systems can be built); e) improved 
“maintenance” where ML method has to be changed or tuned to new data or decision needs; and f) 
possible discovery of new knowledge and ideas (e.g. by discovering new patterns and factors that 
contribute to ML decisions) 
 
1.1 Random Forest (RF) Classifiers 
 
RF is a popular and powerful ensemble supervised classification method [4]. Due to its superior 
accuracy and robustness, and some ability to offer insights by ranking of its features, RF has 
effectively been applied to various machine learning applications, including many in 
bioinformatics and medical imaging. RF consists of a set of decision trees, each of which is 
generated by the bagging algorithm with no pruning, forming a “forest” of classifiers voting for a 
particular class. To train a RF, two parameters, the number of tress (ntree) in the forest and the 
number of randomly selected features/variables used to evaluate at each tree node (mtry), must be 
supplied, as well as a training database with ground-truth class labels.  RF also allows adjustment 
of the voting threshold or cutoff (fraction of trees in the forest needed to vote for a given class), 
which is used to compute recall, precision and f-score. The accuracy estimate built into the RF 
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algorithm and all its software implementations is called Out of Bag Error (OOB), which measures 
the average misclassification ratio of samples not used for RF training.  One of the RF algorithm's 
strengths, and reasons we chose it, is its ability to calculate various feature/variable importance 
measures which can form the basis for enhancing its explainability [4, 6].  For this work we chose 
MDA (mean decrease in accuracy) as our main feature importance (ranking) measure. MDA 
measures the average increase of the error rate (i.e. decrease of accuracy) against random 
permutation of feature values across OOB cases. With a trained RF, the values of OOB cases for a 
tree are first permuted along the m-th feature. Then error rate with and without this permutations 
are recorded and their difference computed. This is repeated for all decision trees and the average 
of these differences gives the m-th feature’s MDA. We leverage the fact that MDA can be 
computed for + and – class separately (e.g. MDA+ and MDA-), thus providing better 
explainability. For main measure of RF classification accuracy, given that in most cases we have 
unbalanced training data (as in our case study), instead of commonly used OOB we use f-score  
(f=2 * (precision*recall)/(precision + recall)) determined using K-fold (we use K=5) stratified 
cross validation (SCV) [5, 7] where we independently partition samples to K folds for positive and 
negative sample pools first, then merge positive and negative folds to form the K folds that 
preserves the class distribution of the original dataset. The SCV procedure is then repeated, with 
varying of the RF tree voting cutoff threshold to maximize f-score. 
 
1.2 Related work on Explainability for Random Forest Classifiers 
 
Basic RF classification results traditionally comprise: information on the training data; optimal RF 
parameters; and the set of estimated accuracy measures with description of evaluation methods 
being used. Current methods for RF explainability fall into two basic categories.  Feature ranking 
uses RF-provided variable importance measures like e.g. RF-provided Gini, MDA (mean decrease 
in accuracy) or others, to present them in tables or horizontal bar charts sorted by chosen variable 
importance measure, as in [8, 9, 10, 22, 23].  Highly ranked features are then assumed to play 
important role RF predictions, which in turn may offer some insights into the observed process or 
can even be used to clean-up training databases [23]. However, this information is insufficient for 
more substantial explainability. In addition, feature ranking is seldom done for + and – class 
separately, thus posing problems for frequent case of imbalanced data sets.  Enhanced ranked 
feature representation with more details for helping RF epxlainability has been reported by [11]. 
One innovative idea to look at pairs of highly ranked feature and extract positive and negative 
pair-wise feature interactions has been reported in [12]. The second basic approach is rule 
extraction from trained RF. This method consists of: a) performing standard RF training; b) 
defining rules by analyzing trained RF trees (resulting in very large set of rules, order of 100 K); 
and c) reducing the number and complexity of extracted rules by optimization e.g. minimizing 
some metrics (accuracy, coverage, rule complexity…) to reduce to 10s – 100s of rules, each with 
1-10 or so conditions [13-17].  Common problem with this approach is still a large number of 
complex rules hard to interpret by humans and lack of tradeoffs between accuracy and number of 
rules used. Our prior work on explainability for RF was motivated by our original joint work with 
Stanford Helix team on applying Support Vector Machines (SVM) [18] and RF [5] to their 
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FEATURE data [19] where we show very good classification results measured by high recall and 
precision. In [5] we made first attempts to improve explainability by using RF-provided variable 
importance measures but did not analyze positive vs. negative classes separately and achieved 
very limited explainability improvements.   The  published work on explainability for RF (and 
other ML methods) can be summarized as follows: a) in spite of the fact that explainability is 
geared toward non-expert and expert human users no design consideration and formal evaluations 
related to human usability of proposed explanations and representations have been attempted; b) 
proposed explainability representations do not offer easy to use and critically important tradeoffs 
between accuracy and complexity of ML; c) analysis of + vs. – class separately  (critical for a 
common case of unbalanced training data) has seldom been done; and d) feature reduction is 
generally not applied before explainability steps, thus necessitating complex approaches using 
large numbers of features impeding the explainability. 
 
1.3 User-Centered Approach in Enhancing Random Forest Explainability - RFEX 
 
RFEX method starts with standard approach to RF classification, using training database and 
standard RF tools/algorithms producing base RF accuracy estimates. In a series of steps RFEX 
then produces a RFEX summary report which is to be used by human (often non-expert) users to 
improve the explainability of original trained RF classifier (approach advocated in [1]). In 
developing RFEX we took a user-centered-approach (which to the best of our knowledge has not 
been tried by others): we guide our RFEX method by user-centered explainability questions or 
requirements collected by discussions and observations with interested practitioners, and then we 
test usefulness of RFEX as it is applied to FEATURE data by formal usability experiments. Based 
on our experience and investigation (especially in common case of imbalanced data) most users 
will lack full understanding of how and why RF works based only on the traditionally provided 
information (e.g. info on training data, optimized RF parameters, accuracy evaluation methods and 
estimates) and would pose a number of explainability questions to gain more insights and 
confidence before adopting it: 
1. Can the explainability analysis be done for + and – class separately (critical in frequent case 

of imbalanced training data)?  
2. What are most important features contributing to ML prediction and how do they rank in 

importance? What is the relationship of most important features for + vs. – class, is there any 
overlap? 

3. What is the loss/tradeoffs of accuracy if I use only certain subset of most important features?  
4. What is “direction” of features? Abundance (“more of it” or “presence”) or deficiency (“less 

of it” or “absence”)? What thresholds I can use to determine this? 
5. Which features interact together? 
6. Can this analysis be presented in an easy to understand and simple summary for ML/domain 

experts and non-experts? 
 
We then use these explainability questions as “user-driven requirements” for the design of 

RFEX resulting in one page RFEX explainability summary report (one page was a design goal). 
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RFEX is implemented and extensively tested on Stanford FEATURE data. Most importantly (and 
to the best of our knowledge never done before) we also performed formal RFEX usability study 
with 13 users of various experience in RF and FEATURE to assess RFEX utility in increase of RF 
classification results’ explainability. 
 
2.  Case Study: RFEX Applied to Stanford FEATURE data 
 
Stanford FEATURE [19] is a system for classifying protein functional sites from electrochemical 
signatures/properties around those functional sites. FEATURE data is organized as feature vectors 
each describing a site in a three dimensional protein structure, using 80 physicochemical 
properties (features) in 6 concentric spherical shells, each 1.25 Ångstroms thick, yielding 480 
feature values per vector. Each feature is denoted by the physicochemical property name, followed 
by its shell location (Si). FEATURE data i.e. the training database used for RF training, contains 
feature vectors at known positive (functional site) and negative (background) class labels for each 
protein functional model [18]. FEATURE training data is highly imbalanced e.g. there are two to 
three orders of magnitude more negative (background) vs. positive (functional sites) samples. For 
the work in this paper we used the same 7 FEATURE models selected in experiments in [5], 
which are subset of models analyzed in [18], see Table 1. 
 
2.1 Creation of RFEX Summary Reports  
 
We first estimate “base RF classification accuracy” by training RF on FEATURE data using all 
480 features and we estimate accuracy using f-score with 5 fold stratified cross validation (SCV). 
We use ntree = 500   and vary mtry as {10, 20, 40} to find the optimal combination maximizing f-
score. This experiment confirmed high RF predictive power for all 7 models (as reported before in 
[5]). Table 1 shows 7 models, and for each model their training data and several base RF accuracy 
measures using all 480 features. For our analysis we use Open Source packages which implement 
RF and provide MDA measures as well as various methods for RF training, including SCV, 
namely R package [20 ] and caret tool kit [21], along with Python integration and application 
code. We then proceed in developing “explainable RF model/representation” using RFEX 
approach which involves a series of steps and strategies (including novel explainability measures) 
designed to explicitly answer all 6 explainability questions above. We show details of  
experiments for one FEATURE model, namely ASP_PROTEASE.4.ASP.OD1 and then present 
RFEX one page summaries for two FEATURE models (ASP_PROTEASE.4.ASP.OD1 and 
EF_HAND_1.1.ASP.OD1), shown in Fig 2 and Fig 3. Detailed experimental results and RFEX 
summary reports for all 7 models are presented in [7]. All our analysis is performed separately for 
positive (functional sites) and negative (background) class (explainability question 1).   
 
      To rank features by importance (explainability question 2) we use MDA + (ranking for 
positive class) and MDA – (ranking for negative class) provided from above trained RF classifiers 
using standard RF tools, as explained in Section 1.1. By leveraging feature rankings for positive 
and negative class separately (seldom done in published literature) we achieve more explainability 
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given that FEATURE data is highly unbalanced. Indeed, this is justified by the fact that this 
method produces sets of differently ranked features for + and - class, as seen below in Table 2, 
showing 20 top ranked features for + and – class separately. Features appearing in both lists are 
bold. 
                Table 1. Summary of RF basic accuracy using all 480 features (described by several accuracy measures) for 

7 FEATURE models used in this study 

 
We then follow with critical (and seldom used by others) step of early complexity and 

dimensionality reduction where we aim to provide tradeoffs between using the subset of feature 
vs. loss of accuracy (explainability question 3). We focus on positive class and first re-train RF on 
top 2 ranked features from Table 2 using 5-fold SCV on original training data and record average 
f-score and its variation (measured by standard deviation). We then add next top ranked feature 
and retrain RF only on those 3 features. We repeat this adding top ranked features one by one until 
top 20th feature to obtain graph in Fig. 1 showing that by using very small subset of features (less 
than 20 from total of 480) one can achieve almost full base accuracy. 

 
Table 2. Top 20 ranked features for ASP_PROTEASE.4.ASP.OD1) for positive class (MDA+ ranked) and 
negative class (MDA- ranked), with their feature direction (+/- columns). Features appearing in both lists are 
bold

 
To understand the feature direction (+/- columns in Table 2) we introduce novel measure 

DIR(I) as + (n) or – (n) denoting fraction of  times (n) when feature I was above (+) (abundance) 
or below (-) (deficiency) the threshold when making correct prediction, for all trees in the forest 
making a correct prediction, and for all test samples. We measure feature direction for top ranked 
20 features, separately for positive and negative class (explainability question 4), shown in Table 2 
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as +/- columns. We also recorded histograms of threshold values used for top 5 ranked features but 
this information proved to be hard to use due to its variability. The table 2 also reveals some 
important confidence building explainability information: a) set of features best predicting positive 
vs. negative class is different and/or ranked differently; b) some of these features overlap (e.g. 
appear in both lists), and in those cases their direction is opposite; and c) all features are clearly 
either abundant or deficient (e.g. have high value of n). To measure which features “interact” or 
co-occur in making correct classifications (explainability question 5), we compute novel measure 
of Mutual Feature Interaction MFI(I,J) for features I and J as a count of times features I and J 
appear on the same tree path making a correct prediction, for all trees in RF ensemble, and for all 
test samples. We show top 3 co-occurring features for each of the top 10 ranked features (see Fig. 
2). Note that MFI only measures statistical pair-wise feature co-occurrences and not necessarily 
causality.  

 
Fig.1 Trade-off of accuracy (average f-score and its variance from 5-fold CV) using Top N ranked subset         
of features (top 2, top 3 and so on), for positive class. Base accuracy using all 480 features is at dotted line 
 
Finally, we carefully designed a one page summary RFEX report (explainability question 

6) intended to be easy to read and interpret for expert and non-experts alike, and to answer all 6 
explainability questions above. It is provided for positive and negative class separately. We show 
two RFEX summary reports, first for ASP_PROTEASE.4.ASP.OD1 (positive class) in Fig. 2, 
annotated with explanations of what elements  relate to 6 explainability questions (in italics), and 
the second one for EF_HAND_1.1.ASP.OD1 (positive class) in Fig. 3. One way is to use RFEX 
summary report is to verify whether it matches known intuition or biochemical patterns already 
known (e.g. by looking for “presence” or abundance (marked +) or “absence” or deficiency 
(marked -) of highly ranked features. This in turn would increase users’ confidence in RF 
predictions. Indeed, for the given two examples (ASP_PROTEASE, EF_HAND_1), there is 
evidence that the ranked features match our intuitive understanding of the active site structure, 
supported by the PROSITE [24] pattern matching. For ASP_PROTEASE, there is a required 
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glycine residue that is one amino acid away from the active site; the ranked list indicates that 
atoms belonging to glycine residue(s) 2.5 to 3.75 Ångstroms (shells S2 and S3; 
RESIDUE_NAME_IS_GLY_s2, RESIDUE_NAME_IS_GLY_s3) are a positive predictor, and negative for 
background. For EF_HAND_1, alpha helix residues near the coordinating ASP residue is part of 
the motif definition. Reassuringly this rule contributes as two of the top 3 features for positive 
prediction (SECONDARY_STRUCTURE_IS_4HELIX_s4, SECONDARY_STRUCTURE_IS_4HELIX_s5). 
Another way of interpreting RFEX in general is to look at highly ranked features and use their 
presence or absence to indicate main predictive factors, which potentially can bring new insights 
(the approach we used in [22]). Finally, one can easily and efficiently use RFEX summary reports 
to explore tradeoffs between number of features used (with their names and direction) and 
classification accuracy by looking at f-score column for RFEX summary reports. This shows that 
for all 7 investigated FEATURE models (except for  EF_HAND_1.9.GLN.NE2 which had only 
15 training samples), it suffices to use only from 2-6 (depending on a model) top ranked features 
to achieve 90% or better of the accuracy (f-score) when all 480 features are used.  

 

 
Fig 2. RFEX one page summary report for ASP_PROTEASE.4.ASP.OD1, with explanation of 
graphical elements as they relate to explainability questions 
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Fig 3. RFEX one page summary report for EF_HAND_1.1.ASP.OD1 

3.  RFEX Usability Evaluation 

The goals of RFEX usability evaluation were to assess: a) the increase of explainability e.g. users’ 
confidence and understanding of how and why RF works by using our RFEX approach compared 
to traditional methods of presenting RF classification results; b) obtain users’ feedback on the 
utility of each of the RFEX explainability summary report features. The usability evaluation was 
anonymous and was performed by users on their own time and place, based on the package of 
information and usability questionnaire sent to them with 11 questions.  There were 13 users of 
varied experience in FEATURE and RF. User skill level in RF and FEATURE was assessed by 
users rating their expertise with 4 and 5 (e.g. “expert” level), or 1,2,3 (e.g. “non-expert”). Users in 
this study were grouped in 4 groups: a) FEATURE and RF NON-experts (4 users) ; b) FEATURE 
experts, RF non-experts (3 users); c) FEATURE non-experts, RF experts (2 users); and d) 
FEATURE experts, RF Experts (4 users).  Group a) in some way corresponds to high level 
management or general public; group b) to bio scientists who are not versed in computational ML 
like RF; and group d) to computational bio scientists versed in biology (e.g. FEATURE) domain 
as well as ML (e.g. RF). Users were first asked to review Exhibit A (traditional ways of presenting 
RF results on FEATURE as in our prior work in [5]) for two models - 
ASP_PROTEASE.4.ASP.OD1 and EF_HAND_1.1.ASP.OD1) and assess their understanding of 
how and why RF works. Users were then given RFEX one page explainability summary reports 
for the above models (Exhibit B) and then asked to rate any gain in confidence and understanding 
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of why and how RF works. Users were also asked to grade usefulness of particular RFEX 
summary report graphical and presentation features, as well as assess RFEX applicability to other 
RF and ML applications. In Table 3 below we show averages of answers to most important 
usability questions (4 out of 11), grouped by user expertise level as explained above (higher 
number indicates better rating). 

Table 3: Average of user responses to 4 most important usability questions for various user groups 

 
 

For all 13 users, increase in understanding was significant (average of 3.3 for second 
question on a scale of 1…5) and increase in confidence in RF was good (average of 2.7 for first 
question). All users rated usefulness of RFEX method for other applications of RF and other ML 
approaches with 4 or 5, indicating strong RFEX promise at least at the conceptual level (averages 
for third and fourth questions were 4.4 and 4.0 respectively with small standard deviation). 
Analysis of usefulness of each feature of RFEX reporting where all users graded (not rated) them 
on a scale 1 to 5, indicated that most useful features were indeed those used to guide our design: 
one-page RFEX explainability summary design; feature ranking;  presenting tradeoffs between 
number of features used and accuracy. In fact, all RFEX presentation features except thresholds 
used to test for abundance or deficiency of features were graded as above 3.7 in their usefulness. 
Positive user feedback on specific visualization format of RFEX summary points to importance of 
careful user-centered design for general ML explainability. Users also preferred to see up to top 3 
Mutual Feature Interactions (MFI). The biggest increase both in confidence and understanding of 
how RF works on FEATURE data was achieved by user group d) (FEATURE and RF experts e.g. 
“Computational bio-scientists”), with averages of 4.5 and 4.25 on third and fourth questions.  
Users in group a) (FEATURE and RF NON-experts e.g. “Managers or general public”) showed 
significant increase in understanding (average of 3.25 on second question) and good increase in 
confidence (average of 2.5 on first question). Users in group b) (FEATURE experts and RF NON-
experts e.g. “Bio scientists not versed in RF)”  also showed strong increase in understanding of 
why and how RF works (average of 3.7 on second question) but moderate increase in overall 
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confidence (average 2 on first question) which in part could be explained by their lack of RF 
expertise.  

 
4.  Conclusions and Future Work 

Our RFEX method focuses on enhancing Random Forest (RF) classifier explainability by 
augmenting traditional information on RF classification results with one page RFEX summary 
report which is easy to interpret by users of various levels of expertise. RFEX method was 
designed and evaluated by never used before user-centered-approach driven by explainability 
questions and requirements collected from discussions with interested practitioners. It was 
implemented and extensively tested on Stanford FEATURE data. To assess usefulness of RFEX 
method for users, we performed formal usability testing with 13 expert and non-expert users 
which indicated its usefulness in increasing epxlainability and user confidence in RF classification 
on FEATURE data. Notably, RFEX summary reports easily reveal that one needs very few top 
ranked features (from 2-6 depending on a model) to achieve 90% or better of the accuracy 
achieved when all 480 features are used. Based on user feedback and our analysis we believe 
RFEX approach is directly applicable for other RF applications and to other ML methods where 
some form of feature ranking is available. Our future work includes applying RFEX on other RF 
applications and creation of a toolkit to automate RFEX creation. 
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