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Successful implementation of precision oncology requires both the deployment of nucleic acid 
sequencing panels to identify clinically actionable biomarkers, and the efficient screening of patient 
biomarker eligibility to on-going clinical trials and therapies. This process is typically performed 
manually by biocurators, geneticists, pathologists, and oncologists; however, this is a time-
intensive, and inconsistent process amongst healthcare providers. We present the development of 
a feature matching algorithmic pipeline that identifies patients who meet eligibility criteria of 
precision medicine clinical trials via genetic biomarkers and apply it to patients undergoing 
treatment at the Stanford Cancer Center. This study demonstrates, through our patient eligibility 
screening algorithm that leverages clinical sequencing derived biomarkers with precision medicine 
clinical trials, the successful use of an automated algorithmic pipeline as a feasible, accurate and 
effective alternative to the traditional manual clinical trial curation. 
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1. INTRODUCTION
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Cancer is the second leading cause of death in the US with 163.5 deaths per 100,000 individuals 
in 2017 as reported by the National Vital Statistics System1. Clinical trials with newly developed 
cancer therapies are an important avenue for patients with otherwise limited treatment alternatives. 
It is therefore crucial to identify the most relevant clinical trials for which a patient is eligible. 
Traditionally, patient eligibility screening is a labor- and time-intensive manual process that is 
susceptible to errors and missed enrollment as the volume of patients and clinical trials increases2. 
Through the development of bioinformatic tools, we sought to improve the speed and accuracy of 
patient eligibility screening for precision medicine clinical trials. Precision medicine is an 
approach to patient care that aims to tailor therapies to the molecular abnormalities rather than the 
organ site of the tumor3. For example, Entrectinib, an inhibitor of tyrosine kinases TRKA/B/C, 
ROS1 and ALK, is used to treat patients diagnosed with solid tumors that have NTRK1/2/3, ROS1 
or ALK gene fusions4. There currently does not exist any standardized workflow to perform 
automated eligibility screen at Stanford Hospital that leverages the existing structured genotyping 
data from the Solid Tumor Actionable Mutation Panel (STAMP) assay, a targeted next-generation 
sequencing (NGS) assay for tumor biopsy specimens. In this study, we developed an in-house 
feature matching algorithmic pipeline that identifies patients who meet eligibility criteria of 
precision medicine clinical trials. 

2. MATERIALS AND METHODS 

2.1. Specimens and Retrospective Analysis 

The patient tissue specimens described in this study were obtained from formalin-fixed paraffin-
embedded (FFPE) tissue blocks from Stanford Health Care under institutional review board-
approved protocol (IRB-36084). An anatomical pathologist reviewed, diagnosed, and estimated 
tumor purity from hematoxylin and eosin (H&E) slides of each specimen. These samples 
underwent targeted NGS using the Stanford Health Care STAMP assay that targets clinically 
actionable somatic mutations. 

STAMP test orders were exported from an internal centralized patient database utilized by 
Stanford Medicine. For each test order, the pathogenicity statuses of the STAMP-identified 
variants are annotated by the Molecular Genetic Pathology clinical fellows at Stanford Medicine 
and merged with patient diagnosis data from the Stanford Anatomic Pathology laboratory. For test 
orders that identified single nucleotide variations (SNVs) and insertions/deletions (Indels), the 
following fields were extracted per test order - test order (test order identifier, report created date, 
report date received, amendment note), patient (gender, date of birth, histological diagnosis), 
primary tumor site, and biomarker (gene name, pathogenicity status, NM accession identifier, 
sequence variant HGVS (Human Genome Variation Society) nomenclature - i.e. protein, coding, 
and genomic). Entries were classified into synonymous, SNV, frameshift (i.e. insertions, deletions, 
deletions/insertions, duplications), and in-frame (i.e. insertions, deletions, deletions/insertions, 
duplications) mutations based on the protein and coding sequences; exon location was determined 
based on the genomic sequence. The entries were manually curated to be consistent with 
standardized HGVS nomenclature - protein sequence and exon number does not exist for 
intergenic and intronic mutations. Removed from analysis were variants that are either classified 
as synonymous mutations or have a pathogenicity status that is missing or classified as benign. For 
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test orders that identified fusions, the following fields were extracted per test order - test order (test 
order identifier, report created date, report date received, amendment note), patient (gender, date 
of birth, histological diagnosis), primary tumor site, and biomarker (gene names). For test orders 
that identified copy number variations (CNVs), the following fields were extracted per test order 
- test order (test order identifier, report created date, report date received, amendment note), patient 
(gender, date of birth, histological diagnosis), primary tumor site, and biomarker (gene name, 
variant type i.e. amplification or deletion). Entries were classified into disease group categories 
based on the primary tumor site as manually mapped in (Table S5). Entries with missing primary 
tumor sites were designated the disease group category of unknown. Patient age, rounded down to 
the nearest integer, was determined using date of birth and report date received, which if missing, 
was substituted with the report created date. In addition, entries with missing patient gender or 
patient date of birth, were removed from analysis. For test orders that are amended (i.e. identical 
report created dates), the most recent version was used for analysis.  

The algorithm incorporates the concept of modularity into its design such that the pipeline 
may be successfully applied to datasets that are not specific to this study. For example, the patient 
sample data that is used as input for the clinical trial matching component of the pipeline is a data 
frame whose features are biomarkers that are commonly used as inclusion and exclusion criteria 
in precision medicine clinical trials. The modularity provides a flexible algorithmic pipeline that 
can automate clinical trial matching using data not generated from the STAMP assay. 

2.2. Real-time Analysis 

The raw input data used does not contain patient age, primary tumor site, histological diagnosis, 
or variant pathogenicity status. For test orders that identified SNV/Indels, the gene, genomic 
sequence, and call status fields. For test orders that identified CNVs, the gene and call status fields 
were extracted. For test orders that identified fusions, the gene pair field was extracted. 

2.3. Source of Biomarker-based Clinical Trial Data 

Cancer treatment clinical trials open to accrual within Stanford University School of Medicine are 
tracked on OnCore Enterprise, the institution-wide clinical research management system. All 
interventional biomarker-based clinical trials from OnCore Enterprise were manually curated onto 
an Excel file that contains the following fields per trial - OnCore protocol identifier, National 
Clinical Trial (NCT) identifier, trial title, age group, biomarker gene, biomarker condition 
(mutation i.e. SNV/Indels, amplification, deletion, or fusion), biomarker detail (i.e. all mutations, 
specific amino acid change, or translocation partner gene), disease group, disease site, and contact 
information of the Principal Investigator and Primary Clinical Research Coordinator. Trials were 
classified into disease group categories based on the disease group as mapped in (Table S5). The 
input file is restructured into a data frame where every permutation of a unique combination of the 
individual biomarker criteria, disease group category, and disease site per trial is a separate row.  

Cancer treatment clinical trials open to accrual within a multi-institutional precision 
medicine basket trial (referred to as PMB in this study) is tracked on an Excel file and amendments 
(i.e. addition and/or removal of new arms) are made on average twice a month. For each trial arm 
in the PMB trial, the criteria provided are a list of histologic disease exclusion codes, inclusion 
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non-hotspot rules, exclusion non-hotspot rules, exclusion variants, inclusion variants, 
immunohistochemistry (IHC) results, and comments. Entries labeled as “Indel” in the variant 
inclusion and exclusion criteria were re-classified into frameshift and in-frame (i.e. insertions, 
deletions, indels, duplications) mutations based on the protein sequences.  

3. RESULTS 

3.1. STAMP assay identifies somatic mutations  

Molecular testing was performed on solid tumor biopsies using the STAMP targeted NGS assay, 
which has been offered by the Stanford Molecular Pathology laboratory since 2014. The STAMP 
v2 assay identifies somatic mutations, specifically, SNVs, Indels, CNVs, and/or fusions, in 130 
genes that have been implicated in cancer5. The STAMP database, exported for analysis on 
04/30/2019, contains 2028 unique test orders after performing quality control measures (Fig. 1, 
S1A, S2A-C). For this study, a unique patient is defined by a unique test order identifier, and we 
focused only on test orders associated with the STAMP v2 assay.  

3.2. Algorithmic pipeline flags eligible patients for precision medicine clinical trials  

For this study, we focused on the PMB trial and the internal Stanford Hospital biomarker-based 
clinical trials (referred to as OnCore in this study). Within the time window of this study, on 
average, the PMB trial comprised of 18 arms and the OnCore trials comprised of 12 arms. The 
pipeline we developed uses a hierarchical decision tree-based algorithm to determine whether any 
of the STAMP-identified mutations per patient satisfy the criteria of the clinical trials of interest 
and thereby, render the patient potentially eligible for at least one clinical trial. Specifically, each 
step examines whether a feature of the clinical trials matches the corresponding feature of the 
STAMP entries being queried, where each branch represents a decision and the leaves are the 
potential outcomes in the diagnostic report generated per patient.  

This study utilizes different data sources derived from the STAMP pipeline - raw data files for 
the real-time analysis and annotated downstream files for the retrospective analysis. To design a 
pipeline that can accommodate the multiple data types, age (i.e. select for patients at least 18 years 
of age), pathogenicity (i.e. select for “likely pathogenic” and “pathogenic” SNV/Indels), and 
disease (i.e. match by trial disease group and disease site for the OnCore trials and exclude entries 
matching disease exclusion codes of the PMB trial) are designed as optional filters. If the optional 
filters associated with the criteria are not applied, the criteria will not be examined. 

3.2.1.  Automation of Feature Matching  

The pipeline is designed to examine per class of clinical trials (i.e. OnCore, PMB inclusion 
variants, and PMB inclusion non-hotspot rules) the different variant types (i.e. SNV/Indels, CNVs, 
and fusions) via an iteration-based method. The algorithmic workflow for identification of 
candidate biomarker-based OnCore trials for STAMP-identified mutations are as follows - for 
SNV/Indels the feature order is gene name, variant type, variant detail (accepts “all mutations” 
and specific amino acid changes), pathogenicity, age, primary tumor site category, and primary 
tumor site (Fig. S3A); for CNVs the feature order is gene name, variant detail (i.e. amplification 
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or deletion), age, primary tumor site category, and primary tumor site (Fig. S3B); for fusions the 
feature order is gene name, variant type, age, primary tumor site category, and primary tumor site 
(Fig. S3C). The algorithmic workflow for identification of candidate PMB trial arms for STAMP-
identified mutations based on inclusion variants are as follows - for SNV/Indels the feature order 
is gene name, variant type, genomic region, pathogenicity, and age (Fig. S4A); for CNVs the 
feature order is gene name, variant type, variant detail, and age (Fig. S4B); for fusions the feature 
order is gene name, variant type, and age (Fig. S4C). For the non-hotspot rules, we conservatively 
defined the criteria of deleterious to include any SNV and Indel, which will result in a preferred 
high false positive rate as it ensures that the algorithm will flag the majority, if not all, of the 
candidate cases for subsequent manual review. The algorithmic workflow for identification of 
candidate PMB trial arms for STAMP-identified mutations based on non-hotspot rules are as 
follows - for SNV/Indels the feature order is gene name, variant type, exon number, pathogenicity, 
and age (Fig. S5A); for CNVs the feature order is gene name, variant type (matches deletions 
only), and age (Fig. S5B). If candidate PMB trial arms are identified, the corresponding exclusion 
criteria and disease exclusions are assessed. The manually curated mapping of the primary tumor 
sites and histological diagnoses of the STAMP entries to the PMB trial disease classifications are 
indicated in (Table S1).  

3.2.2.  Manual Review of Matching Output  

Upon completion of the multiple feature matching algorithms for each test order, the pipeline 
aggregates the results to generate summary files and a diagnostic report that is intended for manual 
review. For each STAMP test order, if candidate trials are identified for any of the identified 
mutations, then information about the mutation(s) and clinical trial(s) of interest will be exported 
to a tab-delimited file (Table S2) and formatted into a reader-friendly report (Fig. S6). In addition, 
a diagnostic report is generated to indicate for each of the STAMP-identified mutations, the leaves 
of the decision tree algorithm (Fig. S7). 

3.3. Validation of algorithmic pipeline 

We next evaluated the performance of the algorithm to identify eligible patients for the PMB trial 
based on somatic mutations identified by the STAMP v2 assay. We compared the results derived 
from our algorithmic pipeline to results derived from manual assessment. The manual patient 
eligibility screening based on STAMP v2 results that was conducted comprised of test orders from 
07/01/2017 to 12/31/2017, inclusively (Fig. 1, 2A-C, S1B). Our pipeline identified a PMB match 
rate of 25.4% (Fig. 2D). Using the manual assessment results as the ground truth, our algorithm 
has a recall of 93.8%, precision of 36.6%, and specificity of 91.0%. Of the 78 false positives that 
the algorithm flagged, 75 entries were excluded in the manual assessment due to either “lung” as 
a primary tumor site or “lung adenocarcinoma” as the disease type (i.e. primary tumor site and 
histological diagnosis). While these criteria are not listed in the disease exclusions of the associated 
PMB trial arms, the compounds of interest (i.e. Afatinib, AZD9291, and Crizotinib) are FDA-
approved for use in subsets of lung cancer6-8. Exclusion of these cases improved the recall to 93.8% 
and specificity to 99.7%.  
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3.4. Match rate analysis of STAMP-identified mutations 

To predict the rate at which the STAMP assay identifies eligible patients for the PMB and OnCore 
trials, we performed a retrospective analysis using the STAMP database (Fig. 1, S1C) with the 
hypothesis that past test orders are representative of future test orders in terms of patient 
characteristics (Fig. 3A), tumor types (Fig. 3B), and variant types (Fig. 3C). We applied all the 
optional filters and identified a total match rate of 44.2%, an OnCore match rate of 38.3%, and a 
PMB match rate of 8.9% (Fig. 4A-C; Table S3). The effect of the optional filters on the match rate 
(Fig. S8A-I; Table S3) underscores the contributions of filtering by variant pathogenicity and 
disease grouping on the improvement of the match rate. Examination of the distribution of the 
OnCore trials and biomarker criteria that contributed to a match rate of 38.3% demonstrated that 
EGFR mutations for a EGFR/HER2/HER3-focused study of Neratinib therapy (OnCore 
#VAR0160) and KRAS mutations for a non-small cell lung cancer (NSCLC)-focused study of 
Regorafenib combination therapy (OnCore #LUN0097) contributed to 79.5% (n=497/625) of the 
matches (Table S4). Neratinib is a pan-HER inhibitor that binds and inhibits the activity of 
EGFR11, a protein that is mutated in more than 60% of non-small cell lung carcinomas12. 
Regorafenib is FDA-approved for use in subsets of lung cancer13. Given the status quo of the 
compounds of interest, we speculate that test orders associated with a primary tumor site of “lung”, 
54.49% of the STAMP data (Fig. 3B), would be excluded from the trials.  

To more accurately predict the rate at which eligible patients for OnCore trials may be 
identified using the STAMP assay, we excluded all entries where the primary tumor site is “lung” 
from the analysis (Fig. 1, S1D, S9A-C). This modification identified a total match rate of 17.8%, 
an OnCore match rate of 9.4%, and a PMB match rate of 9.9% (Fig. 4D-F; Table S3). The 
continued effect of the optional filters on the match rate (Fig. S10A-I; Table S3) further supports 
the contributions of filtering by variant pathogenicity and disease grouping on the improvement of 
the match rate.  

4. DISCUSSION 

4.1. Incorporation of informatics into clinical workflows 

Successful and efficient patient eligibility screening is a lynchpin of the clinical trial accrual 
process. With less than 3% of eligible oncology patients enrolled in clinical trials14 and the low 
prevalence of the biomarkers of interest, this is an ideal platform to investigate the benefits that 
workflow automation may provide. The latter situation is exemplified by the finding that several 
treatment arms of the largest precision medicine cancer trial to date, the National Cancer Institute 
Molecular Analysis for Therapy Choice (NCI-MATCH) clinical trials15, did not accrue 35 patients 
during the initial screening cohort of approximately 6,000 patients16. On average, the total time 
spent on patient recruitment, from the initial identification to the eventual enrollment, is estimated 
to be 3.4. to 8.8. hours and $129 to $336, respectively, per patient17. Another hurdle is the necessity 
for physicians to be informed about the current status of all clinical trials, which is subject to 
frequent amendments. With both the quantity of clinical trials and the rate of genetic data 
accumulation increasing, the impracticality of the task will become amplified in the coming years. 
In this vein, automation via bioinformatic tools offers an opportunity to automatically identify 
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candidates for clinical trials and focus the attention of physicians on suitable candidates and trials. 
This may also lead to cost improvements in the drug development process, of which clinical trials 
are the most expensive component18. The few alternative solutions for automated clinical trial 
matching are either commercial (e.g. Molecular Match9) or use proprietary analysis engines10 and 
hence, there is limited information available about the exact matching algorithm making a direct 
comparison difficult. 

4.2. Limitations of algorithmic pipelines 

The development of bioinformatic tools may significantly streamline clinical workflows. 
However, the ability of computational pipelines to successfully complete the designated tasks is 
dependent on the data sources used as input. In this study, we worked with multiple types of free 
text - those that were easily parsed by the algorithm (e.g. biomarker descriptions, variant 
pathogenicity, and age), those that required manual reclassification (e.g. disease groups), and those 
that lacked any consistent structure to be parsed by the algorithm (e.g. trial comments and IHC 
results). The challenges in working with text that require modification prior to use is exemplified 
by the disease mapping of the disease codes of the PMB trial with the primary tumor site and 
histological diagnoses of the STAMP-identified mutations, a time- and labor-intensive task whose 
complexity is compounded by the need for domain expertise. The benefits in utilizing the context 
of the fields is demonstrated in the significant improvement in the match rate upon applying the 
disease filter to the pipeline. In summary, the ability to accurately automate clinical workflows is 
dependent on the existence of structured data.  

5. CONCLUSION 

This study demonstrates through our patient eligibility screening algorithm to feature match 
STAMP-identified mutations with precision medicine clinical trial (i.e. OnCore and PMB trials) 
the use of an automated algorithmic pipeline as a feasible, accurate and effective alternative to the 
traditional manual process. This automation is dependent on the data modalities having features 
that are easily extractable with defined classifications. The integration of such bioinformatic tools 
into the existing clinical workflow is advantageous for translational research as it redistributes the 
limited resources currently allocated to tasks that may be automated to tasks that requires active 
physician engagement.  
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9.  FIGURES 

  
Fig 1. Flow diagram of STAMP database quality control procedure. The exclusion criteria 
applied to each group analyzed as derived from the STAMP v2 database are indicated. 
Sample sizes indicated include test orders that did not identify any mutations – refer to Fig. 
S1 for breakdown.  
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Fig. 2. Summary-level overview of STAMP database used in manual patient eligibility screening. (A) Age and 
gender distribution of patients, as determined using unique test order identifiers as proxies. (B) Distribution of 
primary tumor sites of patients. (C) Distribution of variant types – i.e. SNVs, in-frame indels, frameshift indels, 
CNVs, and fusions. The SNVs and indels are further partitioned by pathogenicity status of the variants. (D) 
Distribution of PMB trial matched by the algorithmic pipeline. The algorithm identified a PMB match rate of 25.4%. 
Using the manual assessment results as the ground truth, our algorithm has a 93.8% recall, 36.6% precision, and 
91.0% specificity.  
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Fig 3. Summary-level overview of post-QC STAMP database. (A) Age and gender distribution of patients, as determined using unique test order 
identifiers as proxies. (B) Distribution of primary tumor sites of patients. (C) Distribution of variant types – i.e. SNVs, in-frame indels, frameshift 
indels, CNVs, and fusions. The SNVs and indels are further partitioned by pathogenicity status of the variants. 
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Fig 4. Distribution of PMB and OnCore trials matched by the algorithmic pipeline. (A-C) Match rate of the 

clinical trials with the input being the entire post-QC STAMP database. Match distribution of (A) combined 

trials, (B) OnCore trials, and  (C) PMB trial. (D-F) Match rate of the clinical trials with input being the 

post-QC STAMP database entries where the primary tumor site is not lung. Match distribution of (D) 

combined trials, (E) OnCore trials, and (F) PMB trial. All the optional filters i.e. selection for adult patients, 

pathogenic variants, and trial-specific disease groups have been applied in this pipeline.  
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