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Graph-based deep learning has shown great promise in cancer histopathology image analysis by 
contextualizing complex morphology and structure across whole slide images to make high quality 
downstream outcome predictions (ex: prognostication). These methods rely on informative 
representations (i.e., embeddings) of image patches comprising larger slides, which are used as node 
attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm 
offering a wealth of detailed information. Pairing this data with corresponding histological imaging 
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localized at 50-micron resolution, may facilitate the development of algorithms which better 
appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the 
utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining 
mechanism to generate deep learning models that can extract molecular and histological information 
for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, 
survival prediction, and tissue clustering analyses indicate that the proposed methods bring 
improvement to graph based deep learning models for histopathological slides compared to 
leveraging histological information from existing schemes, demonstrating the promise of mining 
spatial omics data to enhance deep learning for pathology workflows. 

Keywords: spatial omics, transcriptomics, deep learning, graphs, cancer, colon cancer. 

 
1.  Introduction 

1.1.  Deep Learning for Pathology 

In recent years, countless studies have demonstrated the potential for deep learning algorithms 
to solve challenging biomedical tasks, thereby improving risk stratification and alleviating the 
potential for clinical burnout by making tedious and unreliable tasks faster and more quantitative, 
potentially leading to improved patient health outcomes 1. These algorithms are formulated on 
computational heuristics – specifically, machine learning -- which can make sense of many complex 
data types through the dynamic derivation of relevant patterns and features 2–4. Analysis of 
pathology data, including whole slide imaging (WSI) – microscopic images of patient tissue – is an 
emerging application in this space, as WSIs are routinely collected and used for patient monitoring, 
diagnosis, and prognostication. Existing works have shown that specially designed deep learning 
algorithms, inspired by processes of the central nervous system, may be able to automate or assist 
in these tasks 5. Most deep neural networks study small micromorphological changes given the 
enormity of these gigapixel images. Graph convolutional networks (GCNs), however, are a 
promising method in this domain, as they can effectively model macro and micro architectural 
features present across WSI in a human-interpretable manner 6. Generally, these methods split WSI 
into patches (i.e., more manageable subimages), extract numeric representations (i.e., 
“embeddings”) from each patch using a predetermined algorithm, and construct a graph where the 
nodes are given patch embeddings and edges are formed based on spatial adjacency 7–9. Such 
methods have been applied for tumor stage prediction 9, survival analysis 8, and derive numerical 
representations of WSI that can be combined with other omics and imaging modalities 7. 

The optimal algorithm used to extract node features is an area of ongoing research, though many 
works presently use a ResNet convolutional neural network (CNN) pretrained on the ImageNet 
database 10 for this task 8,11,12. It has become increasingly common to additionally train these CNNs 
on various image tasks orthogonal to the task at hand to prepopulate an information registry of 
features which will ultimately improve predictive performance in other settings; these techniques 
are known as pretraining. Recently, self-supervised techniques have emerged as promising 
pretraining methodologies, where images are compared from several different vantage points 
without being explicitly labeled. Cross-modal pretraining has recently been highlighted as a 
common self-supervised method by leveraging complementary “paired” information across 
multiple input data types (e.g., images and text) which can improve the representation of all involved 
modalities. Here, we investigate the utility of using spatial omics data, which is paired at 50-micron 
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resolution to the histological information, to pretrain an encoder model for these patches, to 
demonstrate the power of leveraging spatial omics for deep learning-based pathology methods 
which are particularly suited for analysis using graph neural networks (GNNs).  

1.2.  Spatial Omics 

Omics data – such as gene expression quantification and DNA methylation – have traditionally been 
collected on a bulk scale where measurements are taken across an entire sample or tissue section. 
Recent advancements in technology have allowed for collection on a more granular scale, such as 
the single cell level, or across specific spots/regions in a slide sample 13. Prior studies have 
demonstrated that deep learning through specialized architectures like GCNs can mine spatial omics 
data to build a more comprehensive understanding of spatial cellular heterogeneity, especially as it 
pertains to how the tumor microenvironment can facilitate/inhibit further disease progression 14,15. 
Notably, this type of data is not yet commonly available at large scale due to the prohibitive cost of 
these assays as well as batch effects and selection of limited slide area, meaning that methods which 
can learn from spatial omics data and effectively transfer this knowledge to improve other tasks may 
be valuable. Zeng et al 15 previously developed a model which utilized contrastive learning to mine 
a shared representation between image patches and corresponding spatial transcriptomics; however, 
their investigation centered on driving improved understanding on gene domains, rather than 
attempting to leverage the method to enhance downstream clinical outcome modeling in situations 
where only WSI – and no ST data – is available. 

1.3.  Contributions 

We hypothesize that additional biological information can be learnt from spatially resolved 
transcriptomics data that may prove relevant for enhancing prediction models across a range of 
histological analyses. Existing works applying GCNs for WSI analysis have not yet leveraged 
spatial omics data to enhance modeling across orthogonal tasks. In part, this is because the quality 
of histological slides for spatially co-registered omics data has been limited as the standard Visium 
spatial transcriptomics (ST) workflow featured manual staining and low-resolution imaging– this 
information does not readily transfer to prediction models on higher resolution histological slides. 
Now, with the development of assays such as the CytAssist which permit the use of sophisticated 
laboratory processing (i.e., autostaining and 40X imaging prior to Visium profiling), the quality of 
slides has remarkably increased and allows for training image models that may more readily transfer 
to related domains. Here, we assess the ability of spatially resolved omics data to enhance 
predictions on a range of different histological assessment tasks by presenting an initial evaluation 
of a crossmodal pretraining mechanism using matched WSI and spatial omics measurements as 
means to encode biological information within WSI graphs to apply in scenarios where spatial omics 
data is not available. We compare this method against other common pretraining schemes on 
downstream predictive analyses (staging, lymph node metastasis, survival prognostication) of WSI, 
as well as explore generated image patch embeddings. Accurate methods for these downstream 
predictive tasks may enable more personalized patient treatments. In this study, we expect developed 
models which can mine for spatial molecular information to outperform the compared approaches 
on these tasks. We aim to demonstrate the potential benefits of utilizing spatial omics – spatial 
transcriptomics, in particular – methods to enhance deep learning-driven pathology analysis.  
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2.  Methods 

2.1.  Data Collection and Preprocessing 

Visium spatial transcriptomics data matched with WSI was collected from four colorectal cancer 
patients from the Dartmouth Hitchcock Medical Center, to serve as a training dataset for the 
crossmodal patch embedding method. This process was conducted through the 10x Genomics 
Visium spatial transcriptomics workflow, featuring H&E staining, followed by mRNA profiling and 
whole slide imaging. Spatial transcriptomics data were filtered to include the top 1000 most variable 
genes across slides identified by SpatialDE 16. Separately, 708 WSIs were collected from colorectal 
cancer patients from the Dartmouth Hitchcock Medical Center, for whom, histological stage 
annotations were available. Finally, WSIs were obtained for a cohort of 350 colorectal cancer 
patients from The Cancer Genome Atlas (TCGA) for whom survival information and lymph node 
metastasis information was available. All WSIs were stain normalized using the Macenko 17 method. 
Collected WSIs were split into non overlapping 224 x 224 patches via the PathflowAI Python 
package 18, whose embeddings served as node attributes in a graph. We compared several methods 
described below to encode information for these patches, which is the main focus of this study. 
Nodes were connected with edges based on spatial adjacency using the knn_graph (k-nearest 
neighbor) method from the torch_cluster Python package, with k=16. Patients from the in-house 
dataset and TCGA were separately partitioned into training, validation, and testing sets using a 
random 80/10/10 split. The collected datasets and the downstream tasks they were used on, are 
summarized below: 

1. Visium spatial transcriptomics slides (n=4; 20,000 spots/patches; Co-Registered 
Spatial Transcriptomics, H&E WSI): to pretrain contrastive crossmodal model 

2. Dartmouth Hitchcock Medical Center (n=708 H&E WSI): used for histological stage 
prediction and clustering analysis  

3. TCGA Cohort (n=350 H&E WSI): used for lymph node metastasis prediction, survival 
prognostication, and tumor infiltrating lymphocyte (TIL) alignment analysis 

All analyses were conducted on a machine using a single Nvidia Tesla v100 GPU with 32 
gigabytes of VRAM, and 100 gigabytes of RAM.  

2.2.  Patch Level Pretraining Methods 

Three embedding production methods were compared for the 224x224 patches used as nodes of the 
graphs representing WSI.  

2.2.1.  ImageNet-Pretrained ResNet18 

A ResNet18 CNN model pre trained on the ImageNet dataset (commonly used for embedding 
histopathology patches) was accessed using the torchvision Python package 
(https://github.com/pytorch/vision). The model was truncated through the penultimate layer, to 
extract length 512 vectors/embeddings for each input patch. 

2.2.2.  Ciga Self Supervised Histopathology Pretrained ResNet18 

A separate ResNet18 CNN model pretrained using a self-supervised learning (SSL) SimCLR 19 
contrastive procedure on histpathological imaging datasets was similarly accessed and truncated 
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through the penultimate layer to extract length 512 embeddings for all patches. In summary, 
SimCLR employs an objective function that encourages similarity between embeddings from 
augmented (i.e., “corrupted”) views of the same image, while penalizing based on dissimilarity 
between views from different images. This model was made publicly available by Ciga et al 20, and 
has been previously shown to outperform the aforementioned ImageNet-pretrained model on a 
variety of downstream modeling tasks. 

2.2.3.  Spatial Omics-driven Crossmodal Pretrained Encoder 

A contrastive cross-modal model encoding image patches and spatial transcriptomic profiles was 
created, similar to the model implemented by Zeng et al 21. Input images patches of size 224x224 
were encoded into embeddings of size 512 units, using the feature extraction portion of a CNN 
initialized with weights initialized from the ResNet model trained by Ciga et al. Spatial 
transcriptomics profiles containing expression of the most spatially variable 1000 genes across 
Visium slides, selected to avoid overfitting on genes with imprecise expression, were encoded with 
three standard fully connected (FC) layers of size 512. The embeddings from co-registered patches 
from each modality (ST, WSI) were passed through a common projection layer of size 512, to output 
a single embedding per modality (ie; one vector of length 512 which describes an image patch, and 
one of length 512 which describes the corresponding gene expression). Crossmodal and unimodal 
contrastive penalties are applied using the SimCLR loss function 19; during training, several 
augmentation strategies were applied to both the image patches and corresponding transcriptomic 
profiles to generate “corrupted” representations of each data type as means for comparison. 
Transcriptomic profiles were randomly masked and corrupted with noise with 30% probability. 
Images were augmented using a series of random flips, color jitter transforms, random grayscaling, 
random rotation, and random image solarization. Both the original and augmented image patches 
and transcriptomics profiles were encoded using the aforementioned neural network layers. The loss 
mechanism penalizes the model based on the difference between the embeddings from the original 
and augmented data from each modality. A crossmodal loss is used to maximize the similarity 
between the corrupted image and transcriptomic embeddings from the same patch. These three loss 
functions (augmented image to image, augmented transcriptomics to transcriptomics, augmented 
image to augmented transcriptomics) were summed to optimize the crossmodal contrastive model. 

This model was trained for 150 epochs with a batch size of 8 and a learning rate of 0.00001. 
Visium sections corresponding to six patients were partitioned into the training set, and tissue 
sections from two patients were partitioned to the validation set. Validation set loss was used to 
inform selection of the top model, following training. The RELU activation function was applied to 
outputs of every layer. The image encoder pretrained using the spatially co-registered 
transcriptomics information and the subsequent projection head were retained for subsequent 
analysis, and were used to embed image patches which GNN models were to operate on. The 
remaining layers of this pretrained model were not utilized. The usage of this image encoder derived 
using this training protocol for other ancillary tasks is the primary focus of this study, compared to 
the other image encoders (weights from ImageNet, Ciga et al.). This model is further described 
along with data collection procedure, in Figure 1. 
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Figure 1: A) Data collection protocol for Visium spatial transcriptomics slide. B) Training protocol for spatial omics-
driven crossmodal contrastive model; two views are generated per modality, per patch; each view is passed through 
the corresponding branch of the crossmodal model; embeddings are transformed using a shared projection head; 
unimodal and crossmodal contrastive losses are applied to output embeddings. 

2.3.  Downstream Outcome Prediction 

We sought to understand whether CNN encoders, pretrained on co-registered spatial transcriptomics 
data, could enhance the predictions on a range of different GCN tasks. A graph convolutional 
network was constructed to take an input graph of nodes represented by length 512 embeddings, 
followed by three GCNConv graph convolutional layers 22 to contextualize and aggregate 
embeddings into length 128, with SAGEPooling pooling 23 layers (ie: 30% of patches retained, for 
subsequent layers; SAGEPooling stochastically samples higher-order neighborhoods of patches) 
placed after each convolutional layer. These pooling layers learn to downsample graphs, to push the 
model to learn focused information relevant to the training task. Graph embeddings were aggregated 
using global mean pooling after each SAGEPooling layer. These embeddings were combined using 
the JumpingKnowledge mechanism, resulting in a single vector of length 128 to represent the entire 
input graph/WSI. Finally, two fully connected layers were applied to this embedding, followed by 
a single output layer. The model (Figure 2) was applied to the following prognostication-focused 
experiments/outputs to assess patch encoding mechanisms: 

2.3.1.  Histological Stage Prediction 

The in-house dataset was used to train and assess model capability to predict dichotomized tumor 
histological stage (T-stage; signifies depth of invasion) - low (stage 0, stage 1, stage 2) or high (stage 
3, stage 4). A sigmoid function was applied to the output of the final layer in the GCN, and model 
training was supervised using a binary crossentropy loss function. 
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2.3.2.  Survival Prognostication 

The TCGA dataset was used to train and evaluate GCNs to assess for time to death using hazard 
predictions, indicating the real-time risk of death. Model training was supervised using a standard 
Cox loss, which considers the predicted risk, patient censor status, and duration (either days to death 
or days to last follow up). This setup entails the proportional hazards assumption, that predictors 
have a constant hazard ratio (i.e., relative risk between two patient groups) over time.  

All GCN models were trained for up to 30 epochs, using a learning rate of 0.001 and batch size 
8. Top model checkpoints were selected for evaluation following training, based on validation set 
loss. GCN models were implemented using the Pytorch Geometric 24 Python package. Three 
separate GCN models were trained for each prediction task - one for each patch embedding 
mechanism. Stage prediction and lymph node metastasis models were evaluated on held-out test 
sets using F1-score and area under the curve (AUC), while C-index was used to evaluate 
prognostication models. These metrics are reported using 95% confidence interval derived from 
1000 sample non-parametric bootstrapping procedures. 
 

 
Figure 2: Overview of generalized GCN for downstream outcome modeling; initial patch embeddings vary across 
experimentation. A) Graph convolution layers contextualize each node embedding; after each such layer, SAGEPool 
operators aggregate nodes/patch embeddings, removing up to 70% of them, to only retain informative ones. B) A 
JumpingKnowledge scheme aggregates embeddings across graphs to create a single embedding for the image. C) The 
image embedding is used to make downstream predictions.  

2.4.  Embedding Clustering Quality Analysis 

The ability of patch embeddings to capture morphological and molecular heterogeneity across slides 
was assessed across embedding methods, using an unsupervised clustering approach and the in-
house dataset. For each WSI in the dataset, KMeans clustering (k=5; chosen via coarse optimization 
to ensure stability when run numerous times) was applied to the patch embeddings derived by each 
pretraining method (standard ResNet, Ciga et al, spatial pretrained) to elucidate sub-groups of 
patches implicitly captured by the representations. Clusters were plotted across slides to visually 
ensure that they represented different morphologies and structures within slides. Subsequently, the 
Calinski-Harabanz (CH) index 25 and the Davies-Bouldin (DB) index 26 were computed for the 
clustering result for each pretraining strategy. The ANOVA-based CH score assesses the density 
and separation of clusters, with a higher value indicating greater density within clusters and 
separation among different clusters.  Similarly, the DB index measures the ratio between within-
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cluster and cross-cluster separation. Thus, superior patch embeddings should result in a relatively 
high CH index and low DB index. The per-WSI scores were used to calculate average CH index 
and DB score at a 95% confidence interval, for each pretraining method. 

2.5.  TIL-based Model Interpretation 

Previous research has demonstrated the importance of tumor infiltrating lymphocytes (TILs) and 
the tumor microenvironment on the progression of colon cancer 27. We sought to demonstrate the 
interpretability of GCN models developed here using the TCGA dataset, by comparing regions of 
WSI given high attention with previously published predicted TIL maps 28 for corresponding slides. 
Patches deemed important by GCN models trained on lymph node metastasis prediction were 
determined by extracting patches remaining in WSI graphs following the final pooling layer; for a 
given patch, being left in its graph by a GCN model following three pooling layers, indicates its 
significance to the model. The coordinates of these patches were compared to those describing the 
locations of predicted TILs via Wald Wolfowitz testing 29, where the null hypothesis would indicate 
high overlap between these two sets of coordinates. Accordingly, Wald Wolfowitz testing was used 
to calculate a test statistic per slide per GCN model trained with each patch embedding method– 
negative values of this test statistics, W, represents the localization of TILs. Spearman’s rank 
correlation coefficients (alpha p-value = 0.05) were calculated to evaluate the relationship between 
the test statistic (W), and predicted hazard. A negative correlation coefficient would suggest a 
statistically significant association between predicted hazard and TIL spatial localization, following 
biological knowledge holding that TILs help inhibit colon cancer proliferation and migration 30. Test 
statistics were further dichotomized to indicate presence/lack of TIL localization, to compare these 
relationships across the GCN model using embeddings derived from the Ciga et al method, versus 
the model using spatially pretrained embeddings.  

3. Results†

3.1.  Quantitative Predictive Analysis 

Held out testing-set performance for GCNs trained to predict stage, lymph node metastasis, and 
survival prognosis, are presented in Table 1; models which used patch embeddings derived from 
the spatial omics-driven mechanism outperformed those using the compared methods for all three 
experiments.  

Table 1: Test set performance metrics (95% confidence interval) of GCNs trained using various patch embedding 
mechanisms, for binary stage prediction, lymph node metastasis prediction, and survival prognostication. 

Task Measure ImageNet ResNet Ciga et al ResNet Spatial Pretrained 
Stage Prediction AUC 0.935 ± 0.003 0.948 ± 0.002 0.981 ± 0.001 

F1-Score 0.863 ± 0.004 0.858 ± 0.004 0.878 ± 0.004 
Lymph Node 
Metastasis 

AUC 0.651 ± 0.004 0.612 ± 0.004 0.708 ± 0.003 
F1-Score 0.560 ± 0.002 0.630 ± 0.003 0.671 ± 0.005 

Survival 
Prognostication 

C-index 0.597 ± 0.003 0.582 ± 0.002 0.638 ± 0.002 

† Supplementary materials can be found at the following DOI: https://doi.org/10.5281/zenodo.8197573. 
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For the classification experiments, models using embeddings derived from the spatial omics-
driven mechanism outperformed those which used embeddings from the ImageNet-trained 
ResNet18 CNN by an average of 6.98% measured by AUC, and outperformed models using 
embeddings derived from the ResNet18 pretrained by Ciga et al, by average of 9.47%. GCNs 
using spatial omics-driven embeddings (C-index 0.638) also outperformed ImageNet-trained 
ResNet18 embeddings (C-index 0.597) and embeddings derived from the model trained by Ciga et 
al (C-index 0.582). 

3.2.  Clustering Evaluation 

A KMeans clustering approach paired with CH index and DB index calculation was employed to 
compare the abilities of these different pretraining approaches to elucidate molecular and 
morphological heterogeneity across slides; the results of this analysis are presented in Table 2. An 
example visualization including regions of a slide assigned to clusters indicating by different 
coloring, is presented in Figure 3; additional examples are available in Supplementary Figures S2 
and S3. 

Embeddings from the contrastive crossmodal spatial model resulted in a significantly higher CH 
index and lower DB index, versus both the ImageNet-pretrained ResNet and the ResNet trained on 
histopathology datasets via self-supervised learning by Ciga et al.  

 

 
Figure 3: Example visualization of clustering of embeddings derived using various methods, for a single WSI. 
 
Table 2: Clustering quality metrics calculated across embedding methods. 

Measure ImageNet ResNet Ciga et al ResNet Spatial Pretrained 
Calinski-Harabanz Index 643.76 ± 17.51 786.70 ± 20.40 2605.68 ± 70.66 
Davies-Bouldin Index 1.90 ± 0.01 1.719 ± 0.01 0.975 ± 0.01 
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3.3.  Model Interpretation 

Spearman’s correlation coefficient values testing the relationship between lymph node metastasis 
risk predicted by GCN models using various patch embedding mechanisms and TIL localization 
elucidated via Wald Wolfowitz testing, are presented in Table 3 along with corresponding p-values, 
suggesting both the Ciga and spatial pretrained models were able to derive TIL-associated 
embeddings related to instantaneous hazards. Boxplot visualizations comparison of predicted model 
risk and dichotomized TIL alignment are presented in Supplementary Figure S4. 
 
Table 3: Spearman’s correlation coefficient values for TIL localization versus predicted lymph node metastasis risk, 
across GCN models using various patch embedding methods. 

 ImageNet ResNet Ciga et al ResNet Spatial Pretrained 
Spearman’s Coefficient -0.061  -0.426 -0.218 
Spearman’s P-value 0.2693 2.2e-16 7.74e-5 

4.  Discussion and Conclusion 

This is the first study which aims to determine whether leveraging spatial omics data to pretrain 
image patch encoders using a cross modal contrastive mechanism can improve downstream 
performance in graph convolutional networks, which may improve automated cancer patient 
analysis. While most prior research leveraged a GCN to integrate spatially localized omics with 
imaging for spot-level spatial transcriptomics enhancement or histological feature extraction tied to 
bulk transcriptional characteristics, our approach discerns spatial transcriptomics features from 
standalone slides. Recognizing the inaccessibility of spatial transcriptomics data, we employed 
transfer learning to apply extracted spatial transcriptomics features to a diverse range of subsequent 
tasks. We compared spatial omics-driven embeddings against those extracted from a standard 
ResNet18 CNN pretrained on the ImageNet dataset, and a ResNet18 pretrained using self-
supervised learning on histopathology datasets. GCN models trained and evaluated using the 
spatially enhanced embeddings outperformed those using the baseline embedding methods on three 
downstream tasks – stage prediction, lymph node metastasis prediction, and prognostication. This 
suggests that incorporating spatial transcriptomics information into the pretraining process of image 
patch encoders, enhances the quality of learned representations, beyond what is extracted from state-
of-the-art techniques which use solely images for patch encoding pretraining. 

Additional quantitative analysis from clustering patch embeddings indicates that the models 
leveraging spatially-pretrained embeddings were superior at capturing distinct heterogeneities 
across slides, versus models using patch embeddings from existing strategies. Thus, we expect 
future applications of the developed spatial pretraining method for patch embeddings, to improve 
the performance of workflows aiming to capture tissue heterogeneity, including tumor 
subcompartment segmentation. 

Furthermore, Wald Wolfowitz testing paired with Spearman’s correlation coefficients, suggests 
that GCN models using embeddings from the spatial pretraining method and the Ciga et al method, 
learned to highlight TILs to contextualize prognostic assessment of cancerous tissue when 
considering lymph node metastatic potential, particularly in patients whom the models understood 
to be at lower risk. The Spearman’s coefficient value for the GCN model using ImageNet ResNet 
patch representations was markedly closer to 0 versus the other two methods, indicating far weaker 
correlation in this relationship. Interestingly, the magnitude of the coefficient for the GCN model 
using the Ciga et al embeddings was nearly double that of the spatially pretrained embeddings, 
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indicating that the Ciga et al method may induce greater tendency to turn to TILs for understanding 
patient profiles. Though this does not indicate greater predictive power among models, that such 
nuances can be extrapolated related to model reasoning, demonstrates the interpretability of graph-
based modeling for cancer histopathology, and further emphasizes the importance of enhancing the 
ability of such methods. 

Overall, our results indicate that spatial omics data can be effectively mined in a crossmodal 
fashion, to improve existing image-based deep learning workflows to analyze cancer 
histopathology; this also adds to the growing body of literature 31–33 which reflects the importance 
of enhancing pretraining mechanisms as a basis of improving deep learning models for cancer 
histopathology. Notably, ours is the first study to mine spatial omics data in the pretraining process 
to enhance the capability of such image-based models, while others have focused on mechanisms 
which use solely imaging. Several AI methods also exist to integrate spatial transcriptomics with 
histology through contrastive learning to improve the identification of spatial domains. This work 
differs from prior approaches as it aims to improve the extraction of imaging information on held-
out tissue slides from which Visium spatial transcriptomics assaying has not been done, training 
with paired imaging and spatial expression data to enhance this capability. 

A key limitation of this study is the relatively small dataset used to pretrain the spatially-
enhanced crossmodal contrastive model; spatial transcriptomics data was only generated for 4 total 
slides due to high resource and time costs and the limited size of the tissue placement area on Visium 
slides. Furthermore, coarse hyperparameter search was used to select GCN architecture parameters, 
as a detailed experiment here was beyond the scope of this study. It should be noted that optimization 
of the convolutional neural network and GCN parameters can be done end-to-end, i.e., 
simultaneously, which can improve predictive results– as will incorporating additional varied 
histologies and tumor characteristics, improved specimen processing/imaging using the CytAssist 
and commensurate hardware to fit larger models. Future works will seek to use larger cohorts to 
pretrain the spatial model to improve quality of extracted embeddings. Additionally, the embeddings 
from the spatially enhanced model can be evaluated for use in applications other than GCNs, such 
as Transformer networks – which have become popular in cancer histopathology in recent years 34,35 
– histology image search, and multimodal data integration.
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https://github.com/zarif101/histopath_spatial_omics_pretrain   
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