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Precision medicine tailors treatment to individuals personal data including differences in
their genome. The Pharmacogenomics Knowledgebase (PharmGKB) provides highly cu-
rated information on the effect of genetic variation on drug response and side effects for a
wide range of drugs. PharmGKB’s scientific curators triage, review and annotate a large
number of papers each year but the task is challenging. We present the PGxMine resource,
a text-mined resource of pharmacogenomic associations from all accessible published liter-
ature to assist in the curation of PharmGKB. We developed a supervised machine learning
pipeline to extract associations between a variant (DNA and protein changes, star alleles and
dbSNP identifiers) and a chemical. PGxMine covers 452 chemicals and 2,426 variants and
contains 19,930 mentions of pharmacogenomic associations across 7,170 papers. An evalua-
tion by PharmGKB curators found that 57 of the top 100 associations not found in Phar-
mGKB led to 83 curatable papers and a further 24 associations would likely lead to curatable
papers through citations. The results can be viewed at https://pgxmine.pharmgkb.org/

and code can be downloaded at https://github.com/jakelever/pgxmine.
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1. Introduction

Precision medicine has been described as getting patients “the right drug at the right dose
at the right time”.1 It has been shown that genetics can play a significant part in whether
the drug and dose are right for that particular patient and numerous diagnostic tests have
been developed to test for genetic variants related to drug efficacy.2 These pharmacogenomic
variants encompass germline variants or somatic variants in cancer. They may affect the
direct target of a drug, potentially by disrupting binding pockets, (e.g. T790M for many
EGFR inhibitors3), the metabolizing enzymes that may affect drug concentrations, by affecting
enzyme efficiency (e.g. the cytochrome P450 family of enzymes4), or drug transporters that
may affect the disposition of the drugs and influence efficacy and toxicity.

Cataloging this expanding knowledge of pharmacogenomic variants is the goal of the Phar-
mGKB.5 Launched in 2000, it collects, curates and disseminates knowledge about gene-drug
associations, many of which are clinically actionable, and provides resources for both re-
searchers and clinicians. A group of expert curators searches the scientific literature for rele-
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vant pharmacogenomic papers and add their findings to the knowledge base. However, man-
aging the curation of a biomedical knowledge base is a very time-consuming and challenging
task. As precision medicine efforts increase and the cost of sequencing decreases, more genetic
biomarkers will be found that might prove to be clinically actionable. It is already a huge
challenge to identify relevant papers and these technological developments will inevitably lead
to an increase in the number of published papers and an increased burden on the PharmGKB
curators.

Machine learning methods are used to assist in biomedical knowledge base curation in
two different ways. A document-level approach attempts to identify documents that would be
appropriate for curation into the knowledge base using word frequencies, metadata, and other
factors. This approach was taken for the ORegAnno database,6 Gene Expression Database7

and mouse genomics.8 A mention-level approach attempts to extract the main associations that
would be curated in the knowledge base and aggregating them to identify missing knowledge
linked to curatable papers. The CIViCmine approach extracted mentions of clinically relevant
cancer variants to identify the most frequently discussed that should be curated into the CIViC
database.9 This method is linked with automated knowledge base construction methods which
have been used in part to construct the STRING database of protein interactions10 and the
CancerMine database of cancer genes11 directly from published literature.

To extract pharmacogenomic variants associated with specific chemicals, we propose to use
a biomedical relation extraction method. The field of biomedical relation extraction focuses on
extracting mentions of particular relations between entities (e.g. genes, drugs, variants, etc) in
unstructured text. Dependency-parse based methods have seen great success in this area while
deep learning methods achieve similar performance but face issues with overfitting.12 Relation
extraction relies on first identifying mentions of specific entities, e.g. chemicals and variants,
using entity extraction tools such as BANNER13 and tmVar.14 The PubTator resource has
provided PubMed abstracts annotated with chemicals, diseases, genes, species, and variants.15

Numerous projects have built on top of the annotations provided by PubTator.16,17 Recently,
the Pubtator Central resource expanded this to open-access Pubmed Central full-text arti-
cles.18

In this paper, we present PGxMine, a text-mined resource of pharmacogenomic associa-
tions between chemicals and variants. We build upon the PubTator Central resource and use
a text-alignment method to extract specific mentions of chemicals, genes, and variants in the
text. We further identify star alleles that are particularly important and frequently appear in
pharmacogenomic literature (e.g. CYP2D6*2) in text. We parse and extract sentences that
mention a chemical and variant and filter to enrich for sentences that likely discuss phar-
macogenomic associations. We build classifiers to extract pharmacogenomic associations and
apply these to all sentences accessible from PubMed abstracts and PubMed Central full-text
papers. These results are then presented to the PharmGKB scientific curators to assist in their
curation efforts.
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Fig. 1. An overview of the full PGxMine system. The input data sources on the left (PubMed, etc)
and PubTator Central are combined through a text alignment process to identify mentions of specific
biological entities in published literature. Star Alleles (e.g. CYP2D6*2) are then found using gene
annotations. Sentences are filtered using keywords to enrich for pharmacogenomic topics. A Kindred
supervised classifier is then trained and applied to identify specific variant/chemical associations.
These are then filtered for high probability matches and collated to produce the three output files
on the right.

2. Methods

Figure 1 shows an overview of the approach that takes in PubTator Central entities and
abstracts/articles and outputs collated sets of pharmacogenomic associations between variants
and chemicals relevant to the PharmGKB project.

2.1. Resources

We downloaded the 21st August 2019 release of the Pubtator Central data which uses Tag-
gerOne19 for chemicals, tmVar 2.014 for variants and GNormPlus20 for genes. It provides map-
pings for chemical mentions to MeSH terms, genes to Entrez Gene IDs and where possible,
variants to dbSNP IDs21 (also known as rs IDs). We used the PubRunner infrastructure to
download abstracts from PubMed and full-text papers from the PubMed Open Access (PM-
COA) subset and PubMed Central Author Manuscript Collection (PMCAMC) and convert to
BioC format.22 To map chemicals in PubTator Central to the identifiers used in PharmGKB,
we used DrugBank.23 We filtered the drug list by several categories in DrugBank to remove
biological molecules that were not relevant drugs (details in supplementary materials). We
also removed short terms (shorter than 4 characters). Variants were filtered using a custom
set of exclusion words to remove common terms that appear to be variants but are not, e.g. for
common cell-line names.
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2.2. Text alignment

Unlike PubTator, PubTator Central does not provide the specific offsets of each biomedical
entity within the text of the abstract or full paper. It provides the substring of the mention
along with the PubMed ID. We used this information to align the substrings to the corre-
sponding text in the abstract or full-text paper wherever appropriate (with example shown
in Figure S1). The alignment algorithm takes each text mention and creates a regular expres-
sion to search the corresponding article text. Each regular expression starts and ends with
word-boundaries so that matches wouldn’t happen inside words. We replaced each section
of whitespace with a “\s+” regular expression to map to any length of whitespace. Pub-
Tator Central appears to translate the papers from Unicode to ASCII and provides ASCII
mentions. Several important entities contain Unicode characters, e.g. TGF-α. so we replaced
ASCII Greek letters (e.g. alpha) with a regex to map to either the ASCII text or the Greek
character. These regular expressions then find candidate mappings for each text. We process
the mappings largest to smallest so that no entity is mapped inside a larger entity.

2.3. Finding Star Alleles

Star alleles denote a named haplotype of a gene, which may include one or more specific
variants. They are normally numbered such that the second star allele for CYP2D6 is denoted
CYP2D6*2. Suballeles also exist such as CYP2A6*4A. To extract these, we used the gene
annotations from the aligned PubTator Central documents. We built a regular expression
that searched immediately after gene mentions to identify instances of an asterisk followed
by a word beginning with a digit (including colons to capture HLA alleles). We allowed for
additional star alleles separated by white space, forward slashes, commas, and the words “and”
and “or”. The normalized version of the variant is the name of the gene concatenated with
the star-allele with whitespace removed. Furthermore we normalized the name of the allele
specifically for the HLA family of genes. Specifically, we remove whitespace, leading zeros,
and colons and then reinsert colons in character doubles. For example, HLA-B*05701 goes to
HLA-B*57:01.

2.4. Filtering and Renormalizing Variants

PubTator Central uses the tmVar 2.0 tool for extracting variant mentions.14 It can extract
DNA-level mutations (e.g. c.93G>A), protein-level mutations (e.g. T790M) and dbSNP IDs
(e.g. rs12979860). Where possible, tmVar 2.0 will map the DNA/protein variants back to a
dbSNP ID using co-mentions of genes in the document to filter down candidate matches.
Hence a mention of PON1 alongside Q192R provides enough context to map it to rs662.
We are primarily interested in those that can be mapped back to dbSNP IDs but kept all
variant mentions as long as they contained a specific coordinate (i.e. filtering out cases such
as c.G>A). For variants that are successfully mapped to a dbSNP ID by tmVar 2.0, PubTator
Central does not provide the normalized text form of the variant. For example, ‘a PON1
glutamine-to-arginine mutation at residue 192’ is mapped successfully to rs662 but we also
need the HGVS normalized form, p.Q192R. We implemented a re-normalization stage using
regular expressions to capture the variant types output by tmVar 2.0.
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2.5. Identifying Sentences of Interest

We extract all sentences that mention at least one variant (including star alleles) and one
chemical from our filtered list. In an initial trial of this system focussing only on mentions of
specific dbSNP IDs, we found that sentences were highly likely to mention pharmacogenomic
events. However, when all variants were included, sentences were much less likely to discuss a
pharmacogenomic association. Any machine learning system would then have a large challenge
with such an imbalanced problem. We, therefore, filtered with a customized set of keywords
(in supplementary materials) that increased the likelihood of a pharmacogenomic association
or for a mention of a specific dbSNP ID.

2.6. Relation Classifier

The previous steps provide a large set of co-occurrences between variants and chemicals.
But many of them are not describing a pharmacogenomic association. For instance, some of
the sentences are very long and the chemical and variant are discussed in different contexts.
Therefore we built relation classifiers to identify the pharmacogenomic relations.

Due to a class balance difference, we split the dataset into two. The first set is all potential
chemical/variant where the variant is a specific rs ID or a star allele. The second set is all
remaining chemical/variant associations which contain variants for specific DNA or protein
changes. We worked on the two sets separately because, empirically, the first set has a higher
likelihood for discussing pharmacogenomic associations. For each set, we annotated 500 sen-
tences for pharmacogenomic associations. Chemical/variant associations were annotated as
pharmacogenomic if the variant was discussed as physically interacting with the chemical,
as affecting the metabolism, concentration or resistance of the chemical, as causing adverse
events related to the chemical, as related to addiction to the chemical, or as part of a clinical
test for that chemical use. The PharmGKB curators were also interested in variants found
to be negatively associated pharmacogenomically with a chemical. Thus, we also annotated
negative discoveries as positive sentences in our data set. For instance, “MDR1 C3435T does
not affect the metabolism of telmisartan” would be annotated as pharmacogenomically asso-
ciated. In total, we had 1000 annotated sentences which for evaluation are split into 80%/20%
training and test sets. We include statistics on the annotated dataset in the supplementary
materials.

We then created two Kindred relation classifiers,24 one for each for the two sets. We
used a logistic regression as the classifier using Kindred’s default set of dependency-path
based features. The logistic regression provides a thresholdable output score to control the
precision-recall tradeoff. As in previous work, we used a high-precision/low-recall classifier.11

We created precision-recall curves to evaluate the trade-off and select a threshold of 0.75 for
both classifiers. We filtered out cancer-associated chemicals (using DrugBank categories) that
are associated with a protein/DNA variant as they are likely somatic events which are outside
the focus of the PharmGKB resource.

Pacific Symposium on Biocomputing 25:611-622(2020)

615



2.7. Application to the entire literature

We then used the PubRunner infrastructure to apply these two classifiers across all the aligned
sentences.25 This enabled the use of a compute cluster to quickly classify sentences as to
whether they contain pharmacogenomic information. We then outputted relations along with
the normalized form of the chemical and genes and other metadata. The gene information was
included for star alleles and for variants normalized to dbSNP if it could be extracted from
dbSNP. Metadata from the source paper is also included such as PubMed ID, title, journal,
publication year and section within the paper. We also provide a version of the sentence which
has HTML characters escaped and the entities in the relation highlighted with basic HTML
tags for easy viewing. This output is the unfiltered version available.

We filtered relations that were scored lower than the previously selected threshold of 0.75
to reduce the false positive rate to create the pgxmine filtered.tsv file. Finally, we collated the
results by variant, chemical and where applicable gene IDs to find the total number of papers
that discuss each variant/chemical association. This provides a rough metric of the importance
of each association and allows a ranking to see which frequently discussed associations should
be curated into PharmGKB. This collated version is released as the pgxmine collated.tsv file.

2.8. Mapping to PharmGKB

We mapped the PGxMine set of associations to those found in PharmGKB. PharmGKB
already contains some mappings directly to MeSH IDs but these needed to be supplemented
with additional mappings from other sources. DrugBank provides a mapping from the MeSH
ID used by PubTator Central to PharmGKB chemical IDs. Variants that have been mapped
to dbSNPs or are star alleles can be mapped directly into PharmGKB. PharmGKB contains
compound associations where multiple chemicals are associated with a variant. For simplicity,
we unfold these associations so that all associations are from one chemical to one variant,
allowing matching against the PGxMine data. For this comparison, we remove suballeles from
star alleles (e.g. CYP3A5*3A -> CYP3A5*3). We also built a mapping for star alleles that
map directly to a single rs ID to check if either was found in PharmGKB (e.g. POR*28 maps
to rs1057868). Further details of this mapping are explained in the supplementary materials.
For each PGxMine association, we then check if the variant has been seen in PharmGKB, the
chemical has been seen in PharmGKB and whether this particular association has been seen.

2.9. Viewer

The filtered and collated versions are then viewed through a viewer built using the R Shiny
framework. This viewer (shown in Figure 2) shows the collated chemical-variant associations
sorted in descending order by the number of papers that mention them. These results can
then be filtered by a chemical, variant or gene, whether this data exists in PharmGKB and
the type of variant, e.g. star allele. There are also Download buttons to facilitate downloading
only a subset of the data. When a row in the top table is selected, a lower table is populated
with all the sentences that discuss that particular association. These sentences, which may be
from the same paper or across many papers, are ordered by publication date and additional
metadata is provided for the source of the sentence with links to the original paper.
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Fig. 2. The data can be viewed through an R Shiny application in a web browser which allows the
user to sort and filter the data and explore specific sentences that mention the association. The main
table shows chemical/variant associations with gene information where possible. This table can be
filtered using controls to the left to select specific chemicals, variants or genes. It can also be filtered
for whether elements are already curated into PharmGKB. By selecting a row in the top table, a
further table below (not shown) is populated with sentences that mention the selected association
along with paper metadata.

3. Results

3.1. Performance of Classifiers

Using an 80%/20% training and test split, we evaluated the two classifiers independently.
Figure 3 shows precision-recall curve plots of the three classifiers. The black line shows the
selected high threshold (0.75) that provides higher precision (71.4% and 84.5% for the two
classifiers) with the tradeoff of lower recall (11.2% and 39%).

3.2. Knowledge Base Results

By applying the two classifiers we identify 19,930 mentions of pharmacogenomic associations in
15,228 sentences across 7,170 papers. 41.1% of these associations were in the title or abstract.
When collated, we find a total of 6,099 unique gene/variant associations. Of all the variant
mentions, 39.9% can be normalized to an rs ID and 39.6% are star alleles.

As would be expected, there is a long-tail of associations with 75.6% of the unique associa-
tions being discussed in only a single paper. These singletons are of interest to the PharmGKB
curators as the aim to improve coverage for rarer and less frequently discussed associations.
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Fig. 3. The precision-recall curves (above) and the same statistics shown against the threshold
parameter for the classifier (below) for the two classifiers.
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Fig. 4. The 10 most common chemicals, variants and source journals by the number of extracted
associations.

We also find that the associations were found across all subsections of papers (Figure S2).
Figure 4 illustrates the most common chemicals in extracted chemical/variant associations

as well as the most common variants with their gene names. Warfarin is the most frequently
discussed drug in pharmacogenomic research and many of variants in the CYP family appear
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Fig. 5. Venn Diagrams for the overlap in associations between PharmGKB and the PGxMine re-
source and papers identified in both resources.

in the top ten variants. It also shows the most frequent journal sources that mentions are
extracted from. Unsurprisingly, PLOS ONE is the most common source given the high number
of papers that published there and also that they provide full-text articles.

Notably, a substantial number of the variants that cannot be normalized to a human gene
appear to be HIV specific variants that appear in the virus genome and not the human genome.
While these do affect drug resistance, they are outside the scope of PharmGKB but could be
useful information for HIV researchers.

3.3. Comparison to PharmGKB

We compared the associations extracted from the literature with the contents of the Phar-
mGKB knowledgebase downloaded on 26 September 2019. Figure 5 shows the overlap of
associations and specific papers. The scale of the PharmGKB knowledgebase cannot be un-
derstated and this figure illustrates the vast number of associations that have already been
manually curated. 37.2% of associations found in PGxMine have previously been curated into
PharmGKB but 2,779 could be curatable associations. As we identify mentions of associations,
many of which will be in papers discussing previous work and not a new result, we wouldn’t
expect to see a large overlap in the articles in PGxMine and PharmGKB. Nevertheless, we do
see a sizeable overlap of papers based on PubMed IDs suggesting that PGxMine does often
directly identify the appropriate paper for curation.

3.4. Utility for Curators

The goal of PGxMine is to lead the PharmGKB curators to new papers that should be curated.
To evaluate this, the PharmGKB curators reviewed a subset of the top chemical/variant
associations. The top 100 associations that were not in PharmGKB and did not appear in
a previously curated paper were provided to the PharmGKB curators. They evaluated each
association with the sentences and metadata provided by PGxMine. They judged whether the
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associated papers were appropriate for curation into PharmGKB or whether the discovered
papers likely led to curatable papers. Of the 100 associations, 57 led directly to at least one
curatable paper. A further 24 associations likely led to curatable papers through citations in
the papers discovered by PGxMine.

Of the 57 that led directly to curatable papers, 37 led to a single curatable paper, 16 led
to two curatable papers, 3 led to three papers and one association (Donepezil with CYP2D6
rs1080985) led to five papers for curation. In total, the 100 associations examined led directly
to 83 curatable papers and likely 24+ other papers that could be found through examining
citations of the PGxMine extracted papers.

The curators made use of the sentence metadata that identifies the section of the paper and
found that associations mentioned in the Results section were more likely to be in curatable
papers. Associations in the Introduction section were more likely to lead to valuable papers
through citations and that specific paper would not be curatable. The curators normally focus
on a smaller set of journals that publish pharmacogenomic studies. These results identified
several papers in journals outside this group and show that PGxMine is a valuable tool to
survey the broader biomedical literature without putting further burden on the PharmGKB
curators.

4. Discussion

Our results suggest that PGxmine will assist PharmGKB curators but there are several notable
limitations. The results of PGxMine rely entirely on the results of PubTator Central. We have
explored running the individual NER tools on the large corpus ourselves but the computational
cost, in terms of time and memory usage, is immense. Updates to our resource will, therefore,
depend on the update frequency of PubTator Central which we hope to be frequent. This
reliance on PGxMine on PubTator Central also means that we inherit any limitations of
the NER tools used. While the NER tools are state-of-the-art for the entities that they are
extracting, mistakes will still be made. We attempted to clean up issues by requiring longer
terms and filtering out certain drug categories.

The main limiting factor is the poor access to full-text papers for text mining. 58.9%
(11,735/19,930) mentions of pharmacogenomic associations were extracted from the main
text of the article. Only a fraction of the biomedical literature is accessible for text mining.
With only 12.3% (796/6,489) of the papers curated in PharmGKB having full-text available,
it is understandable that PGxMine fails to catch many of the previously curated papers.
PGxMine is also limited to associations found within the same sentence. This is a problem
that all current information extraction systems face as the false positive rate explodes for
systems that attempt to extract relations across sentences.26

The tradeoff of recall and precision is a challenging one for many machine learning prob-
lems. Curators become frustrated with a system that has too many false positives and are
understanding of a system that does not have 100% coverage of associations. We, therefore,
target high-precision low-recall for this problem, especially when the frequently discussed as-
sociations are found in hundreds of papers, meaning that they will likely be discovered by
our pipeline. For example, the most frequently extracted association is Abacavir with HLA-
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B*57:01 in 272 papers. This means we should capture frequently discussed associations that
aren’t yet curated into PharmGKB. We find that the vast majority of extracted associations
(75.6%) are only mentioned in one paper. While more frequently discussed associations are of
greater interest to PharmGKB, these singletons provide a valuable trove for further curation.
The most common mistake that the classifier makes is incorrectly matching a drug with a vari-
ant in a different clause of a sentence. This occurs most frequently in sentences with multiple
drugs and variants. Another challenge is capturing diplotypes of alleles or more complicated
haplotype arrangements. While these are rare, they provide useful information for curators.

5. Conclusions

We have presented PGxMine, a knowledge base of pharmacogenomic associations to support
curation of PharmGKB database. We developed a method for extracting knowledge from the
new PubTator Central resource using a text alignment system coupled with a method for
identifying star alleles and proven relation extraction methods. Our results can be updated
regularly as PubTator Central is updated. We make the code and supplementary materials
available with an MIT license (https://github.com/jakelever/pgxmine) and data available
under CC0 license (https://doi.org/10.5281/zenodo.3360930) with the understanding
that all data is extracted automatically and has not been vetted by the PharmGKB curation
team.
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