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Models have been proposed to extract temporal patterns from longitudinal electronic health
records (EHR) for clinical predictive models. However, the common relations among patients
(e.g., receiving the same medical treatments) were rarely considered. In this paper, we pro-
pose to learn patient similarity features as phenotypes from the aggregated patient-medical
service matrix using non-negative matrix factorization. On real-world medical claim data,
we show that the learned phenotypes are coherent within each group, and also explanatory
and indicative of targeted diseases. We conducted experiments to predict the diagnoses for
Chronic Lymphocytic Leukemia (CLL) patients. Results show that the phenotype-based
similarity features can improve prediction over multiple baselines, including logistic regres-
sion, random forest, convolutional neural network, and more.
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1. Introduction

Recent years have witnessed an explosion in the growth of electronic health records (EHR),
which has motivated the use of machine learning, especially deep learning methods in disease
prediction1–4 and disease progression modeling.5,6 To improve the prediction performance of
these tasks, as pointed out by previous studies ,5,6 many diseases demonstrate heterogeneous
progression patterns. A preferred strategy to resolve this heterogeneity is to segment out more
homogeneous patient sub-populations based on patient similarity.

There have been a few attempts in recent years that exploit patient similarity to improve
disease progression modeling. For example, Che et al.6 and Baytas et al.5 proposed RNN
based models to compute patient similarity based on their longitudinal medical records for
improved personalized disease prediction. Fan et al. leveraged the relational structure between
patients and doctors by modeling it as a bipartite graph, and extracted similarity features of
patients from the bipartite graph using the method graph Laplacian to improve the accuracy
of predicting first-line treatment initiation.7

Despite the initial success, these models often solely rely on patient records, while ignoring
the structural information among patient population encoded in the EHR systems. e.g., similar
patients often share a similar set of medical services. We postulate that these structural infor-
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mation bears a direct and strong indication of patients’ disease progression. However, there is a
caveat that concerns of directly including these information into similarity measurements. For
example, routine services (e.g., measuring blood counts) can constitute a significant portion
of the occurrences of all medical services in patient journeys, and would “overshadow” other
infrequent and more complicated services due to their extremely imbalanced occurrences in
patient journeys.

We have made the following contributions to solve the aforementioned challenges.

• We extract phenotypes that encapsulate related medical services as a clinically mean-
ingful set from patient journeys. Each phenotype refers to a collection of clinical traits
and measurements that describe fundamental attributes of a patient.8 As a result,
patient similarity can be measured on the level of phenotypes instead of individual
services, thereby preventing complicated medical services from being “overshadowed”
by the large amount of routine services.

• Phenotypic structure of medical services can also enhance the interpretability of compu-
tational models that leverage such information to better portrait the clinical relevance
of patients. In addition, patient phenotyping allows straightforward inference of vital
information of patient profiles even in the case of missing data, which is pervasive in
clinical settings.9 For example, we can infer phenotypes of patients with missing data
by projecting their medical records onto the space defined by the learned phenotypic
feature vectors.

• We propose a Wide & Deep neural network model that can effectively combine latent
knowledge learned from both patients’ longitudinal medical records and structural
information (e.g., phenotype-based similarity features) to make more accurate predic-
tions. The model structure is inspired by the Wide & Deep framework10 proposed
originally for mobile app recommendations.

We demonstrate the effectiveness of the phenotype-based similarity features by predicting
the diagnoses of chronic lymphocytic leukemia (CLL) patients. Experimental results show
that leveraging the combination of advanced machine learning algorithms and patients’ med-
ical footprints can allow us to exploit explainable and indicative phenotypes of CLL, which
can provide better accuracy in diagnosis prediction than using conventional EHR data alone
without the phenotypes on a variety choice of prediction models, including the Wide & Deep
model. Furthermore, a more in-depth understanding of such disease phenotypes on the pop-
ulation level can aid doctors to detect easily-missed-diagnosis diseases in an early stage and
reduce potential medical burden.

2. Methods

2.1. Problem Definition

We let Ω denote the clinical medical records of all studied P patients. The medical record
of a patient p is Ω(p) = {S(p), I(p)}, where S(p) = [s

(p)
1 , s

(p)
2 , . . . , s

(p)
T ] is the sequence of medical

services the patient has received and I(p) represents the patient’s demographics and other
non-sequential features. Each service s

(p)
t indicates one unique type of diagnoses, procedures,
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or prescriptions.
We denote as T (in the unit of week) the length of patient journeys that we use in this

paper. We bin the counts of every unique service a patient has received in each week, and
eventually obtain a X(p) ∈ R|S|×T matrix for each patient, where |S| denotes the total number
of unique services in the cohort, and X(p)[i, t] denotes the counts of service i the patient p has
received in week t.

To allow for phenotyping of medical services, we sum the matrix X(p) along the temporal
axis and thus “fold” it into a vector xp ∈ R|S|, which summarizes the counts of all unique
services that patient p has received. Next, we stack all xp into a new matrix Y ∈ RP×|S|, and
perform non-negative matrix factorization (NMF) on Y to obtain a low-rank approximation,
thereby unveiling a phenotypic structure of all services as well as the contribution of each
phenotype to the patient journeys for each patient. The extracted features from NMF will be
included into Ω(p) for model learning and prediction.

The goal of prediction is to learn f : Ω(p) 7→ y(p), where y(p) is the label indicating if the
patient is diagnosed with CLL. The model outputs Pr(y(p) = 1|Ω(p)) = f(Ω(p)) that evaluates
the likelihood of patient p being diagnosed with CLL.

2.2. Non-negative Matrix Factorization

Given a non-negative matrix Y ∈ RP×|S|, where R denotes the set of all real numbers, we are
interested in finding non-negative matrix factors W ∈ RP×r and H ∈ Rr×|S| with r � |S| such
that

Y ≈W ·H, (1)

where W and H can be obtained by solving the following optimization problem:

W?, H? = arg min
W,H

||Y −WH||22,

subject to W,H ≥ 0.
(2)

We can use the multiplicative update rules11 to calculate the values of W and H as:

Hn+1
i,j ← Hn

i,j

((Wn)TY)i,j
((Wn)TWnHn)i,j

(3)

Wn+1
i,j ←Wn

i,j

(Y(Hn+1)T )i,j
(WnHn+1(Hn+1)T )i,j

, (4)

where n denotes the index of the iteration.
After NMF, the columns of H correspond to all the medical services appeared in the patient

journeys. In each row of H, the majority of the nonzero terms constitute a clinically meaningful
set of medical services, or phenotypes, such as oncological conditions or neurological system
disorders. In other words, H defines a set of axes over the entire set of medical services,
where each medical service resides in one of the axes and has minor influence on the rest.
Meanwhile, the rows of W correspond to all the patients, and the r elements in one row
specify the assignments of the current patient to each of the r medical phenotypes. Therefore,
we could characterize the disease phenotype of a patient by examining the corresponding row
in the W matrix, which can be used to enhance the model interpretability.
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In the training data set, we have both CLL diagnosed patients as positive and undiagnosed
patients as negative, for which the y(p) = 1 or 0 respectively. The cohort definition with specific
clinical rules will be given in section 3.1. To obtain phenotypes of medical services with better
differentiability and relevance associated with CLL, we run NMF only on Ypos, i.e., the patient-
service matrix derived from the patients who are diagnosed with CLL (the positive cohort),
and obtain their phenotype vectors Wpos; for the patients in the negative cohort, we project
their patient-service matrix Yneg onto the phenotype axes Hpos obtained from Ypos via non-
negative least squares. Specifically, for each row vector wi ∈ Rr of Wneg, we got the least
square estimate by solving the following optimization problem:

arg min
wi

||YT
neg −HT

posw
T
i ||22

subjective to wi ≥ 0,
(5)

after which we concatenate all wi into Wneg.

2.3. Wide and Deep

In the original Wide & Deep framework,10 the wide component memorizes frequent co-
occurrence of input features, and the deep component generalizes or explores new feature
combinations that rarely occurred by first projecting input features into low-dimensional em-
beddings and exploring their interactions via deep neural networks. Wide & Deep provides a
scalable and effective way of balancing memorization and generalization of input features and
their interactions, and makes better recommendations.

In this work, we make a key modification to the deep component by replacing it with
an LSTM to account for the sequential information embedded in the patients’ longitudinal
medical records. We also deploy a pre-trained embedding layer at the input of the LSTM
to project high-dimensional and sparse medical services into low-dimensional dense vectors,
which facilitates efficient exploration of the complex dependencies and nonlinear dynamics of
patients’ medical services. The embeddings of medical services were trained using Word2Vec12

by maximizing the likelihood of each service seeing its neighbors in the patient journeys.

The wide component. The inputs to the wide component include patients’ demographics
and disease phenotypes extracted using NMF from the patient-service matrix Y. We encode
the patients’ demographics as categorical variables, e.g., f1, f2, ..., fN , where each fi ∈ {0, 1}|fi|

with only one 1 out of |fi| bits that denotes a distinct value of feature fi. The phenotypic
feature for patient p is a vector wp ∈ Rr. The value of r is set as 4 empirically.

The phenotypic features and the one-hot encoded demographics are then incorporated into
the overall prediction through three consecutive dense layers along with features extracted by
the deep component, which will be introduced next.

The deep component. In the original Wide & Deep model for recommendation,10 the
deep component is implemented as several stacked fully-connected layers. For the purpose
of predicting diagnosis, a sequential model that can account for the temporal progression of
time-stamped medical records, captures more representative information.

In this work, we adopt LSTM as the primary structure in the deep component to model the
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sequential information embedded in the patient journeys. The inputs to the deep component
consist of sequences of medical services. Before entering the LSTM, all medical services are
converted into d-dimensional dense vectors through an embedding layer. Representing medical
services as low-dimensional embedding vectors instead of one-hot codes can better preserve
the structural relations of medical services, thereby improving model performance that take
embedding vectors as inputs. For service i, its embedding vector is:

si = Embedding(si) for i = 1 · · · |S|, (6)

where si ∈ Rd.
At each time step of the LSTM, we apply the GlobalMaxPooling operation to extract the

most significant hidden features:

h1,h2, . . . ,hT = LSTM(s1, s2, . . . , sT ), (7)

hmax = GlobalMaxPooling([h1,h2, . . . ,hT ]) (8)

where ht ∈ Rd′
(d′ is the dimension of the hidden variable of the LSTM), hmax ∈ RT ; the

subscript of service vector s is the index of time, not the service type. Next, we concatenate
hmax with the features from the wide component, and feed them through three dense layers
which fully explore the interaction between the wide and deep features:

P(y(p) = 1) = σ(WT
3 ·ReLU(WT

2 ·ReLU(WT
1 · [hmax;wp; f

(p)
1:N ] + b1) + b2) + b3). (9)

3. Results

3.1. Cohort Selection and Data Extraction

CLL is the most common type of leukemia in adults. However, many CLL patients do not have
obvious symptoms before CLL is diagnosed. The leukemia is often found when their doctor
orders blood tests for some unrelated health problem or during a routine check-up and they
are found to have a high number of lymphocytes. Common signs involving fatigue, weight loss,
and fever are not reliable indicators to raise a doctor’s awareness of severe medical conditions.
Only until the blood test performed, CLL is hard to detect and diagnose.

We extract data from IQVIA longitudinal prescription (Rx) and medical claims (Dx)
database, including hundreds of millions of patient clinical records. We select patients diag-
nosed with CLL from January 2012 to December 2018 from the IQVIA database and keep
only the patients with complete Rx/Dx information as the positive cohort. For each patient
in the positive cohort, we pull one-year clinical records six months before the date of the first
CLL diagnosis to avoid any potential information leakage. To generate the negative cohort,
we extract all the patients from January 2018 to December 2018 who have shown CLL risk
factors and related symptoms but never been diagnosed. The risk factors are empirically se-
lected from medical literature and will be specifically defined later. Patients are greater than
18 years old in both the positive and negative cohort.

The including criterion for generating the negative cohort contains four parts: CLL risk
factor, CLL related diagnosis, CLL related procedure, and CLL related prescription. A neg-
ative patient in our study must meet at least three out of the four criteria. The risk factors
include anemia, chills, fatigue, fever, night sweats and pain, Sjögren syndrome, weakness, and
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weight loss. The related diagnoses include Epstein-Barr virus infection, recurrent infection,
Helicobacter pylori infection, HIV/AIDS, Human T-lymphotrophic virus type I, hypogam-
maglobulinemia, psoriasis, rheumatoid arthritis, Wiskott-Aldrich syndrome, and pneumonia.
The related procedures include increased frequency of CBC/ or blood test, tissue culture and
chromosome analysis, and flow cytometry. The related prescriptions include Dexamethasone,
Neupogen, and Prednisolone. By applying the inclusion and exclusion criteria, we identify
19,425 positive and 177,316 negative patients.

3.2. Features Extraction

Demographics. Demographical features include age and gender, both of which are categorical
variables. Gender has three categories that are male, female, and unknown. Age is categorized
as equal to or greater than sixty, smaller than sixty, and unknown. The age and gender
information is based on the index date of each patient that is the first diagnosis date for the
positive cohort and December 31, 2018 for the negative cohort.

Clinical service features. The prefix at the beginning of a service indicates the type of
the service: ‘dx-’ stands for a diagnosis, ‘rx-’ stands for a prescription, and ‘px-’ stands for
a procedure. To reduce the number of unique services and improve the interpretability, we
aggregate the clinical codes that essentially refer to the same service subtype into a clinical
category. For instance, we use the clinical category ‘dx-shigellosis’ to represent a group of
fourteen diagnosis codes. Furthermore, we ignore the clinical categories that have less than
5% occurrences for all patients. The final model inputs include 394 unique clinical features.

The patient journey is ordered by service date. If a patient has multiple types of service
on the same day, we order these types by procedure first, diagnosis second, and prescription
last. Services of the same type that happen on the same day will be ranked alphabetically.

Phenotyping medical services with NMF. We utilized the Bag-of-Word approach13 to
tokenize each patient’s service journey and transformed the clinical features into a sparse
patient-service matrix (discussed in Section 2.2). To decide the number of phenotypes, we run
multiple times of NMF with different numbers of phenotypes (i.e., the value of r was tested
from two to eight), and asked a medical expert to evaluate the quality of the phenotypes.
For the i-th phenotype (1 ≤ i ≤ r), it includes all the medical services of which the i-th
coefficients are the maximum in their corresponding r-dimensional column vectors in H. If all
the coefficients of a medical service after NMF are too small (less than 0.001 in our setting),
this service will be assigned into a miscellaneous group.

Eventually, we found that the choice of three phenotypes when performing NMF can give
the best differentiation between medical services. We asked a medical expert to label each
phenotype (excluding the miscellaneous group) with a general description according to the
clinical meanings of its members. The obtained three phenotypes are:

• Respiratory disease and pain (#1): Disorders involving the respiratory system and
general pain, including pneumonia, obstructive chronic bronchitis, disease of pleura,
and chronic pain, etc. Respiratory tract illness is common in CLL patients, and the
most common complication is pneumonia.14 Pulmonary involvement in patients with
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CLL may result from infections and pathological infiltration.15 General pain is also
common in CLL patients, which depends on the location of the mass of abnormal cells.
Chest pain and bone pain are common as well.16

• Blood-related/anemia (# 2): Clinical services related to blood, including coagu-
lopathy test, chemotherapy, and diagnoses of anemia such as unspecified anemia and
acquired hemolytic anemia. CLL is a type of blood cancer that impacts normal blood
cells and bone marrow. The increased blood-related medical services or diagnosis im-
plies the potential progression of CLL.

• Infections (#3): Diagnoses and procedures resulting from or related to infections
that can cause a range of symptoms. Top-ranked clinical features include acute upper
respiratory infections, intestine infections, and gastritis, etc. As a common complication
of CLL, infection pertains to the alteration of immune system. Even in the early stages,
nearly all CLL patients have decreased immunoglobulin levels that lead to infection.17

Figure 1 shows the top-ranked (the first 100) medical services from each phenotype in
the form of word cloud, where the font size of a medical service is proportional to its NMF
coefficient that denotes its belonging to a phenotype. We further visualize the distribution of
the medical services annotated with their phenotyping properties in the latent space defined by
the NMF feature vectors. To do that, we performed t-SNE18 on the H matrix that describes the
phenotyping feature vectors of the medical services. The 2-D scatter plot of the medical services
after t-SNE is shown in Figure 2, where three groups of medical services encoded with different
colors can be clearly identified. The phenotype 2 (blood-related/anemia) partially overlaps
with both the phenotype 1 (respiratory disease and pain) and the phenotype 3 (infections),
respectively, whereas the phenotype 1 and 3 are clearly separated with minor overlap. The
distributions of medical services among three groups align with our expectations. Essentially,
the root cause of phenotype 2 is the disease progression of CLL. As elucidated in the phenotype
description above, the abnormality in blood cells and bone marrow would lead to infections
that are associated with respiratory tract inflammation.

Case study: a patient journey as phenotypes. In Figure 3, we plot the temporal progres-
sion of a patient journey not in specific medical services, but phenotypes. It shows clearly the
disease progression wherein the patient has significantly increased services related to respira-
tory system and pain especially in the last one third of the look back period. This illustrates
how we can gain understandable and informative knowledge from patient-level data by lever-
aging the patient’s phenotypic tendency. Furthermore, it shows the NMF-based phenotype has
the capability to capture and distinguish meaningful clinical services that suggest patients’
disease progression.

3.3. Model and Performance

Because of the imbalanced positive and negative patients, we use precision-recall area-under-
curve(PR-AUC) and F1 scores at various sensitivity values to evaluate model performances.

To illustrate the effectiveness of NMF phenotype features, we test four different models:
logistic regression (LR), random forest (RF), convolutional neural network (CNN), and the
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Fig. 1: Word cloud of the three phenotype. In each subplot, the font size of a medical service
is proportional to its coefficient that indicates its relevance to the corresponding phenotype.

modified Wide & Deep. The inputs to the tested models include the demographic and clinical
service features, and with or without the phenotype features.

The train/test split ratio is 0.9:0.1. Within the training cohort, the train/validate split
ration is 0.9:0.1. The maximum training iteration of LR is 5,000. Both CNN and Wide &
Deep are updated with the Adam optimizer19 with a default learning rate of 1e-4 and a batch
size of 256. The number of training epochs is 50; we early stop the training if no improvements
in five consecutive epochs. All experiments were run in Keras with Tensorflow backend on a
system with 128GB RAM, 16 Interl(R) Core Xeon(R) E5-2683 v4 2.10GHz CPUs, and Nvidia
Tesla P100-PCIE-16GB.

Model description. The RF model has 100 trees. The CNN model employs a 4-layer struc-
ture 2× 2(128)− 3× 3(128)− 4× 4(128)− 5× 5(128) (kernel size/number of kernels), followed by
two dense layers. The flattened CNN features are concatenated with demographic and NMF
features at the first dense layer. The Wide & Deep model deploys an LSTM with 512 hidden
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Fig. 3: A patient showcase of fitted NMF phenotype. The X axis is the number of service
days from the first day of the patient’s look back period. The Y axis (Phenotype membership
degree) shows the degree value of each service to the corresponding phenotype

dimension handling sequential medical features as the deep part, and a top-level two-layer
feed-forward network to concatenate demographics and NMF features as the wide part.

Performance. Overall, the PR-AUC and F1 score at various sensitivity levels provided in
Figure 4 and Table 1 demonstrate that the models with NMF phenotype features outperform
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Fig. 4: Comparison of baseline models with and without NMF phenotype feature measured
in PR-AUC.

Table 1: Comparison of F1 scores between proposed and benchmark methods

Sensitivity LR LR+NMF RF RF+NMF CNN CNN+NMF WD WD+NMF
0.15 0.1974 0.2168 0.1997 0.2161 0.2433 0.2425 0.2392 0.2483
0.2 0.2079 0.2390 0.2085 0.2243 0.2973 0.3020 0.2955 0.2976
0.25 0.2174 0.2531 0.2156 0.2342 0.3365 0.3385 0.3370 0.3381
0.3 0.2289 0.2613 0.2234 0.2478 0.3551 0.3563 0.3568 0.3579
0.35 0.2236 0.2529 0.2534 0.2887 0.3148 0.3437 0.3441 0.3433
0.4 0.2224 0.2512 0.2513 0.2811 0.2891 0.3195 0.3009 0.3237

those without NMF phenotype features. The margin on PR-AUC is more than 2% on average
across all model structures. The F1 score comparison reveals a similar pattern that the models
with phenotype features in general have a higher F1 score at every sensitivity level. The results
suggest the universal utility of phenotype features extracted with NMF from patients medical
records in enhancing the performance of disease progression prediction.

Limitations. One limitation of the current work is that in the deep component we did not
take into consideration the duration of time intervals between every two consecutive services.
Incorporating this time-span feature has a number of advantages: First, predicting future
time-spans can be included as an auxiliary task that acts as a regularization term in the loss
function, which can potentially enhance the model’s prediction accuracy.20 Second, predicting
time-spans naturally coincides with survival analysis, which offers the possibility of conducting
survival analysis with deep neural networks.21

Future Works. First, we will extend the matrix factorization technique employed in this
work to tensor decomposition by further taking the temporal dimension into consideration
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when building the aggregated patient-service high-dimensional tensor. This will potentially
offer more sufficient granularity and patient-specific characterizations of disease progression.
Second, to address the aforementioned limitation, we will investigate how to expand the cur-
rent deep learning model structure to conduct survival analysis by, for example, explicitly
modeling the time-span features that is currently missing from our implementation.

4. Conclusion

In this paper, we proposed to extract patient similarity features as phenotypes of medical ser-
vices using non-negative matrix factorization. We showed that the phenotype features learned
automatically from patients medical records are highly explanatory and indicative of the tar-
geted disease in the cohort. We also proposed a modified version of the Wide & Deep model
that can effectively combine sequential modelling of patients’ longitudinal clinical records and
a diverse range of non-sequential features (e.g., the phenotype features) to make more accu-
rate predictions of disease progression. Using real-world patient medical data, we showed that
the phenotype features can enhance the performance of a variety choice of model structures,
including the revised Wide & Deep model. We envision that the clinical phenotype has poten-
tial in boosting model performance on other tasks, such as rare disease detection or pairing
patients with matched clinicians or medications.
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