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Integration of transcriptomic and proteomic data should reveal multi-layered regulatory processes 

governing cancer cell behaviors. Traditional correlation-based analyses have demonstrated limited 

ability to identify the post-transcriptional regulatory (PTR) processes that drive the non-linear 

relationship between transcript and protein abundances. In this work, we ideate an integrative 

approach to explore the variety of post-transcriptional mechanisms that dictate relationships 

between genes and corresponding proteins. The proposed workflow utilizes the intuitive technique 

of scatterplot diagnostics or scagnostics, to characterize and examine the diverse scatterplots built 

from transcript and protein abundances in a proteogenomic experiment. The workflow includes 

representing gene-protein relationships as scatterplots, clustering on geometric scagnostic features 

of these scatterplots, and finally identifying and grouping the potential gene-protein relationships 

according to their disposition to various PTR mechanisms. Our study verifies the efficacy of the 

implemented approach to excavate possible regulatory mechanisms by utilizing comprehensive 

tests on a synthetic dataset. We also propose a variety of 2D pattern-specific downstream analyses 

methodologies such as mixture modeling, and mapping miRNA post-transcriptional effects to 
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explore each mechanism further. This work suggests that the proposed methodology has the 

potential for discovering and categorizing post-transcriptional regulatory mechanisms, manifesting 

in proteogenomic trends. These trends subsequently provide evidence for cancer specificity, 

miRNA targeting, and identification of regulation impacted by biological functionality and 

different types of degradation. (Supplementary Material - 

https://github.com/arunima2/PTRE_PSB_2020) 

Keywords: Multiomics; Integrative; Multi-dimensional; Proteomics; Transcriptomics. 

1.   Introduction 

Recent advances in profiling techniques have made integrated analysis of the transcriptome and 

proteome (proteogenomics) a possibility and highlighted major gaps in our understanding of 

multi-omic regulatory processes1. Novel approaches for multi-omic analysis will be required to 

extract insight from these complex proteogenomic datasets. If successful, these novel approaches 

may ultimately illuminate fundamentals of multi-omic biological processes while concurrently 

enabling new classes of therapeutics that target those processes 2. To date, multiple studies have 

proven that transcription and translation are impacted by a variety of factors3 such as RNA and 

protein degradation, post-translational modification (PTM), the influence of non-coding RNAs, 

and epigenetic regulation4–6. Although these studies have been instrumental in revealing 

substantial disconnects between the transcriptome and proteome, they have not examined the 

diversity of mRNA-protein relationships or the regulatory mechanisms underlying those 

relationships. Additionally, sophisticated approaches have been utilized to explore intra transcript 

and protein relationships respectively (e.g. network approaches to build gene co-expression 

networks and protein-protein interaction networks), but such efforts lack intuitive integration of 

multi-omic data. Integrative multi-level analysis is an approach that can ideally quantify detailed 

information about regulatory mechanisms.  Other studies have looked, in aggregate at the 

Figure 1. Exploring regulatory mechanisms with 2D scatterplots (a) Depiction of the various post-transcriptional regulatory mechanisms using gene expression and protein 

abundance 2D scatterplots, additionally annotated with the geometric feature that best represents these 2D patterns (b) Existing methods to quantify gene-protein relationships e.g. 

aggregation which loses information and individual clustering and visualization which fails to easily integrate information (c) Scagnostics based PTR Explorer, which intuitively 

assesses 2D patterns borne out of different regulatory mechanisms impacting gene protein relationships, using quantifiable geometric features 
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exhaustive set of all gene (mRNA)-protein relationships within a sample7,8.  While descriptive of 

general lack-of-correlations between all genes and proteins, they do not explore specific, nuanced 

trends between specific genes and their corresponding proteins, nor the regulatory origins of these 

relationships.  There is a critical need for tools that examine the specific relationships between a 

given transcript and its associated protein across samples/conditions that are a result of specific 

post-transcriptional effects.  

Here we present (P)ost-(T)ranscriptional (R)egulatory mechanism Explorer, a novel 

methodology to explore the presence and impact of post-transcriptional regulation by utilizing 

proteogenomic data.  The approach is based on a technique that has not yet been utilized in the 

biological analyses space, but one that addresses the critical shortcomings of existing traditional 

multi-omic analyses by harnessing the elementary and intuitive visualizations of these multi-omic 

relationships. We posit that an examination of specific mRNA-protein relationships (rather than 

global trends) may reveal information about underlying regulatory mechanisms and disease 

processes. We further hypothesize that mRNA-protein relationships with common trends in their 

scatterplots may share common regulatory mechanisms.  The simplest way to visualize mRNA-

protein relationships is in a bivariate mRNA-protein scatterplot where, each point represents a 

gene’s transcript and protein abundance in a given sample (Figure 1(a)). The usefulness of 

scatterplots is evident when we observe the shortcomings of utilizing summary statistics, 

correlative measures or isolated dataset clustering and visualization to infer any useful biological 

information across samples (Figure 1(b)). Not only do we lose the relevant nuances in the 

subsequent compression, but we may also introduce artifacts that affect downstream analysis.  

Proteogenomic relationships have an underlying biological impetus offering a wealth of 

information about an experiment, apart from just the straightforward questions that can be 

answered by mRNA expression and protein abundance visualization and differentials (Figure 

1(b)). While other methods have comprehensively explored the space of building inference 

networks from scatterplots9,10 for a variety of different problems, they still lack implementation in 

the multi-omic space, and are missing an interpretable quantifiable layer from which one can 

easily perform visual inference. Certain examples of note are Sahoo et al11 illustrating the 

usefulness of gleaning pairwise boolean implications using gene expression scatterplots and 

similarly Yates et al9 proposing a visual analytical framework classifying scatterplots in a 

scatterplot matrix to reconstruct interaction networks. 

Our methodology endeavors to solve a similar problem in the multi-omic space. As 

highlighted above, varying types of post-transcriptional regulation (protein and RNA degradation, 

functional responsibilities within the cell and miRNA intervention), all contribute to the 

uniqueness of mRNA-protein relationships and the study of their subsequent functionalities, 

making them a powerful tool in cancer studies. Our method aims at adding a layer of quantifiable 

features to existing visual analytics in order to extract useful relationships, their corresponding 

regulatory mechanisms and their functional attributes (Figure 1(c)). Our workflow takes 

advantage of scagnostics 12–16, to quantify the characteristics of  the two-dimensional patterns 

present in scatterplots. Scagnostics features geometrically quantify a single scatterplot as 

gradations of nine features (Figure 2)17. They have been earlier used in classifying time series data 

including weather patterns assessed using temperature and pressure attributes18.  
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We first examined whether our scagnostics based method 

could extract biologically relevant signals from 

proteogenomic data. To do this, we constructed a workflow 

that modeled mRNA-protein relationships based on their nine 

(9) dimensional scagnostic features. As a first test of the 

workflow, we generated a synthetic dataset that contained a 

mixture of random transcript-protein relationships 

(background) as well as multiple varieties of biologically 

relevant transcript-protein relationships (signal) that can 

possibly exist as a result of different post-transcriptional 

regulation mechanisms (e.g., the presence of an miRNA 

governing the transcript/protein relationship). We then tested 

whether scagnostic features of the 2D scatterplots generated 

from this data in tandem with clustering successfully 

differentiated signal from background. Further, we also 

performed comparisons with traditional methodologies. 

 Having demonstrated that scagnostics could successfully 

uncover biologically relevant mRNA-protein relationships and shed light on the corresponding 

PTRs, we apply our scagnostics-based methodology to proteogenomic data previously collected 

on the 57 cell types in the NCI-6019. We identified clusters of gene-protein relationships 

characteristic of a variety of different regulatory trends including protein degradation, post-

translational modifications, and cancer specific signaling. These studies support the idea that a 

scagnostics based approach is able to uncover relevant proteogenomic relationships and their 

corresponding PTRs would not be uncovered by any other traditional method. 

2.  Methods and Materials 

2.1.  Scagnostics analytical workflow 

Our data processing and analysis workflow is shown in Figure 3. In Step 1 we (a) perform quality 

control, removal of missing data and de-noising as well as (b) map protein group 

identifiers/mRNA transcript identifiers to the relevant HUGO names/gene symbols. In Step 2, we 

filter the datasets to retain only genes with corresponding protein profiles available. In Step 3, we 

apply the R package scagnostics14 to the scatterplot generated by examining the values of each 

transcript-protein pair across the conditions it has been measured in. Scagnostics accepts this 

scatterplot as input and outputs a nine dimensional feature vector describing how “Outlying”, 

“Skewed” or “Clumpy” etc. the scatterplot is.  

Outlying 

Skewed 

Clumpy 

Sparse 

Striated 

Convex 

Skinny 

Stringy 

Monotonic 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 2. Scagnostic features quantify the diverse 

relationships that may be found in scatterplots 17.  The 

schematic showcases each scagnostic feature on the Y-

axis and a relative measure of the scagnostics feature on 

the X-axis. The graph contains examples of scatterplots 

that would present high and low value of each scagnostics 

feature 
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In Step 4 we perform unsupervised clustering 

of mRNA-protein pairs. After examining diverse 

clustering approaches, we found that unsupervised 

k-means clustering worked well for grouping 

together mRNA-protein relationships. To estimate 

the number of underlying clusters, we used various 

techniques from the R package NbClust20 to ensure 

that the groupings we found described the 

underlying dataset without biasing intervention. At 

this point, depending on the data and context, it 

may be prudent to refine the clusters achieved by 

unsupervised clustering to eliminate any gene-

protein pairs that may show random patterns, 

which don’t relate to regulatory impetus. Due to 

the nature of k-means, any such relationships will 

still be grouped within one of the resulting clusters. 

We propose ranking each gene-protein pair 

according to the likelihood that the pair presents a 

distinct pattern. This process is further detailed in 

Supplementary section 1 (a and b). 

In Step 5, the resulting clusters were evaluated based on the 2D patterns indicating potential 

regulatory mechanisms. Depending on the type of pattern, these cluster-specific analyses included 

gene set enrichment analysis, miRNA target mapping, mixture modeling followed by bi-

clustering, and further clustering of samples within each scatterplot.  

2.2.  Validation of the workflow using synthetic data 

In order to verify that a scagnostics-based clustering approach was capable of grouping gene-

protein relationships impacted by similar PTRs, 

we constructed a synthetic proteogenomic 

dataset that contained “biological” signals 

(Figure 4(a) describes the types of scatterplots 

that might be generated by data with these 

regulatory mechanisms; mRNA expression is 

presented on the x-axis and protein abundance 

on the y-axis). In Figure 4(b) we summarize our 

validation approach in which we apply the PTR 

explorer workflow to the synthetic data and 

assess generated clusters’ quality using the 

measure of cluster purity21.  

 

Figure 3. Five-step workflow to analyze the scagnostic feature modules 

in a biological context 

Figure 4. (a) Examples of scatterplots of patterns observed in plots of mRNA 

expression vs protein abundance in real-world data that were spiked into the synthetic 

dataset, along with unrelated relationships presenting random signal (b) Validation 

approach involved in employing the scagnostics based methodology on the synthetic 

dataset and assessing quality (cluster purity) of the resulting clusters 
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The synthetic dataset (Supplementary Synthetic_data_and_processing.RData) contained 

6000 gene-protein pairs and was computationally generated from the distribution of NCI-60 

transcriptomic and proteomic datasets. All the values in each of the NCI-60 datasets were 

aggregated and the resulting distributions were used to sample data points for each gene-protein 

relationship. Custom written functions, (stored within the supplementary RData file) coercing 

these data points to form certain types of relationships, were utilized.  By generating the synthetic 

dataset from actual data, we ensure that the synthetic dataset retains the characteristics of real data. 

The signals included in this dataset are as follows, with data generation specifics in 

Supplementary Section 4. 

a) Unimpeded translation: mRNA and protein abundances are highly correlated, implying 

efficient translation. 

b) miRNA intervention: Selective active miRNA targeting resulting in bimodal protein 

abundance across the samples.  

c) Translation rate dependent on gene expression: Sample clusters showcasing varying 

translation rates, or mRNA degradation, depending on different thresholds of gene expression.  

d) Random: This trend consists of scatterplots with no distinguishable trend, essentially random 

values of mRNA expression and protein abundance paired together. 

The synthetic dataset contained two matrices of 6,000 rows (genes and matched proteins), 100 

columns (samples) and was spiked with three specific patterns that could arise due to PTRs ((a) 

through (c) above). There were 1,500 relationships for each specific pattern and 1,500 random 

relationships. Plotting the values from the synthetic mRNA and synthetic protein data, using 

matched rows in the two matrices, on each axis generated the 2D scatterplots of these four 

different types of signals.   

Scagnostics features were extracted from the synthetic dataset above. This resulted in an 

eventual 9 dimensional feature vector for all the 6000 synthetic 2D scatterplots, each representing 

a synthetic gene-protein relationship. We further employed unsupervised k-means (with k=4) 

clustering on this feature set. The number of optimal clusters (k) was determined using the R 

package NbClust. The package evaluates 30 independent indices (including the measures of 

Dindex and the Hubert index20 as referenced below in the Results section), which refer to widely 

known criteria, to deduce the optimum number of clusters in the underlying dataset.  

To quantify the performance of our workflow we measured cluster purity (as defined in R package 

IntNMF21). This was feasible due to prior knowledge of the four types of relationships within the 

dataset. We additionally evaluated scagnostic features across increasing degrees of noise added to 

the synthetic data. To add or “jitter” the dataset with increasing levels of noise, a random value is 

added or subtracted from each data point in the synthetic dataset. This value lies in a range [-nf*sd 

, nf*sd] {nf = Noise Factor, sd = Standard Deviation of each dataset}. The jitter function in R, 

with increasing noise factors (0 to 2), was utilized to achieve this effect. 

Lastly, to compare the performance of our workflow relative to traditional methods, we 

performed traditional k-means and hierarchical clustering (with kmeans and hclust in R) on the 

concatenated synthetic proteogenomic dataset to evaluate how much of the signal could be 

identified and clustered without using a scagnostic workflow, simply by clustering the mRNA 

expression and protein abundance of gene-protein pairs. Results of the same are highlighted in the 
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following Results section. We also employed a widely adopted integrative clustering method 

(icluster22), used to cluster multi-omic data. The details of the icluster implementation and results 

of this comparison are detailed in Supplementary Section 3. 

2.3.  Application of workflow to real-world data 

After assessing the efficacy of scagnostics in the context of exploring gene-protein relationships 

and their regulatory mechanisms, we examined the performance of the PTR explorer on real world 

datasets. The aim of these experiments was (a) to test the robustness of a model built with 

scagnostics and (b) to extract meaningful biological results using the PTR explorer.  

Firstly, to examine the robustness of a model built based on scagnostic features, we utilized the 

single cohort, colorectal cancer proteogenomic dataset from Zhang et al23. The details of 

preprocessing of the dataset are outlined in Supplementary Section 2. We aimed to verify that 

scagnostics features were effectively and uniquely able to characterize a biological model for a 

single cohort dataset, and the feature sets were largely impervious to varying sample sizes or 

differing samples. We evaluated the differences between scagnostics feature matrices when (a) 

varying sample sizes are used and (b) when different samples from the same cohort are used to 

generate the resulting features. The results of the same are detailed in the section below.  

Secondly, to extract meaningful biological results using the scagnostics workflow, we utilized 

proteogenomic and miRNA data24–27 from the NCI-60 panel of cancer cell lines (e.g., breast, 

ovarian, prostate)26,28 used extensively to investigate 

cancer mechanisms and drug responses19,27,29. The 

details of access and preprocessing of this data are 

described in Supplementary Section 2. The final 

cluster specific analyses performed are noted in 

Supplementary Table 1 30–32. 

3.  Results 

3.1.  Proteogenomic 2D scatterplots 

While mRNA expression and protein abundance have 

been studied by employing scatterplots previously, 

they have mostly been utilized to assess general 

trends across all gene-protein pairs in a single 

sample/cell-type or across all samples involved in an 

experiment. When a single scatter plot is made for all 

the transcripts and proteins in one sample  

(Figure 5(a)) or compositing many samples (Figure 

5(b)), the result is not conducive to examining 

specific post-transcriptional regulatory mechanisms 

affecting a specific gene’s relationship with its 

corresponding protein. As has been previously 

2 4 6 8 10 12 14

0
2

4
6

8

mRNA

P
ro
t

All mRNA  (GCRMA intensity) 

A
ll

 p
ro

te
in

s
 

 (
L

F
Q

 i
n

te
n

s
it

y
-l

o
g

 b
a

s
e

 1
0

) mRNA vs protein in MCF7 

Spearman correlation = 0.56 

2 4 6 8 10 12 14 
0

2

4

6

8

4 5 6 7 8 910

0
2

4
6

PLOD1

PLOD1−mRNA

P
L
O
D
1
−
P
ro
t

5 6 7 8 9 1011

0
2

4
6

HELLS

HELLS−mRNA

H
E
L
L
S
−
P
ro
t

3.8 4.0 4.2 4.4 4.6

0
1

2
3

E2F4

E2F4−mRNA

E
2
F
4
−
P
ro
t

2.3 2.4 2.5 2.6 2.7

0
2

4
6

STMN2

STMN2−mRNA

S
T
M
N
2
−
P
ro
t

2 4 6 8 10 12 14 16

0
2

4
6

8

All mRNA vs protein

All mRNA

A
ll 
P
ro
te
in

(a) 

(b) 

PLOD1 HELLS 

E2F4 STMN2 p
ro

te
in

s
 

 (
L

F
Q

 i
n

te
n

s
it

y
-l

o
g

 b
a

s
e

 1
0

) 

 mRNA  (GCRMA intensity) 

O
n

e
 p

ro
te

in

(A
ll

 s
a
m

p
le

s
)

All transcripts
(All samples)

A
ll

 p
ro

te
in

s

(O
n

e
 s

a
m

p
le

)

One transcript
(All samples)

A
ll

 p
ro

te
in

s

(A
ll
 s

a
m

p
le

s
) All transcripts

(One sample)

(b)   

(a)   

(c)   

A
ll

 p
ro

te
in

s
 

 (
L

F
Q

 i
n

te
n

s
it

y
-l

o
g

 b
a

s
e

 1
0

) 

4 5 6 7 8 910

0
2

4
6

PLOD1

PLOD1−mRNA

P
L
O
D
1
−
P
ro
t

5 6 7 8 9 1011

0
2

4
6

HELLS

HELLS−mRNA

H
E
L
L
S
−
P
ro
t

3.8 4.0 4.2 4.4 4.6

0
1

2
3

E2F4

E2F4−mRNA

E
2
F
4
−
P
ro
t

2.3 2.4 2.5 2.6 2.7

0
2

4
6

STMN2

STMN2−mRNA

S
T
M
N
2
−
P
ro
t

2 4 6 8 10 12 14 16

0
2

4
6

8

All mRNA vs protein

All mRNA

A
ll 
P
ro
te
in

(a) 

(b) 

All mRNA vs All protein 

Mean Spearman correlation = 0.32 

All mRNA  (GCRMA intensity) 

2 4 6 8 10 12 14 16 
0

2

4

6

8

Figure 5. (a) Scatterplot of mRNA expression and protein abundance in a 

single NCI-60 cell line, breast cancer MCF7 cells. (b) Density plot of all 

mRNA expression vs. protein abundance in the NCI-60 proteogenomic dataset 

(c) Examples of the variety of trends we observe between mRNA expression 

and protein abundance analysis of data from all NCI-60 cell lines 
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reported23, the broad correlation between mRNA and protein, even within a single cell type is 

poor. Similarly, when examined across multiple cell types, such as the 57 cell lines from the NCI-

60 cancer cell line panel33, there is little correlation between mRNA and protein abundances 

(Figure 5(b)).  

Here we instead examine a slice of the data cube, rather than a projection by looking at 

individual mRNA and protein measurements across multiple samples. Notably, this drastically 

increases the range of possible mRNA-protein scatterplots that are to be explored. Positing that 

these scatterplots may be indicative of potential mechanisms of PTR, we examined mRNA-protein 

scatterplots for individual genes across all samples from the NCI-60 panel.  Several examples of 

these plots are shown in Figure 5(c).   

3.2.  Use of scagnostics to understand proteogenomic regulation 

Scagnostics are widely used to characterize 2D scatterplots effectively12,13,16. Extracting 

scagnostics features for 2D scatterplots of mRNA expression versus protein abundance, 

characterizes each mRNA - protein pairing and the PTR that may result in the 2D proteogenomic 

trend. This characterization takes into account shape (“stringy”,”convex”,”striated”), monotonicity 

(“monotonic”), density (“sparse”,”clumpy”), among other distinguishing attributes. We highlight 

how these features can potentially exemplify biological characteristics or phenomena in 

Supplementary Table 2. Scagnostics affords multiple advantages over traditional methods of 

analyzing proteogenomic data. First, it is an integrative technique that can easily assess two 

dimensions of data. Second, it reduces dimensionality to nine interpretable features regardless of 

the size of the dataset or dynamic ranges. Since calculation of scagnostics features requires 

identification of the convex hull, alpha hull and minimum spanning tree, depending on the 

algorithm and approximation technique for finding these geometric features, the time complexity 

for calculation scagnostics features may vary. However each scagnostics feature can be calculated 

independently for each scatterplot (gene-protein pair) in parallel, thereby ensuring swift processing 

of large-scale datasets.  

3.3.  Scagnostics based methods are impervious to noise and uniquely characterize 

biological models 

We assessed changes in the scagnostic features generated from the synthetic dataset with 

increasing noise factors (nf), to judge sensitivity of scagnostics to noise. To each value in the 

synthetic dataset, a random value from the range [-nf*sd , nf*sd], where sd is standard deviation, 

was added or subtracted to create a new dataset. At nf values ranging from 0 to 1, we observe the 

median values for most features to be impervious to noise, whereas the numeric ranges (the 

minimum and maximum value of features observed) of a few features (e.g., clumpy, striated) were 

impacted by the addition of noise. The results are summarized in Supplementary Figure 1.  

To gauge the robustness of scagnostics characterization, and verify how resilient the technique 

was to a reduction in number of samples, we employed the workflow on the colorectal cancer 

proteogenomic dataset from Zhang et al23. We assessed the changes in the scagnostics feature set 

when variable numbers of samples (number of samples reduced by ~25%) from this single cohort 
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dataset were used to generate the scatterplots and when non-identical but constant number of 

samples were used to do the same. Both experiments demonstrated invariance in the scagnostic 

feature vector regardless of the identity or number of samples utilized to generate the features 

(Supplementary Figure 2 (a and b)). The results confirm that (a) the scagnostic feature vectors 

uniquely characterize a biological model and (b) while discernible patterns exist, the feature set is 

impervious to a reduction in the number of samples in the dataset. 

3.4.  Scagnostics workflow successfully isolates signals from synthetic data and out-

performs traditional methods 

The scagnostics workflow (Figure 3) 

was used to extract scagnostic features 

from the mRNA-protein scatterplots 

created using the synthetic dataset 

(Section 2.2). Ten indices evaluated 

by the R package NbClust correctly 

predicted the number of clusters as 

four (the three spiked trends and the 

random relationships) in the 

scagnostics feature set 

(Supplementary Figure 3). 

The cluster purities of the scagnostic 

clusters decreased as noise was 

increased in the synthetic dataset (Supplementary Figure 4).  When clustering was compared 

across increasingly noisy datasets, we observed that the scagnostic feature-based clustering 

successfully isolated the known clusters till the trends were largely distinguishable.  

We performed analyses to understand whether it was possible to discern similar insights about 

trends in the synthetic dataset using traditional methods of proteogenomic clustering. We 

performed traditional hierarchal clustering and k-means clustering (both with number of clusters 

equal to 4) on the synthetic dataset (Figure 6). For the original synthetic proteogenomic dataset 

sans noise (6,000 mRNA and protein abundances across 100 samples), we concatenated and 

clustered the data using the clustering methods above. This process of concatenating two datasets 

and performing clustering has been a traditional method of integrative analysis34. 

Neither hierarchical nor k-means clustering achieved the high cluster purity of scagnostics-based 

clustering (Figure 6). Only the very distinct expression-based trend in the post-transcriptional 

regulation signals was partially captured by traditional clustering methods. The other trends spiked 

into the synthetic dataset that were clearly visible in 2D scatterplots of mRNA-protein pairings 

were not captured by clustering on expression or abundance using traditional methods but were 

effectively identified when employing scagnostic feature clustering. 

In addition to the traditional data clustering methods, the scagnostics-based clustering was 

more effective than employing an integrative clustering method for multi-omic data (icluster) on 

the synthetic data as well. The integrative method was unable to dissect all the relationships and 

presented a significantly lower purity than the scagnostics clustering (Supplementary Section 3). 
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scagnostic feature-based clustering were employed on synthetic data 
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3.5.  Application of scagnostics-based method to a real-world dataset 

PTR explorer followed by cluster pruning 

(Section 2.1) identified four groups from 

the NCI-60 proteogenomic pairs (Figure 7). 

Pruning reduced the size of the cluster by 

~60%, and retained the most relevant 

proteogenomic pairs in each grouping. 

Cluster 1 showcases high abundance of both 

mRNA and protein, suggesting unimpeded 

translation and low levels of degradation. 

Cluster 2 presents moderate to high mRNA 

levels and close to no protein production. 

Suggesting the protein degradation 

mechanism at work as a PTR for the 

members of this cluster. Cluster 3 

showcases sample specific protein and mRNA degradation, and upon further investigation, the 

cluster members predominantly showcase cancer and tissue specific behavior. And lastly, Cluster 

4 mimics a pattern that results from sample selective miRNA intervention, or selective translation. 

Thus we observe, 4 different types of post-transcriptional regulation in effect in this pan-cancer 

dataset. Corroborating literature evidence and ontology/miRNA enrichment is detailed in 

Supplementary Table 3. The members of each cluster are listed in Supplementary Folder 3. 

4.  Conclusions 

In this study we showed that trends and patterns unearthed by analyses of mRNA-protein 

expression profiles across cell types illuminate configurations and divisions in the data that are of 

biological relevance and significance. We developed a novel workflow, based on isolating patterns 

and trends in proteogenomic expression data using scatterplot diagnostics (scagnostics). 

Proteogenomic expression data from the NCI-60 cancer cell line panel were grouped using the 

scagnostic approach into four clusters, each with unique biological behaviors validated by 

literature examples, after cluster specific analyses. We plan to expand this workflow by building 

multilevel models to predict the behavior of mRNA-protein expression patterns and to build 

abstractions of network regulatory modules.  
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Figure 7. (a) Contour density plot of the average mRNA expression of each gene 

versus the average protein abundance of each protein across NCI-60 scagnostics feature 

driven clusters. (b) Sampling of proteogenomic relationships from each cluster. 
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