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The microbiome, the community of microorganisms living within an individual, is a promis-
ing avenue for developing non-invasive methods for disease screening and diagnosis. Here,
we utilize 5643 aggregated, annotated whole-community metagenomes to implement the
first multiclass microbiome disease classifier of this scale, able to discriminate between 18
different diseases and healthy. We compared three different machine learning models: ran-
dom forests, deep neural nets, and a novel graph convolutional architecture which exploits
the graph structure of phylogenetic trees as its input. We show that the graph convolutional
model outperforms deep neural nets in terms of accuracy (achieving 75% average test-set
accuracy), receiver-operator-characteristics (92.1% average area-under-ROC (AUC)), and
precision-recall (50% average area-under-precision-recall (AUPR)). Additionally, the convo-
lutional net’s performance complements that of the random forest, showing a lower propen-
sity for Type-I errors (false-positives) while the random forest makes less Type-II errors
(false-negatives). Lastly, we are able to achieve over 90% average top-3 accuracy across all
of our models. Together, these results indicate that there are predictive, disease-specific
signatures across microbiomes that can be used for diagnostic purposes.
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1. Introduction

In the past few years, there has been an immense interest towards developing statistical meth-
ods to predict phenotypes, such as disease, from metagenomic sequencing of a microbiome.1

One of the challenges in achieving this goal is the problem of separating out signals for dif-
ferent diseases from each other. Many studies that have looked for signatures of individual
diseases in the microbiome have produced conflicting results,2 and there is evidence that there
are general signatures of dysbiosis common to all diseases.3 Thus, the standard protocol of
comparing samples from a disease of interest against healthy controls, with the goal of identi-
fying features of predictive for that disease, may instead be identifying more general features
that signal a diseased or healthy microbiome. This problem can arise if the microbiome signals
associated with dysbiosis are stronger than those specific to a given disease. The classifier will
then have no mechanism to discriminate between general dysbiosis and the specific signatures
of the disease. This is problematic if we want to understand the differences between diseases
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on a microbial level and/or make specific diagnoses. For example, in a clinical setting, a clas-
sifier for a certain disease that has not been trained against a diverse range of conditions may
produce false positives when applied on a patient who has a different disease.4

We propose that approaching this problem as a multiclass classification can alleviate this
issue by forcing the classifier to find features in the input that are specific for discriminating
between a given class and every other class in the dataset. Additionally, this approach allows
us to use a larger dataset containing samples from more conditions, potentially alleviating
biases due to batch effects. Making accurate predictions becomes much harder in this setting,
because output is much more specific (random guesses are now correct with probability 1

n

rather than 1
2). Here, we quantify the performance of three machine learning approaches to

address this problem: random forests due to their popularity and ease-of-use, deep neural
networks as a baseline for a deep-learning approach, and a novel graph convolutional network
architecture which incorporates microbiome phylogeny to improve performance over the base-
line deep net. We use these models to demonstrate that the multiclass disease classification
problem is tractable given the amount of publicly available metagenomic data, and we posit
this tractability will only improve over time as more data becomes available.

2. Previous Work

Two previous works have attempted to encode the graph structure of phylogenetic trees in
order to enhance microbiome-disease predictions using publicly available data from healthy
and diseased patients. Reiman et al. implemented a CNN by embedding phylogenetic trees
into R2 and used two-dimensional convolutional layers to construct a body-site classifier.5

Fioravanti et al. developed a model to discriminate between subtypes of inflammatory bowel
disease (IBD) and healthy by projecting samples into a two-dimensional space using Multi-
Dimensional Scaling with the patristic distance between phylogenetic trees as the distance
metric.6 However, both papers mapped phylogenetic data to a Euclidean domain to perform
convolutions instead of operating in the original tree topology, as we do in this study.

We also show that this problem is tractable in a multi-class setting, whereas most previous
studies have focused on discriminating between individual diseases and healthy. For example,
there have been meta-analyses3,7,8 that have tried to identify disease-specific signatures which
generalize beyond individual studies, but the results presented in these papers have all been
for disease vs. healthy scenarios. Our major contribution here is to present three machine
learning models that can make multiclass disease predictions, including a novel convolutional
architecture which exploits the tree structure of bacterial phylogenies.

3. Problem Setup

There are many moving targets that make machine learning in bioinformatics particularly chal-
lenging, and one major problem is the paucity of standardized datasets. Data pre-processing,
particularly in the relatively new microbiome field, involves numerous components that are
each active areas of research, and thus being continually improved; for metagenomics data,
this includes new assembly methods, decontamination algorithms, sequencing libraries, an-
notation methods, reference genomes and so on.9–11 Additionally, new studies are published
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every month, resulting in an ever-increasing catalog of potential data points to utilize for
model training. In an effort to promote usage of a ’standard dataset’ instead of constructing
our own from scratch, we drew our training data from a recently published database containing
annotated metagenomic data from multiple studies called curatedMetagenomicData.12

3.1. Dataset Construction

Disease Count Site Studies
Atopic Dermatitis (AD) 38 Skin Chng13

Adenoma 143 Stool Thomas,7 Feng,14 Hannigan,15 Zeller16

Bronchitis 18 Stool Yassour17

C. difficile Infection (CDI) 33 Stool Vincent18

Colorectal Cancer (CRC) 273 Stool Vogtmann,2 Yu,19 Feng,14 Zeller,16 Hannigan15

Fatty Liver 94 Stool Loomba,20 Feng14

Hepatitis B Virus (HBV) 99 Stool Qin21 (2014)
Healthy 3808 All 25 Studies
Hypertension 169 Stool Thomas,7 Feng,14 Li22

Inflammatory Bowel Disease (IBD) 148 Stool Nielsen23

Impaired Glucose Tolerance (IGT) 49 Stool Karlsson24

Infectious Gastroenteritis 20 Stool David,25 Yassour17

Metabolic Syndrome 50 Stool Vrieze26

Otitis 107 Stool Yassour17

Periodontitis 48 Oral Shi27

Psoriasis 74 Skin TettAJ28

Rheumatoid Arthritis (RA) 194 Stool Chengping29

Type 1 Diabetes (T1D) 55 Stool HeintZ-Buschart,30 Kostic31

Type 2 Diabetes (T2D) 223 Stool Qin32 (2012), Karlsson24

Table 1: Overview of dataset samples.

We constructed a dataset containing 5643 samples with 4885 from stool, 403 from skin,
254 from oral cavity, 93 from nares (nasal cavity), and 8 from maternal milk (healthy babies
from Asnicar et al.33) by including diseases that had at least 15 unique samples (table 3.1).
One of the challenges we faced is that some samples have multiple disease labels due to the
way the original studies were run. We approached this problem as a multiclasss (one correct
label) as opposed to a multilabel (k possible correct labels) problem and thus sought to avoid
conflicts due to multiple labeling. Multiple labeling was present in four of our disease sets:
Atopic Dermatitis (atopic rhinitis (28), asthma (12)); C. difficile (pneumonia (15), cellulitis
(2), osteoarthritis (1), ureteral stone (1)); Adenoma (fatty liver (28), hypertension (19), Type
2 Diabetes (6), Hypercholesterolemia (2), metastases (1)); and Hepatitis B (Schistosoma (1),
Hepatitis E (7), Hepatic encephalopathy (2), Hepatitis D (5), Wilson’s disease (1), Cirrhosis
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(97), Ascites (48)). Additionally, depending on how an individual study was annotated, some
samples in the original dataset have no disease label or are instead labeled as ”control”. We
chose to be conservative in our construction and only included as ”healthy” samples where
the disease column in the curatedMetagenomicData database was ”healthy”. Thus, we define
’healthy’ in our study as those samples coming from patients who were explicitly considered
to be healthy in the original study that the sample came from.

3.2. Graph Convolutional Neural Networks

Convolutional neural networks (CNNs) have been extremely successful in the field of machine-
vision.34 Intuitively, their effectiveness derives from their ability to encode geometric properties
of images such as translation-invariance in order to learn a better representation of the data.35

In recent years, there has been interest in developing neural architectures that can capture
analogous symmetries on non-Euclidean domains such as graphs and manifolds in order to
extend the success of CNNs to those domains.36

There are many architectures for doing this, and we chose to use the method outlined by
Kipf and Welling,37 which is a computationally simple method to generalize the convolution
operation to graphs (Figure 1). The method falls into the category of spectral methods, which
model convolutions as multiplication by a filter operator gθ in the Fourier domain against input
x ∈ Rn, where gθ is a diagonal matrix with parameters θ ∈ Rn. The multiplication takes place
with respect to the Fourier basis of eigenvectors U of the graph Laplacian L = IN −D−

1

2AD
1

2 ,
where D is the diagonal matrix of vertex degrees, and A is the adjacency matrix of the graph (in
our case, A is the adjacency matrix of the phylogenetic tree used in our model). In Euclidean
domains, U is the Eigenbasis of the Laplacian operator in Rn, which is the standard Fourier
basis {e2πik·x : k ∈ Nn, x ∈ Rn}.

gθ ? x = UgθU
>x

Instead of considering all Fourier modes, we choose a cutoff K and use the first K Laplacian
Eigenvectors when constructing U in order to simplify computation. However, this operation is
still very expensive on graphs because there is no general analogue of Fast Fourier Transforms
outside of a Euclidean domain (meaning we would have to perform direct matrix multipli-
cations). The method of Kipf and Welling overcomes this problem by setting K = 1 and
reformulating the above operation to get

gθ ? x ≈ θ(IN +D−
1

2AD
1

2 )x

The choice of cutoff specifies that all nodes up to K edges away from a given node contribute
to the output of the convolution operator at that node. Thus, K = 1 implies that the output
at each node is a function of that node and its immediate neighbors. By stacking layers of
this form together (after applying a non-linearity at each level), we can integrate information
from increasingly farther nodes. Each individual convolution layer can thus be written as

x′ = σ(gθ ? x)

for some non-linear activation function σ. Lastly, this framework can be extended to incor-
porate more than one input / output channel per layer by adding an additional channel
dimension to each of these parameters (see original paper for details).

Pacific Symposium on Biocomputing 25:55-66(2020)

58



3.3. Models

Fig. 1. Architecture of Graph Convolutional Classifier. Purple lines indicate the flow of information
from the previous to the highlighted neuron in each layer. In the convolutional layers, each neuron
receives information only from its immediate neighbors in the preceding layer.

We implemented three types of classifiers for comparison: a feed-forward deep neural net-
work (DNN), a graph convolutional neural network (GCN), and a random forest (RF). We
constructed the GCN model by stacking two convolutional layers with 64 channels each fol-
lowed by a fully-connected linear layer with 350 nodes. The DNN model consisted of two
fully connected linear layers with 1000 and 350 neurons respectively. We used exponential
linear units (eLU) as our activations between each layer in either model and a sigmoid ac-
tivation at the top level for classifications.38 Additionally, the GCN model was initialized
with the adjacency matrix of the phylogenetic tree corresponding to the taxa present in our
12365-dimensional input vector. All three classifiers took such a 12365-dimensional abundance
vector as input and produced a 19-dimensional output (number of classes). We implemented
our neural networks using PyTorch along with the PyTorch Geometric library for the GCN
components.39,40 Lastly, our random forest model was constructed using the default settings
from the random forest module in the Python package Scikit-learn41 except for the number
of trees, which was set to 1000. We settled on these configurations after manual experimen-
tation. We found that increasing the number of trees improved generalization performance of
the random forest up to a certain point, and the size of hidden layers in our networks did not
make a dramatic difference in performance.
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3.4. Training

The biggest challenge in this study was dealing with the extreme class imbalance caused by
more than half of the samples in our dataset coming from healthy patients and many diseases
having only a few dozen samples. Resampling the dataset to artificially balance it is one way
to deal with this problem. Many resampling methods have been shown to perform similarly, so
we used a simple oversampling protocol.42 For each experiment, we oversampled the training
set by computing the size of the largest class (healthy) and randomly resampling from every
class until each class had the same number of samples.43

We augmented this by assigning each class a weight of 1 − 1
n , where n is the number of

classes, and training our neural networks in a one-vs-all manner for each class (using a binary
cross-entropy loss function).44 To compute the top prediction of the classifier, we ran the
outputs of the network through a softmax function and returned the index of the highest class.
This is a commonly used technique in multiclass classification, because it reduces the difficult
problem of discriminating between n classes to n easier problems of discriminating between
two classes.45 We used a 1− 1

n weight in order to address a new class imbalance problem that
arises in this setting; if there are m examples of each class in the dataset after oversampling,
then each binary classifier will see m positive examples and mn negative examples. A 1 − 1

n

weight magnifies the importance of the positive samples for each class to compensate.
Next, we trained our classifiers. We used a 70-30 split between training and test set,

generated a new split for each training run, and ran 30 iterations of the GCN model, 30
of the DNN, and 20 of the random forest. Data preprocessing, ingest, and analysis for our
neural networks was performed using Fireworks, a PyTorch-based library that we previously
developed to facilitate common machine learning tasks.46 The GCN and DNN were trained
using the Adam optimizer with 2 ∗ 10−5 and 1 ∗ 10−4 respective learning rates, 40 and 100
respective batch sizes, weight decay parameter set to 1, binary cross-entropy loss, and an
early stopping condition when the loss dropped to 2. We performed an analogous procedure
with our random forest classifier by assigning the same class weights and using the same
over-sampled training set as with the neural network.

4. Results

We evaluated our classifiers by measuring their accuracy, AUC (area-under-receiver-operating-
characteristic (ROC)), and AUPR (area-under-precision-recall-curve (PRC)). The average ac-
curacy varied widely by disease and classifier, indicating the difficulty of this problem given
the number of positive samples for each category (Table 2). In general, the convolutional net
performed on par with or better than the deep net in terms of accuracy, AUC, and AUPR,
implying that the graph structure of the data is useful for making classifications. Both of these
models had higher accuracy than the RF for most diseases. The RF excelled in the healthy
vs. disease task, producing an impressive 99% accuracy. Because healthy was also the largest
component of the test set (66.9% of samples on average), it was responsible for the bulk of
the RF’s weighted accuracy measurement. However, overall accuracy can be biased by the
distribution of the test set (ie. if there were more samples for the classes that a given classifier
excelled at, then that classifier would benefit). When we weighted each class equally, then the
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Accuracy (%)
Disease GCN (n=30) DNN (n=30) RF (n=20)

Healthy 91± 1 87± 1 99± 0

Colorectal Cancer (CRC) 36± 2 35± 2 19± 2

Type 2 Diabetes (T2D) 39± 3 40± 3 08± 1

Rheumatoid Arthritis (RA) 73± 4 79± 2 80± 3

Hypertension 56± 3 55± 3 56± 3

Inflammatory Bowel Disease (IBD) 40± 3 40± 3 07± 1

Adenoma 15± 2 13± 2 04± 1

Otitis 12± 3 13± 2 00± 0

Hepatitis B Virus (HBV) 62± 3 59± 3 80± 4

Fatty Liver 32± 4 22± 2 02± 1

Psoriasis 67± 4 63± 4 51± 5

Type 1 Diabetes (T1D) 37± 7 41± 7 25± 6

Metabolic Syndrome 52± 6 50± 4 08± 3

Impaired Glucose Tolerance (IGT) 12± 3 18± 3 00± 0

Periodontitis 93± 2 93± 3 93± 3

Atopic Dermatitis (AD) 80± 6 78± 6 82± 6

C dificile infection (CDI) 67± 7 53± 5 54± 9

Infectious Gastroenteritis 08± 4 09± 5 01± 2

Bronchitis 02± 3 05± 4 0± 0

Average 46± 27 45± 12 35± 14

Table 2: Percent accuracy by disease for each model.
Boldface indicates the model(s) with the highest score in the category.

GCN had the highest average accuracy (46% vs 34.6% for random forest and 44.9% for DNN),
indicating that it was more accurate across a broader range of diseases than the RF model.

Next, we computed ROCs, which plot the tradeoff between true-positive-rates and false-
positive-rates for a model47 (Table 3). This statistic is important because it is invariant to
class distribution, and is thus useful for models that try to rule-in a diagnosis, because a
high AUC (area-under the ROC plot) score implies that the model can achieve a high true-
positive rate while generating few false-positives. We generated ROCs for our neural nets by
varying the bias threshold of the final layer and evaluating their true positive and false positive
rate on the test set, and for the random forest by using the sklearn.metrics.roc_curve

function on the test set predictions. We found that the GCN model had higher or statistically
equivalent AUCs across all labels than both the random forest and the deep net. In particular,
we achieved an average AUC of 89.5% for T2D, which previous studies have found to be a
particularly challenging task8 (AUCs typically range in the 60s).

In a clinical context, class-imbalance is the norm because because most patients do not
have a given disease. Thus, for screening purposes, we want a classifier with a low false-
negative rate in order to avoid under-diagnosing patients. To evaluate this, we computed
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AUC (%) AUPR (%)
Disease GCN DNN RF GCN DNN RF

Healthy 84± 1 82± 0 83± 0 73± 8 88± 1 93± 0

CRC 84± 1 81± 2 50± 0 41± 4 35± 3 53± 0

T2D 90± 1 86± 1 50± 0 40± 5 31± 2 52± 0

RA 98± 1 99± 0 85± 2 73± 4 74± 3 85± 2

Hypertension 94± 1 92± 1 66± 1 51± 5 44± 3 60± 2

IBD 94± 2 90± 1 50± 0 41± 4 36± 2 52± 0

Adenoma 81± 2 75± 2 50± 0 15± 3 12± 1 51± 0

Otitis 86± 2 74± 2 50± 0 18± 3 10± 1 51± 0

HBV 97± 1 96± 1 69± 2 64± 5 58± 3 70± 2

Fatty Liver 89± 2 80± 2 5± 0 35± 7 20± 3 51± 0

Psoriasis 98± 1 93± 2 73± 3 74± 3 57± 4 62± 3

T1D 98± 0 97± 1 53± 3 47± 7 48± 7 53± 2

Metabolic Syndrome 98± 1 97± 1 51± 1 63± 8 55± 3 51± 1

IGT 95± 1 88± 2 50± 0 22± 3 16± 1 50± 0

Periodontitis 99± 0 99± 0 96± 2 95± 2 93± 2 96± 2

AD 99± 0 99± 0 88± 3 89± 4 78± 5 85± 3

CDI 99± 0 91± 4 64± 3 75± 4 64± 8 62± 3

Infectious Gastroenteritis 88± 3 70± 1 50± 0 21± 4 14± 1 50± 0

Bronchitis 78± 4 74± 6 50± 0 13± 3 13± 2 50± 0

Average 92± 3 88± 12 62± 7 50± 11 45± 12 62± 7

Table 3: Percent area-under-precision-recall (AUPR) and area-under-ROC (AUC) by disease
for each model. Boldface indicates the model(s) with the highest score in the category.

AUPR values, which summarize the relationship between positive-predictive-value and true-
positive rate.48 A high AUPR implies that a model can accurately identify positive labels while
avoiding false-negatives. For most diseases, the random forest performed much better than the
neural network models with respect to AUPR. This result, along with its superior accuracy
on healthy patients, implies that the random forest would be more useful as a screening tool
for identifying dysbiosis in general, while the neural networks are more useful as a diagnostic
tool for ruling-in a specific disease in patients that have already been screened.

Next, we analyzed the ranking of predictions by our models. A ranked ordering of prob-
abilities may be more useful to a physician than a single output, because that information
can be integrated with the entire patient examination to generate a differential diagnosis. We
examined the accuracy of the top-3 and top-5 predictions for each classifier (Figure 2). Most
diseases were correctly identified within the top-3 classifications, and almost almost every dis-
ease was correctly present with at least 90% of the time in the top-5 classifications for each
model. We measured which classes were most often predicted for a given label when an incor-
rect prediction was made for a subset of the labels (ie. how often the model confused a given
disease for another disease). Healthy was often misclassified as T2D or CRC, and every disease
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Fig. 2. (left) Accuracy at top-1,3, and 5 levels for (top to bottom) Random Forest, GCN, DNN.
(right) Chord diagram showing (for a subset of labels) the most common classification made when
an incorrect classification was made for a given class.
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Fig. 3. tSNE visualization of the final layer activations of the GCN model (excluding healthy). Inset
shows the same tSNE labeled by healthy (blue) and disease (red).

was often misclassified as healthy. These patterns were also consistent across the three models.
These errors may simply be due to the limited size of the dataset or noise in the system. But it
could also indicate that the concept of a ’healthy microbiome’ is vacuous due to the broad of
range of microbiomes that a healthy individual can have. Additionally, diseases can manifest
with a broad range of severities, which may result in different metagenomic signatures which
would all get grouped under a single label.

Lastly, we visualized the hidden layer activations of our GCN model on the test set using
tSNE to see how different diseases cluster (Figure 3). We found that the skin conditions
AD and psoriasis clustered together, separate from the other diseases which were evaluated
on stool samples. Periodontitis, which was represented via oral microbiome samples, also
clustered independently. Some other conditions, such as hypertension, adenoma, and otitis
weakly clustered in some regions of the graph. We also visualized healthy and disease using
the same tSNE and found that healthy microbiomes scattered throughout the plot alongside
disease, consistent with the idea that there is a broad range of possible healthy microbiomes.
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5. Conclusion

We have extended the results of previous work on microbiome-phenotype prediction here
by demonstrating that multiclass disease prediction from whole community metagenomes,
a clinically relevant task for machine learning, is a tractable problem and is improved by
using the taxonomic structure of bacterial communities. We implemented multiple classifiers
that were able to discriminate between 18 different diseases and healthy with greater than
70% accuracy on a dataset of over 7000 samples. Moreover, while the GCN model generally
outperformed the DNN, the RF excelled on a completely different set of metrics, indicating
that these two models could potentially complement one another. RF based models, achieving
99% accuracy on healthy vs. not-healthy, could be used as a screening test to identify dysbiosis
in general, while GCNs could potentially then be used to discriminate between individual
diseases. Additionally, the success of the GCN model implies that the geometric structure
entailed in microbial phylogeny contains meaningful information for disease classification. This
is a particularly exciting result, because graph and tree structures are ubiquitous in systems
biology, so GCN architectures may be applicable to many other biological problems.49

While there are obvious clinical applications of a successful phenotype classifier, there
are many questions that still need to be answered before these techniques can be deployed
to the clinic. For example, we need to understand why the model makes certain predictions
in order to give physicians more confidence in its diagnoses. Recently, a class of algorithms
called attribution methods have emerged which can identify predictive features in the input
on a per-sample basis.50,51 Attribution methods could be useful from a personalized genomics
standpoint by helping explain which bacteria are contributing to dysbiosis in an individual
patient and potentially suggesting probiotic interventions to alleviate the dysbiosis. We will
perform attribution analysis for our models to consider such questions in a future study.

There are also shortcomings stemming from the available data. For example, we are not
aware of any method to infer causality between the microbiome and disease (ie. if the disease
signatures the model detects are a cause or effect of the disease). Large-scale causal inference
is typically done using time-series or interventional data,52 which unfortunately there is very
little of in this field.53 Additionally, there is a great deal of patient metadata, such as gender,
age, and body site, along with study-specific metadata that may be useful for making these
predictions and could be explored in a future work. In general, there is no ’standardized-
dataset’ for this problem, making it difficult to compare different models. To make this exercise
easier for other researchers, we have made our code available on Github, which contains not
only our models and training scripts, but also our scripts for downloading and pre-processing
the data. We believe that the results shown here will be improved upon in the future as more
studies are added to curatedMetagenomicData and better models and training procedures
emerge. We hope that the code we provide will help other researchers attack this problem and
similar problems involving machine learning with metagenomics.
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