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Eye tracking, or oculography, provides insight into where a person is looking. Recent ad-
vances in camera technology and machine learning have enabled prevalent devices like
smart-phones to track gaze and visuo-motor behavior at near clinical-quality resolution.
A critical gap in using oculography to diagnose visuo-motor dysfunction on a large scale
is in the design of visual task paradigms, algorithms for diagnosis, and sufficiently large
datasets. In this study, we used a 500 Hz infrared oculography dataset in healthy controls
and patients with various neurological diseases causing visuo-motor abnormality due to eye
movement disorder or vision loss. We used novel visuo-motor tasks involving rapid read-
ing of 40 single-digit numbers per page and developed a machine learning algorithm for
predicting disease state. We show that oculography data acquired while a person reads one
page of 40 single-digit numbers (15-30 seconds duration) is predictive of of visuo-motor dys-
function (ROC-AUC = 0.973). Remarkably, we also find that short recordings of about 2.5
seconds (6-12× reduction in time) are sufficient for disease detection (ROC-AUC = 0.831).
We identify which tasks are most informative for identifying visuo-motor dysfunction (those
with the most visual crowding), and more specifically, which aspects of the task are most
predictive (the recording segments where gaze moves vertically across lines). In addition to
segregating disease and controls, our novel visuo-motor paradigms can discriminate among
diseases impacting eye movement, diseases associated with vision loss, and healthy controls
(81% accuracy compared with baseline of 33%).
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1. Introduction

Video infrared eye trackers are noninvasive ways of assessing visuo-motor abnormality in
patients with diseases that impact eye or brain function. Common diseases that affect the
eye-brain network include stroke, multiple sclerosis, brain tumors, traumatic brain injury, and
Parkinson’s disease (PD).1–5 We used infrared oculography to train a machine learning-based
algorithm that can assess visuo-motor behavior while patients complete a variety of tasks
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Fig. 1. Example task and eye tracking recordings. (a) Example task: the 8 rows and 5 columns of
single digit numbers are to be read left-to-right, top-to-bottom. (b,c) Recordings overlaid with reading
task. Circles represent fixations; lines connect temporally adjacent fixations. Circle radii correspond
to fixation duration. (b) Healthy control participant. (c) Patient with Parkinson’s disease.

modified from the King-Devick (KD) test.6 These visuo-motor tasks consist of 9 pages of 40
single-digit numbers, and 3 pages of 40 single-digit numbers written as words, which are read
aloud from left-to-right or right-to-left as quickly as possible from a computer screen. The
single-digit numbers are regularly or irregularly space, and some pages have greater visual
crowding while others have a line that guides gaze from one number to next across the line
of reading. Each page of the task takes about 15-30 seconds to complete depending on the
reading speed. We show an example page and corresponding eye tracking output in Figure 1.

The raw eye tracking output contains the XY positions of each eye across time (typically
sampled at rates >= 500 Hz). This output is preprocessed into a time series of fixations and
saccades. A fixation is an eye movement when the gaze is stabilized on a single target. Fixations
are when people actually “see.” Saccades are rapid movements that move gaze from one target
to the next. People are “blind” during saccades because of the rapid speed of eye movement.
Simple features like the average duration of a fixation or the number of saccades in between
fixations as well as more complex features like the rate of regressive saccades (saccades that
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move opposite to the reading direction) can be predictive of disease state.4,5

Our contributions In this work, we leverage machine learning to create an end-to-end dis-
ease detection pipeline based on eye tracking data. Though we are limited by the amount
of available data, we show that oculography data captured while a person reads one page
of 40 single-digit numbers (duration 15-30 seconds) is predictive of visuo-motor dysfunction
(ROC-AUC = 0.973). Remarkably, we also find that short recordings of about 2.5 seconds are
sufficient to identify disease state (ROC-AUC = 0.831). These short recordings represent a
6-12× more efficient diagnosis system. In addition to predicting disease state, we are able to
differentiate between 3 disease groups (those impacting eye movement, vision loss, and healthy
controls) with 81% accuracy compared to random-guessing baseline of 33%.

Furthermore, we analyze which tasks are most predictive of visuo-motor dysfunction. We
find that tasks with higher degrees of visual crowding and, in particular, recording segments
where a person moves across lines while reading are the most predictive. These findings are
important as they will enable us to better design tasks to identify disease state.

Limitations While our study is already one of the largest ones of its type, we are limited by
the amount of data. Though our results appear promising, our model needs further validation
to ensure robustness. We are actively collecting a larger dataset from diverse patients for
additional validation.

2. Related Works

Diagnostic approaches in ophthalmology Visuo-motor abnormalities are typically di-
agnosed through a clinical neuro-ophthalmic examination.7 Depending on the exam results,
additional visual function assessment and ophthalmic imaging may be required.8 For exam-
ple, brain MRIs are a common assessment for confirming a diagnosis; other disease-specific
assessments also exist.9 The oculography recordings we use are not typically part of a clinical
assessment; however, oculography is a more simple test to conduct in practice and, as we
demonstrate, it is amenable to machine learning approaches for accurate patient diagnosis.

Machine learning for oculography There are a few works in recent years that use eye
tracking data for disease prediction. There are two general approaches:

1. Deep learning for end-to-end disease prediction: Bautista et al. use a deep model to embed
raw gaze measurements for use in biometrics.10 Convolutional neural networks (CNNs)
have also been leveraged to process heatmap-encoded eye tracking recording images.11,12

Recurrent neural networks (RNNs) are used in Mao et al. to generate features that are
subsequently input to a random forest model. Their work is most similar to ours, though
we use a CNN model and work with discrete chunks rather than embedding the entire
recording with an RNN. We discuss these differences more in Section 3.

2. Feature engineering and a non-deep learning classifier: This type of work goes back sev-
eral decades, where researchers have identified key features associated with various dis-
eases.1,2,4,5,13 More recent studies use these known feature associations together with ad-
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ditional engineered features to automatically predict disease state. For example, Daley et
al. predict sleep deprivation using hand-picked features and compare a variety of classic
ML models including support vector machines and decision trees.14 Other works take sim-
ilar approaches where feature engineering together with classic ML models are used for
differentiating control and diseased states.15,16

Our work extends the prior work in a few ways. First, we are able to differentiate between
up to 5 disease states (including controls), while most prior work only focuses on a binary
task: differentiating between healthy and a disease of interest. Second, we show it is possible
to accurately differentiate control from disease based on only a few seconds of data. Previous
work typically uses longer tasks comparable to our task-level predictions (i.e., > 15 seconds).
Lastly, we are able to provide insights into what tasks are the most useful for disease detection,
which will better enable future algorithm development.

3. Methods

3.1. Infrared oculography and data collection

Table 1. Dataset statistics by disease group. “Number of recordings” is the total number of individual
tasks across all patients. Each patient completed up to 12 unique tasks.

Disease group Number of Patients Number of recordings Average Age Percent Female

Control 35 331 46.2 57.1%

Vision Loss 16 162 59.3 62.5%
Parkinson’s Disease 42 399 69.4 50.0%
Cerebellar Ataxia 13 147 50.7 53.8%
Downbeat Nystagmus 21 200 61.8 38.1%

Total 127 1239 58.8 52.0%

We performed a prospective, case control study at Stanford University from 2015-2020
using a 500 Hz 2-dimensional binocular infrared video oculography instrument (RED500,
SensoMotoric Instruments, Germany). The study adhered to the tenets of the Declaration of
Helsinki for human subject research and was approved by the Stanford Institutional Review
Board (IRB). The study was also compliant with Health Insurance Probability and Account-
ability Act (HIPAA).

Participants sat approximately 70 cm in front of a computer monitor (dimensions: 55.9
cm by 33.0 cm, 22 inches by 13 inches, 1680 px by 1050 px), where the task paradigms
were displayed. Participants were instructed to sit upright with both eyes open for binocular
recording. Participants were instructed to minimize all head movements and stabilize their
posture to avoid noise and low accuracy of eye tracking. They were repositioned and stabilized
by a test administrator as needed. A chin rest was not used to ease testing because number
reading was completed out loud. After set up was complete, participants completed a 9-
point calibration with cardinal points of regard to accurately measure eye movements and

Pacific Symposium on Biocomputing 27:242-253(2022)

245



gaze. Validation steps using fixation points were included to confirm accurate, high quality
calibration and minimize tracking errors. Horizontal and vertical deviations were measured
using gaze points with the known calibration target locations. An administrator was present
to troubleshoot technical issues to ensure the best quality of recording and to minimize errors
for optimal tracking ratios. Infrared oculography ensured participants read all numbers and
words correctly and did not skip lines. Participants were permitted to wear their reading
glasses or contacts during the study as long as they did not interfere with eye movement
recording. Recordings were stopped or excluded if quality of recording was poor.

Ground-truth labeling of disease status and basic demographic information including age
and gender were recorded for each individual. A summary of the dataset statistics after pre-
possessing is shown in Table 1. We consider 4 disease states:

1. Vision loss: Acquired diseases of the brain such as stroke, trauma, or multiple sclero-
sis, that interrupts the retino-geniculo-cortical visual pathway resulting in left or right
homonymous hemianopsia. Patients experience difficulty seeing and interpreting the left
or right side of the visual field of vision in each eye.17

2. Cerebellar ataxia (Ataxia): Acquired neurological disorders due to impairment of the
cerebellum and their pathways. This condition affects the precise control and coordina-
tion of eye movement and extraocular muscles, leading to oscillopsia (jumping vision),
dizziness, and visual disability.18

3. Parkinson’s disease (PD): The most common progressive neurodegenerative disorder
affecting motor function. It is characterized by loss of dopaminergic and other neurons,
leading to impairment of visuo-motor function and higher order cognitive abilities.3

4. Downbeat nystagmus (DBN): A disorder characterized by oscillopsia (jumping vision)
due to impaired connection between the brainstem and cerebellum. Patients with DBN
have difficulty holding the eyes still due to a characteristic continuous upward drift in gaze
that is corrected by downward saccades. The continuous oscillations of the eyes occur at
0.5 to 3 Hz.19

In our analysis, we will also aggregate PD, Ataxia, and DBN into a single group, “Eye
movement disorder.” These three disease states share common symptoms in difficulty with
motor function of the eye, and so we expect more similarities in the eye tracking recordings
between these states than between healthy controls or patients with vision loss.

3.2. Algorithm

The data was preprocessed using commercial software BeGaze (SensoMotoric Instruments)
to identify fixations and saccades. We show an overview of our algorithm in Figure 2. When
training our models, we randomly split our data with a 75%-25% split for train and test data.
Data is split at the patient level to avoid data leakage. Our algorithm processes short temporal
“chunks” of recording data and then aggregates chunks across a recording. A chunk is defined
as a short, contiguous widow of time in a recording and includes all fixations and saccades
that occur inside that window.

There are three reasons we start at the chunk level. (1) We can train more complex models
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Fig. 2. Algorithm overview. (a) Retrieve patient recordings. (b) Normalize and align recordings. (c)
Split recordings into roughly 3-second-long chunks. (d) Generate chunk-embeddings using a CNN
trained to classify disease. (e) Aggregate embeddings produced by the chunk-classifier. (f) Concate-
nate aggregated embedding with task-level features. (g) Generate task-level prediction.

more reliably at the chunk level as we have more datapoints here (Table 2). (2) Chunk-level
performance gives insight into what information is useful within a task and enables us to design
more informative tasks for disease detection. (3) We believe short recordings are sufficient for
disease prediction; an algorithm relying on less data is beneficial for widespread usage.

3.2.1. Chunk-level classifier

Table 2. Number of chunks per disease group. On average, there are around 60 chunks per task.

Control Vision Loss Parkinson’s Disease Ataxia Downbeat Nystagmus

Number of chunks 16660 10165 26458 10374 14041

Our algorithm first processes short segments of a recording (chunks). A chunk is mea-
sured by its number of fixations (we use 10 fixations). This number of fixations is chosen to
correspond to roughly 3 seconds of time. For each fixation, we generate 9 features:

1. Fixation X and Y position in pixels – the 2D location of the patient’s gaze on the screen.
2. Fixation duration in milliseconds.
3. Fixation dispersion in pixels – X and Y axis length of an ellipse encompassing the patient’s

gaze locations associated with the fixation.
4. Number of saccades occurring directly after the fixation (before the subsequent fixation).
5. Total duration of saccades associated with the fixation in milliseconds.
6. X and Y position of the nearest target location to the fixation in pixels – this is our best
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guess of where the person “should have” been looking to complete the given task.

We concatenate these features across time resulting in a 9×T feature vector where T is the
number of fixations we use (e.g., 10 fixations). This representation is input into a convolutional
neural network (CNN) which we train to predict disease group using the standard cross entropy
loss. We refer to this CNN as our chunk-level classifier. During training, we augment our
dataset by performing small, Gaussian perturbations to our chunk features. We use the Adam
optimizer20 and a cross-entropy loss to train our model. The CNN model is implemented in
PyTorch.21 It consists of 3 convolutional layers and 4 linear layers followed by a final linear
classifier that outputs the logits used for classification. We use ReLU nonlinearities.

Note that a recurrent neural network (RNN) is an alternative model choice. However,
we opted to use a CNN model for two key reasons: (1) we are interested in the chunk-level
performance of our model, which precludes the use of any recurrence between chunks, and (2)
we have enough data to train a CNN model that takes as input an entire chunk, and hence do
not need an RNN model. For aggregating across chunks, an RNN is a viable candidate model
that has seen prior use.22 However, we opt for the simpler approach described below.

3.2.2. Task-level classifier

Although we trained the chunk-level classifier to identify disease, we will only use it to produce
embeddings. In particular, we use the second to last layer output of the chunk-level classifier
as a chunk-level embedding, echunk ∈ R8. For each recording, we compute this embedding for
all possible chunks inside the given recording. Chunks are spaced with an offset of 1 fixation,
resulting in a total of N − T + 1 chunks where N is the number of fixations in the recording
and T is the length of the chunk. These embeddings are aggregated by computing the max,
min, and average value for all embeddings for the recording and concatenating, resulting in a
chunk-aggregate embedding echunk-agg ∈ R24.

In parallel, we generate 16 features at the task level. These features include total duration
of the recording, total number of fixations, average distance from fixation to target points (e.g.,
the locations of the numbers to be read), and average fixation duration. We concatenate these
features to the chunk-aggregate features to create our task-level embedding etask ∈ R40. We
train our task-level classifier, a random forest (RF), using cross validation for hyperparameter
tuning to predict disease group from etask.

4. Results

We first present results for our chunk-level classifier and discuss how we chose the chunk
length. These results demonstrate that very short recordings are sufficient for disease detection.
Subsequently, we discuss the task-level classifier and provide insights that can help future task
design be more informative for disease detection and differentiation.

4.1. Chunk-level classifier

We first perform an analysis of the chunk length. In Figure 3a, we plot the ROC-AUC for
control vs. disease prediction as a function of chunk length. Performance is paralleled across the
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(a) (b)

(c) (d)

Fig. 3. Results for chunk-level classifier that predicts disease state from < 3 seconds of data. (a)
ROC-AUC (control vs. disease) as a function of chunk length. We translate chunk length to the
corresponding average chunk duration across our dataset, and note a peak at 2.6 seconds. (b) ROC-
AUC plot for chunk-level classifier showing discrimination between healthy and diseased patients
despite the limited input data. (c, d) Chunk-level classifier confusion matrix between (b) control
state, vision loss, and eye movement disorders and (c) all disease states.

chunk-level, task-level, and task aggregate (majority vote across tasks) classifiers, suggesting
performance is heavily reliant on the information extracted at the chunk level. Furthermore,
this result suggests that the short recording segments are informative of disease state.

Performance is maximized at around 2.6 seconds average chunk duration. While we might
expect increasing chunk length to only increase performance, there is an implicit tradeoff –
as chunk length increases, model complexity increases while number of data points decreases.
A shorter chunk length has higher performance due in part to overfitting resulting from our
small dataset size. Based on these results, we use T = 10 fixations for each chunk.

Now we discuss the performance of our chunk-level classifier using the chunks of average
duration 2.6 seconds. We show an ROC-AUC plot for classifying disease vs. not disease (i.e.,
aggregating all four disease states into one group) in Figure 3b, and attain an ROC-AUC
value of 0.776.
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In Figure 3c, we show a confusion matrix for the 3-way disease classification, and in
Figure 3d, we show the confusion matrix for the full 5-way disease classification. While the
correct classes are generally the most common prediction, there is a high degree of variance in
predictions. This is not unexpected: the recordings are noisy due to both the eye tracker and
patient variability, and signal is limited due to the short duration of the chunks.

4.2. Task-level classifier

(a)

(b) (c)

Fig. 4. Results for task-level disease classifier. (a) AUC plot comparing task-level classifier on best
and worst tasks, aggregate by majority vote of task-level classifications, random forest trained on
hand-crafted features on the best task, and the chunk-level classifier on line-changing chunks. (b,
c) Task-level classifier confusion matrix for best task between (b) control state, vision loss, and eye
movement disorders and (c) all disease states.

Here we present results for the task-level classifier. In Figure 4a, we compare ROC-AUC
curves for the binary disease detection task for several different classifiers. The “Best Task”
(see Figure 5a) and “Worst Task” (see Figure 5b) classifiers are the task-level classifier applied
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(a) (b)

Fig. 5. (a) Best task (read right-to-left) and (b) worst task (read left-to-right), as measured by
ROC-AUC value in Figure 4a. There is less spacing between lines in (a) than the example given in
Figure 1a.

to only a single task across patients. The large performance gap suggests that certain tasks are
indeed more informative than others. The “Task Aggregate” classifier is simply a majority vote
for disease prediction across all tasks. Perhaps surprisingly, this aggregate prediction has lower
performance than the best task, again suggesting the large performance variation between
tasks. The “Random Forest baseline” is an RF model that used the hand-selected features
without the CNN embeddings. It achieves 3-way accuracy of 46% on the best task and 49%

when aggregated with majority vote across all tasks (not plotted here), which is substantially
worse that our model (81% accuracy). This suggests the CNN embeddings contribute useful
signal. The “Line changing chunks” model refers to the chunk-level classifier applied to the
best task and only for the recording segments that capture how a patient moves from one line
to the next while reading. The higher ROC-AUC value as compared to the ROC-AUC value
in Figure 3b, which averages ROC-AUC across all chunks and all tasks, suggests that certain
segments of the recording, like the line-changing segments, are more informative. We did not
includes baselines from prior work as our setting is not directly comparable (for example, data
in some prior work does not come from a reading task, and so direct adaptation to our setting
is not possible).

In Figure 4b and Figure 4c, we show the confusion matrices for the 3-way and 5-way
classification for the task-classifier applied only to the best task. The 3-way classifier achieves
81% accuracy against a random guessing baseline of 33%. Our 5-way classifier achieves 47%

accuracy; notably, the classifier confuses Ataxia and DBN with one another. This is not
unsurprising – as previously noted, PD, Ataxia, and DBN are similar due to the similar ways
in which symptoms manifest in visuo-motor function.

Now comparing across all 12 tasks, we make a few observations. The tasks with higher
visual crowding and tasks where we require reading right-to-left as opposed to left-to-right
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both achieve higher ROC-AUC values (both increase difficulty), suggesting that a certain
amount of difficulty is critical for task design. Additionally, the tasks requiring reading single
digits as opposed to words had higher performance, indicating that the single-digit reading
task may be more informative. Other tasks perform better at differentiating Ataxia and DBN,
however, which may indicate that certain tasks are better at differentiating different diseases.
Given our limited dataset size, it is difficult to make definitive conclusions.

5. Discussion

In this work, we demonstrated that (1) it is possible to use very short eye tracking recordings
to accurately identify patients with abnormal eye movements due to a disease, and (2) with
longer recordings, it is possible to differentiate between up to 5 different disease states with
significantly higher accuracy than random chance. We identified paradigms important for
task design that produce more informative data for disease detection and differentiation.
Moreover, our end-to-end ML model provides a framework to leverage eye-movements at
different temporal resolutions to classify visuo-motor diseases.

Future work includes gathering additional data for ensuring model robustness across var-
ious confounders including age and gender. Additionally, we believe our approach can be
extended to characterize disease progression by utilizing the chunk and stimuli-level embed-
dings for unsupervised analysis. Our work is highly relevant to the medical community. Recent
advances in eye-tracking on smartphone cameras have been shown to approach clinical grade
eye tracker performance.23 A solution like ours that can identify disease using only short
recordings of eye movement data could be combined with the new eye-tracking approaches to
provide automatic detection for various diseases across a global population.
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