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Mutational signatures are patterns of mutation types, many of which are linked to known
mutagenic processes. Signature activity represents the proportion of mutations a signature
generates. In cancer, cells may gain advantageous phenotypes through mutation accumula-
tion, causing rapid growth of that subpopulation within the tumour. The presence of many
subclones can make cancers harder to treat and have other clinical implications. Recon-
structing changes in signature activities can give insight into the evolution of cells within
a tumour. Recently, we introduced a new method, TrackSig, to detect changes in signature
activities across time from single bulk tumour sample. By design, TrackSig is unable to iden-
tify mutation populations with different frequencies but little to no difference in signature
activity. Here we present an extension of this method, TrackSigFreq, which enables trajec-
tory reconstruction based on both observed density of mutation frequencies and changes in
mutational signature activities. TrackSigFreq preserves the advantages of TrackSig, namely
optimal and rapid mutation clustering through segmentation, while extending it so that it
can identify distinct mutation populations that share similar signature activities.

Keywords: mutational signatures; cancer evolution; subclonal reconstruction; whole genome
sequencing

1. Introduction

Mutations continuously accumulate in the genomes of our somatic cells throughout our life-
time. Driver mutations confer a selective advantage to the clonal populations that contain
them; sequences of driver events precede carcinogenesis. Cancerous cells continue to acquire
driver mutations, creating genetically distinct subclonal populations. Characterising this intra-
tumour heterogeneity can shed light on a tumour’s evolutionary trajectory and has important
clinical implications, as different subclones may respond differently to treatment

The vast majority of the cancer genome data available are from single, bulk tumour sam-
ples; current methods struggle to use these data to reconstruct detailed evolutionary histories.
Until recently, subclonal reconstruction methods have attempted to cluster mutation variant

(© 2019 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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allele frequencies (VAFs) to identify and order subclonal lineages. We have recently demon-
strated that in some cases, more accurate reconstructions are possible when other properties
of each mutation are considered,? specifically, the types of each mutation.

Different sources of mutations, external or intrinsic to the cell, can generate distinct mu-
tational patterns. Mutations have been classified into 96 different types based on the type of
substitution and the trinucleotide context.” One can then define a mutational signature to
describe a probability distribution over mutation types and the signature’s activity to repre-
sent the proportion of mutations it generates® Many mutational signatures have been linked
to known mutagenic processes,>>® and thus reconstructing temporal changes in signature ac-
tivities that best explain the observed mutations can help identify affected pathways, predict
tumour development™ or inform choice of treatment *

Recently we introduced a new method, TrackSig,? to detect changes in signature activities
across time using topic modeling and optimal segmentation. Notably, unlike other methods
for reconstructing subclone architecture, TrackSig does not group mutations by clustering
their VAFs. For those methods, accuracy depends on the sequencing depth and thus can be
compromised when using single bulk sample 2 Instead, TrackSig constructs a pseudo-timeline
by approximately ordering mutations by their inferred prevalence in the cell population and
partitions this timeline into segments with similar signature activities. Changepoints between
segments indicate regions where differences in signature activities arise and often correspond to
boundaries between subclones 1Y TrackSig’s methodology allows it to deal with measurement
noise associated with mutation VAFs, making it applicable to bulk data from a single sample,
and guarantees finding an optimal placement of changepoints in signature activities. TrackSig
was shown to outperform competing methods at estimating activities and identifying subclonal
populations in complex scenarios such as branching evolution or violation of the infinite sites
assumption.?

Here, we describe a new method, TrackSigFreq, which identifies subclones using both mu-
tation type and VAF. By design, TrackSig is unable to detect changepoints between distinct
subpopulations that exhibit little to no change in signature activity, but a change in VAF
clustering density. TrackSigkreq extends TrackSig and incorporates information about mu-
tation VAF density, allowing accurate identification of changepoints in such scenarios. Our
extension does not rely on prior clustering of VAFs and instead modifies the likelihood func-
tion used to identify the optimal segmentation of the pseudo-timeline. We show our method’s
improved performance compared to original TrackSig on simulated data with varying number
of subclonal populations.

2. Methods

Below we provide a brief description of TrackSig’s methodology for detecting changes in mu-
tational signature activities. Next, we outline the approach of TrackSigkreq for modeling the
mutation VAF distribution and explain how we incorporate it into the segmentation algorithm.
Fig. |1 gives a general overview of TrackSigkreq and illustrates its relationship to TrackSig.
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Fig. 1. An overview of TrackSigFreq (blue box) and TrackSig (yellow box). Green text corresponds
to the algorithmic steps performed by both methods, blue text outlines the extension implemented
by TrackSigFreq. Both methods model the distribution of mutation types as a mixture of muta-
tional signatures (plots in yellow box), but TrackSigFreq also models the mutation CCF distribution
(plots in blue box). TrackSigFreq optimally partitions the timeline of ordered mutations using both
mutational signatures and mutation VAFs, while TrackSig uses signatures only.

2.1. TrackSig

2.1.1. Constructing a timeline

TrackSig constructs an evolutionary timeline of mutation occurrence by sorting single nu-
cleotide variants (SN'Vs) by their inferred population frequency (or cancer cell fraction, CCF),
for a total of I variants. Given d;, the total number of reads mapping to the locus containing a
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variant ¢, the number of reads containing that variant, v;, is modeled as v; ~ Binomial(v;; d;, p;),
where p; is the unobserved variant allele frequency of the mutation. Ideally we would like to
sort mutations ¢ and j given (v;,d;) and (vj,d;) by comparing the posterior distributions of
their VAFs, p; and p;, or rather the CCFs implied by these VAF. The p; posterior is easily
computed via conjugacy if an uninformative Beta prior is used on p;, i.e., p; ~ Beta(1,1):

pi ~ Beta(v; +1,d; —v; + 1), (1)

However, transforming p; to a posterior over CCF is challenging as it depends on the copy
number of the locus. Comparing the posteriors of p; and p; is particularly challenging if
they have different copy numbers. To simplify and speed-up these computations, we generate
an estimate for each p; by sampling from this posterior, use these estimates to compute
corresponding CCF; estimates, and then order the mutations based on these. TrackSig uses a
single p; sample when the number of SNV, I, is large, but multiple orderings can be sampled.2
The inferred CCF; is computed from each sampled p;, accounting for the copy number
at the locus and sample purity (the proportion of cells in the sample that are cancerous).
Specifically, we compute CCF; by inverting this well-known relationship:
pi = p CCFZ (2)

1

where p is the purity of the sample, m; is the number of copies of mutant alleles per cancer
cell, and n; be the total number of copies of the locus i per cell. In many cases, m; = 1 and
n; = 2. In the following, we will assume that m; = 1, and that copy number reconstruction has
been performed and n; is provided as input.

Once the per-mutation CCF's are estimated, a pseudo-timeline is constructed by sorting
these CCFs in decreasing order. The position of each SNV in this sorted list represents the
pseudo-time estimate of its order of occurrence. TrackSig then partitions the pseudo-timeline
into bins with constant number of SNVs (bin size of 100 mutations is chosen in Ref. |2) where
each bin defines a timepoint. The full description of TrackSig is provided in Ref. [2.

2.1.2. Detecting changepoints in signature activities

TrackSig uses Pruned Exact Linear Time (PELT), ™ a dynamic programming approach to find
the optimal placement of changepoints between segments, which are defined as regions of the
timeline spanning multiple timepoints with similar mutational activities.

PELT For an ordered sequence of data, y1.r = (y1,...,yr), and T timepoints, we seek to
identify P changepoints and their positions, r.p = (71, ..., 7p), splitting the data into P + 1
segments. PELT scores a series of ordered segments, where segment ¢ contains datapoints
Y(r_,+1):,- Changepoints can be identified by minimising the total segmentation score:

P+1

Z[C(y(n_l—i-l):ﬁ)] + Bf(P) (3)

i=1
where C is a cost function for a segment and 5f(P) is a penalty against overfitting. PELT
starts by finding partial solutions in the subsets of the timeline and uses those to recursively
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derive the optimal partition. Importantly, PELT prunes those changepoints that can never be
the optimal changepoint in a given subproblem and by extension can not be included in the
optimal solution to the total segmentation problem. This pruning allows PELT to identify the
optimal changepoint in time that is subquadratic (and in some cases linear) in 7.

TrackSig uses the EM algorithm!? to fit mutational signatures to the set of mutation
types in each segment being scored by PELT. The cost function of a segment is defined as
C = —2log Lsiq, where Ly, is the data likelihood of a segment under the fitting mixture of pre-
defined signatures. TrackSig minimises the Bayesian Information Criterion (BIC) by setting
the PELT penalty to the number of free parameters, f(P) = (P+1)(M —1). Then, minimising
the objective given in Eq. |3| corresponds to finding changepoints in the pseudo-timeline that
maximise the log-likelihood of observed mutation types in the found partition, while reducing
the penalty associated with adding changepoints.

2.2. TrackSigFreq

Here we outline our extension, TrackSigFreq, which computes an optimal segmentation of
the timeline into K segments based on changes in mutational signatures and also on VAF
clustering density.

We assume that there exist K cell populations in a sample, for some unknown value of K,
into which I mutations are partitioned. Each population is characterised by its CCF, ¢, where
k = 1..K and all mutations in population k£ share ¢;. Let a mutation ¢ belong to population

2.2.1. VAF eatension for TrackSig

Extending TrackSig to incorporate VAF density requires assessing a likelihood for the (v;, d;)
observations assigned to a segment; using this likelihood to augment the TrackSig cost function
as described above; and choosing an appropriate penalty term. Then this new cost function
and penalty function can be inserted directly into the TrackSig algorithm to derive optimal
segmentations in terms of both VAF and mutation type.

As described in Section [2.1.1] samples of the posterior over p;, corresponding to the ob-
servation (v;,d;), can be used as approximate replacements for the posteriors themselves in
subsequent computations. These samples permit the use of discrete optimization algorithms,
such as PELT, to find global optima. As such, our likelihood for segment k over all pairs (v;, d;)
for which z; = k will be derived from samples p; from Beta(v; + 1,d; — v; + 1). These samples
p; will be used as pseudo-observations for our VAF-based likelihood Ly 4r.

2.2.2. Creating pseudo-observations

After assigning mutations to timepoints within the pseudo-timeline using an initial round of
sampling p; values, we perform an additional round of sampling to generate estimates p;. It is
important to realize that p; is not a sample from a Beta distribution derived from the CCF of
the segment, ¢, but rather is a sample from our uncertainty over what the VAF is for mutation
i. So, the proper way to combine these values would be to generate “pseudo-observations” of
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variant counts. Let ¢; be a pseudo-observation for mutation i for some depth d; such that
U; = p;d;. We can then use these pseudo-observations to estimate the posterior over py.

For simplicity, we set d; =1 for all ¢, thus v; = p;. This choice of d; also acts to lower the
bound on our certainty of ¥;, representing the largest possible variance on the estimate p;.
Note that although ¢; is not a whole number, and so does not represent a sample from the
Binomial distribution, we will still use the conjugate Beta prior.

2.2.3. Scoring a segment

We define the cost function of a segment using the log-likelihood of pseudo-observations as-
signed to that segment. We compute log Ly 4 for a segment spanning mutations a to b in the
TrackSigFreq timeline as:

log LVAF = logp(vav "'7/Ub’da) "')db)p) (4)
AN w
= log (H <vl> /a pXi=e (1 — p) iz Hv dp) (5)
b
=S toe (1) + lor (B(a. 5Bt 5) - IBlasa, 5). (6)

where IB(z;a, 8) is the incomplete Beta function, B(a, 8) is the Beta function, and the
Beta parameters are given as follows for d; = 1, v; = 9;:

a—l—l—ivi (7)

b
=1+ (di—wv) (8)

Note that the sum over binomial terms cancels out when comparing segments with their
composing subproblems. As such, to compare the cost of placing no changepoints in the
segment between a and b with placing a changepoint at ¢, where a < ¢ < b, we would compare
the cost of the segment over [a, b] with the sum of the (log-)costs of the composing subproblems
over [a,d] and (c,b], making 37 log (g) constant with respect to the likelihood of different
segmentations. We combine the VAF-based likelihood Ly 4 with the TrackSig signature-based
likelihood Ly, (see section and Ref. 2), modifying the total cost function of a segment
to be C' = —2(Lsy + Ly ar). To mitigate overfitting, we modify the TrackSig BIC penalty by
adding a term that scales log-linearly with the number of placed changepoints.

3. Results

To compare the performance of TrackSig with our extension TrackSigFreq, a set of simulations
was generated. Three types of tumour sample were simulated: one cluster of mutations, two
clusters, and three clusters. Respectively, these simulations have 0, 1, and 2 true changepoints
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and represent tumours with a clonal cluster only, a clonal cluster and one subclone, and a clonal
cluster and two subclones. Real tumour data suggest that these patterns are relatively common
among patient samples.* TrackSig and TrackSigFreq were run on the simulated data to recover
changepoints and compared based on the percentage of simulations where the correct number
of changepoints was recovered. The algorithm used to create simulated data was slightly
modified from Ref. 2| to highlight a regime under which TrackSigFreq demonstrates improved
performance. There are many mutational signature sets that continue to be defined 11314 and
TrackSig allows user-provided signature sets to be fit to data. In particular, we make use of
those derived as part of the Pancancer Analysis of Whole Genomes (PCAWG) initiative 1

First, we give an example of scenarios where TrackSigFreq has improved performance over
TrackSig (Fig. [2). To create Fig. 2 n = 25 two-cluster simulations were generated. These
comprised of a clonal cluster and a subclonal cluster. The signature activities and mutation
CCF values in each of these 25 simulations were manually fixed to illustrate TrackSigFreq’s
behaviour with a clear ground truth. Every clonal cluster was simulated as having ¢; = 1
and signature activities as in Table [} To create the subclonal cluster, ¢ was picked from five
evenly spaced values ranging from 0.2 to 0.85, which places the subclonal cluster at different
locations along the pseudo-timeline, gradually decreasing in distance to the clonal cluster.
For each possible ¢o, a change in signature activity, é, was picked from five evenly spaced
values ranging from 5% to 30%. This range represents the lower limit of signature change that
TrackSig can reliably detect!” and a change above the threshold where TrackSig will always
detect a signature change. To get the subclonal signature activities, § was subtracted from
the clonal activity of S3, and added to the clonal activity of $2.13. This appears as signature
S3 having a high level of activity in the clonal population and decreasing in the subclonal
population, while signature S2.13 exhibits opposite behaviour and absorbs the proportion of
activity lost by S3.

Table 1. Signature activities for 25 simulations in the two-cluster sce-
nario.

Signature Clonal cluster activity (%) Subclonal cluster activity (%)

S3 60 60 — ¢
S52.13 25 25490
S5 10 10
S1 5 )

Fig. |2l demonstrates that TrackSigFreq can successfully identify a changepoint in scenarios
where a signature change is small, such as the top row of plots, which corresponds to a signature
change of 5%. Note that the changepoint location is consistent with cluster locations. TrackSig
does not detect any changepoints in these scenarios. In other scenarios, both methods either
locate the same changepoint (shown in black) or find changepoints that are close to each other.
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Next, we quantitatively compare TrackSigFreq to TrackSig and SciClone/X a popular
method for subclonal reconstruction which uses only mutation VAF. In these simulations, Sci-
Clone is chosen to provide an upper bound on performance, because the simulations precisely
match the distributional assumptions of SciClone and we are performing these simulations at
high depth. We have previously reported that compared to SciClone, TrackSig has increased
sensitivity at lower depths and more robustness to model misspecification error® We generated
n = 1000 simulations of three types. These simulations are similar to the example in Fig. [2
but the properties of the mutation clusters have been randomized as opposed to manually
fixed. The details of these simulations are provided below.

Choice of signatures Simulations were generated with four active signatures selected as
described in Ref. 2| : S1, S5 and two other signatures, denoted A1l and A2, which are uni-
formly sampled from the PCAWG! signature set. Signatures S1 and S5 were included in all
simulations because these signatures are present in all real samples in PCAWG. In these sim-
ulations, we set normal copy number to two, mutant copy number to one, and purity to one.
Each simulation had 5000 mutations in total and we generated n = 1000 simulations of each
type. For every clonal cluster, signature activities were uniformly randomly sampled such that
they sum to 1:

Slactim’ty S [0.03,0.1] Alactivity S [0.4,0.7]
S5activity € [0057 015] Azactivity =1- (Slactifuity + SSactivity + Alactivity)

Sampling mutation types Mutation types were sampled from a multinomial distribution of
signatures in each cluster (clonal or subclonal), proportional to the number of mutations in that
cluster. For each mutation i, read depth d; as sampled according to d; ~ Poisson(A = 100).

The probability of a variant allele is p; = —(bk, where ¢, is the CCF of the cluster & such

that z; = k and m; and n; are the mutant and total copy number state at the locus as before.
Variant counts v; for a mutation i were sampled as v; ~ Binomial(d;, p;).

One-cluster simulations Only a clonal cluster is simulated, with activities as described
above and ¢ = 1.

Two-cluster simulations A clonal cluster is simulated, with activities as described above
and ¢ = 1. A subclonal cluster is simulated with ¢2 sampled from Uniform(0.1,0.4). Signature
activities of the subclone are sampled on the same range as the clonal population for S1 and
S5, while signature activities of A1 and A2 are sampled over a slightly larger range than
above. This is to allow the change in signature exposure between clone and subclone to range
between 0% and 50%.

Subclonal signature activities again must sum to 1:

Slactivity € [0.03,0.1] Sbactivity € [0.05,0.15]
Alactivity € [OQ, 07] A2activity =1- (Slactivity + S5activity + Alactivity)
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Three-cluster simulations A clonal cluster is simulated as described above with ¢; = 1.
A subclonal cluster is simulated with ¢3 sampled from Uniform(0.1,0.4). A second subclonal
cluster is simulated with ¢, sampled from Uniform(¢s, ¢1 — ¢3). This places the subclones
such that 1.0 = ¢1 > ¢2 > ¢3 > 0.1. Signature activities of both subclones are sampled in the
same way as in the two-cluster simulations.

Tables 2 and [2b show that both TrackSig and TrackSigFreq have similar behaviour when
there is no changepoint (i.e. one-cluster simulations). TrackSigFreq showed higher sensitivity
compared to TrackSig on the two- and three-cluster simulations. This can be explained by
the design of the simulation-generating procedure. While the number of changepoints may
be the same for a given simulation type, the nature of these changepoints can vary widely.
A changepoint with a small change in signature could be missed by TrackSig, but found by
TrackSigkreq if there is a large enough change in VAF density that also gives evidence of
the changepoint’s presence. The probability of such a changepoint being generated increases
with the number of changepoints, which could explain the sharp decrease in accuracy with
increasing number of changepoints seen in Table [2b, but not as strongly in Table 2.

TrackSigkreq achieves the SciClone upper bound (Table ), demonstrating that neither
the addition of the mutation type model, nor the sampled approximation to the VAF dis-
tribution, have a detrimental impact on TrackSigFreq’s inference. In this simulation regime,
TrackSigkreq attains a large improvement over TrackSig, showing that the addition of the
VAF model can improve areas where we previously reported shortcomings with TrackSig.
We note that we expect that TrackSigFreq’s performance will match TrackSig’s in the regimes
where SciClone performs poorly 2

Table 2. Simulation results for TrackSigFreq (2h, left), TrackSig (2b, middle), and SciClone
with Beta-binomial mixture model , right). Number of predicted changepoints versus
number of true changepoints. Each cell shows the percentage of simulations which estimated
certain number of changepoints (normalized within each column).

a. TrackSigFreq b. TrackSig c. SciClone
o # true changepoints # true changepoints # true changepoints
; 0 1 2 0 1 2 0 1 2
S |0 0.996 0 0 0.999 | 0.369 | 0.253 1.0 0 0
-fé 1] 0.004 | 0.996 | 0.198 0.001 | 0.631 | 0.482 0| 1.0 0.199
g 2 0| 0.004 | 0.786 0 0| 0.255 0 0 0.801
4 |3 0 0] 0.016 0 0] 0.010 0 0 0

4. Discussion

Here we present TrackSigFreq, an extension of TrackSig,? a recent method for reconstructing
evolutionary trajectories of mutational signatures in cancer. We have previously argued that
no current evolutionary model explains all tumour VAF distributions.? TrackSig makes no
parametric assumptions about CCF distributions, which can be hard to accurately reconstruct
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from single bulk sample data.® it simply searches for changepoints in the signature activity.
However, by construction, TrackSig will not be able to identify subclones that do not differ in
their mutational signature activities.

In contrast, TrackSigFreq is closer to other subclonal reconstruction methodst™># in that
it assumes that the underlying mutation CCF distribution consists of a small number of delta
functions, one in each segment. When scoring a segment, it uses our sampled approximation
of the marginal likelihood, thus integrating over its uncertainty in the location of that delta
function within the segment. We have shown that the incorporation of this parametric VAF
model makes TrackSigFreq more sensitive to subtle changepoints than TrackSig. We propose
that scoring segments using marginal likelihood rather than doing maximum likelihood esti-
mation of CCF cluster parameters makes TrackSigkreq more robust to model misspecification
errors in our parametric assumptions about VAF distributions. Thus, in TrackSigFreq, time-
line segmentation is performed by jointly using mutational signatures and mutation VAFs. We
demonstrate the improved performance of TrackSigFreq compared to TrackSig on simulated
data in scenarios with multiple populations but modest signature changes between them.

A closely related approach, Clonesig, was recently introduced at European Conference on
Computational Biology (ECCB)™Y Based on the abstract, it appears that, when published,
Clonesig will use a similar implied probabilistic model as TrackSigFreq. However, Clonesig
fits this model using EM 12 which is not guaranteed to find a global optimum and has a slow
convergence ratel” Because TrackSigFreq uses PELT M it is guaranteed to find an optimal
solution in subquadratic, and sometimes linear, time.

One possible extension of TrackSigFreq which we have not considered, is reweighting the
contributions of individual mutations to the VAF-based likelihood, Ly 4, according to their
sequencing depths d;. Currently all mutations receive equal weight.

By using optimal segmentation to reconstruct evolutionary trajectories in cancer based
on both mutational signatures and clonal composition, TrackSigkreq can identify multiple
populations within it even if no signature change has occurred.

Code availability The software will be available as an R package and can be currently
accessed in the GitHub repository: https://github.com/morrislab/TrackSigFreq.
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