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Topological data analysis (TDA) combined with machine learning (ML) algorithms is a powerful 

approach for investigating complex brain interaction patterns in neurological disorders such as epilepsy. 

However, the use of ML algorithms and TDA for analysis of aberrant brain interactions requires 

substantial domain knowledge in computing as well as pure mathematics. To lower the threshold for 

clinical and computational neuroscience researchers to effectively use ML algorithms together with TDA 

to study neurological disorders, we introduce an integrated web platform called MaTiLDA. MaTiLDA 

is the first tool that enables users to intuitively use TDA methods together with ML models to 

characterize interaction patterns derived from neurophysiological signal data such as 

electroencephalogram (EEG) recorded during routine clinical practice. MaTiLDA features support for 

TDA methods, such as persistent homology, that enable classification of signal data using ML models 

to provide insights into complex brain interaction patterns in neurological disorders. We demonstrate the 

practical use of MaTiLDA by analyzing high-resolution intracranial EEG from refractory epilepsy 

patients to characterize the distinct phases of seizure propagation to different brain regions. The 

MaTiLDA platform is available at: https://bmhinformatics.case.edu/nicworkflow/MaTiLDA 
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1. Introduction

The increasing availability of multimodal brain activity recordings highlights an emergent demand for 

accurate and reliable analytical methods to characterize brain interaction dynamics to meet clinical 

research goals and to improve patient care1. The analysis of brain recordings provide insights into the 

dynamics of interaction patterns involving specialized brain regions that may be responsible for higher-

order brain functions2. Understanding disruptions in brain interaction patterns is crucial to 

characterizing neurological disorders, revealing pathophysiological mechanisms, and defining 

biomarkers for clinical diagnoses1–3. These research goals are particularly important in epilepsy, which 

is a complex neurological disorder affecting over 50 million individuals worldwide4. Epilepsy is 

characterized by recurrent seizures stemming from abnormal electrical discharges that spread 

throughout the brain4. Similar to other disease domains, there has been a rapid increase in the use of 

machine learning (ML) algorithms to study brain interaction dynamics in epilepsy patients5,6. ML 

algorithms such as support vector machines (SVM) have used features extracted from 

neurophysiological signal data, such as electroencephalogram (EEG), to lateralize seizure onset zone 

for subsequent surgical intervention 5,6.  

Graph-based models of networks are commonly applied to characterize interaction patterns in the brain; 

however, recent studies have used rigorous algebraic topology methods to analyze brain recordings to 

address several limitations of graph-based models5,7–10. Topological data analysis (TDA) is a 

quantitative framework that can be used to characterize higher-dimensional interaction patterns by 

using robust, scale-invariant methods, such as persistent homology11. Specifically, quantitative 

measures generated from persistent homology values, such as persistence landscapes, persistence 

images, and persistent entropy, have highlighted the promise of applying TDA methods to analyze EEG 

data with respect to seizure (ictal) activity5,7,9,10 and to distinguish seizure onset from preictal activity5,7. 

Moreover, TDA methods have been integrated with ML algorithms for several applications12, including 

characterizing brain interaction dynamics5. 

The development and use of an integrated ML and TDA tool to characterize brain interaction dynamics 

is a resource-intensive endeavor that demands expertise in domains such as mathematics, neurology, 

and computing. Therefore, there is a high entry barrier for the wider neuroscience community to use 

TDA methods and ML algorithms together for research studies13,14. To address this critical barrier, we 

introduce MaTiLDA as the first integrated web platform for TDA methods and ML algorithms to 

analyze neurophysiological recordings. We demonstrate the practical utility of MaTiLDA by 

characterizing brain interaction dynamics in refractory epilepsy patients using high resolution 

intracranial EEG (iEEG) recordings. 
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2 Background 

2.1 The Neuro-Integrative Connectivity platform 

Over the past decade we have developed an integrated neuroinformatics workflow tool called the 

Neuro-Integrative Connectivity (NIC) platform to automate the multi-step methods used to characterize 

brain interaction dynamics using signal data15–17. The NIC platform is a modular tool that supports 

addition of new modules in a flexible manner as support for new functionalities, including ML, are 

added. One module transforms neurophysiological signal recording stored in European Data Format 

(EDF) into a JSON- based human-readable format with semantic annotations using an epilepsy domain 

ontology that is more suitable for storage and analysis15. A second module computes signal coupling 

measures using both frequency and amplitude features of the signal data16. A third module computes a 

variety of graph model-based metrics17. A fourth module supports persistent homology functions using 

open source libraries such as GUDHI18. We refer to our previous work for additional details of the NIC 

tool15–17. MaTiLDA is an extension of the NIC tool to enable users to use TDA with ML algorithms for 

integrated analysis of signal data. 

2.2 Topological data analysis of EEG 

Brain functions are often characterized by interaction between 

multiple brain regions2; therefore, TDA is well-suited to 

characterizing these interaction patterns with high 

dimensionality, which cannot be easily represented using graph 

models14. Persistent homology is a TDA method that has been 

successfully used to identify brain states by analyzing multi-

dimensional interactions across brain regions5,7,9,14. Specifically, 

studies applying persistent homology to neurophysiological 

signal data have shown the promise of TDA in characterizing 

aberrant brain interaction dynamics in neurological 

disorders5,7,9,14. In this section, we briefly describe the terminology associated with TDA methods to 

facilitate understanding of the subsequent sections of the paper. 

Persistent homology is a TDA method used to quantify the presence of topological structures, called 

homology classes, across various thresholds, or filtration values14,19,20. A homology class is a boundary 

composed of simplices, defined as the convex hull of a set of p+1 vertices20. A simplex has dimension 

p, and is referred to as a p-simplex, if it has a cardinality of p+113. Persistent homology tracks the 

filtration at which each homology class is created (birth), the filtration at which it is terminated (death), 

and dimension of each homology class. These values can be visualized with a persistence diagram 

(Figure 1), a plot representing birth along the x axis and death along the y axis11,13,19. The lifespan, 

(death minus birth) of homology classes, as displayed in the persistence diagram, can be analyzed across 

various periods of neurophysiological signal recording to identify changes in topological structures and 

gain insights into the topology of brain networks11,13,14. We refer interested readers to Edelsbrunner and 

Harer11 for further descriptions of persistent homology. 

Figure 1: A persistence diagram from 

our analysis (section 2.6). A persistence 

diagram is a visualization of the results 

from persistent homology, where each 

point represents one homology class. 
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3. Methods 

The computation and analysis of topological features from neurophysiological signal data entails 

multiple stages of processing, which include extraction of signal data, computation of signal coupling 

measures, TDA of signal coupling, data cleaning, and comparative analysis of topological features 

(Figure 2). Scientific workflow systems like the NIC platform have been used to automate these multi-

step processes17. In this paper, we describe MaTiLDA as an extension of the NIC platform to implement 

integrated support for TDA and ML algorithms for brain interaction studies.  

Figure 2: Our framework for computing and comparing topological features from neurophysiological 

recordings. EEG from intracranial electrodes is used to extract signal data during epileptic seizures. Signal 

coupling is calculated using the nonlinear regression coefficient developed by Pijn et al.21. Persistent homology 

is applied to the signal coupling values using a Vietoris-Rips filtration as implemented in GUDHI18. MaTiLDA 

then allows users to select specialized data structures such as persistence landscapes or persistence images to 

use as input for user-selected machine learning classification such as SVM. 

3.1 MaTiLDA architecture and development 

The MaTiLDA platform was built using the Django web 

application framework, which uses the Python 

programming language and features several libraries and 

modules that support a variety of data processing and 

analysis tasks including libraries for ML and TDA. 

MaTiLDA adopts the Model View Template (MVT) 

approach, with user inputs managed by an object 

relational data component (Model), the user interface 

handled by the View component, and user interaction 

mediated by the Template component. 

3.2 A framework for classifying brain states 

MaTiLDA leverages modules from the NIC tool and 

maintains a modular analysis process (Figure 3). Before 

analysis with MaTiLDA, neurophysiological recordings 

such as those from EEG are processed with the NIC tool 

Figure 3: The MaTiLDA workflow leverages 

the NIC workflow to compute signal coupling. 

MaTiLDA applies persistent homology to the 

coupling values and allow users to select 

representations of the resulting persistent 

homology values for input into machine 

learning classifications of their choice. 
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to convert from EDF to CSF and to 

compute signal coupling measures 

that can be used as input into 

MaTiLDA for a desired ML 

classification task. Users are required 

to provide a set of folders each 

containing a set of coupling measure 

values (Figure 4).  Users can 

subsequently apply MaTiLDA’s 

persistent homology function, using a 

Vietoris-Rips filtration, to each input 

using the GUDHI18 library. The 

persistent homology values are 

transformed into a specialized data 

structure as requested; these data 

structures are used as input values for 

ML models selected by the user. A 

ML model is trained using an 80% 

data partition. Labels are predicted 

for the remaining 20% data partition 

as a test set. The test set accuracy 

score is reported alongside the 

precision, recall, and the area under 

the receiver operating characteristic 

(ROC) curve. Accuracy scores are 

calculated as the number of correctly 

identified predictions out of total 

predictions22. Precision is calculated 

as the number of true positive 

predictions divided by the number of 

positive predictions22,23. Recall, or 

true positive rate, is calculated as the 

number of true positive predictions 

divided by the number of positive 

samples22,23. The ROC curve is a plot 

of the true positive rate along the y-

axis against the false positive rate 

along the x-axis for varying vales of a 

threshold used to classify samples23. 

Figure 4: MaTiLDA supports various representations of persistent 

homology values in specialized data structures and ML algorithms 

with optional hyperparameter inputs. Users provide a folder 

including subfolders of outputs from the NIC correlator module, a list 

of all class labels (subfolder names), and a dimension for analysis. 

Users may select multiple data structures and multiple machine 

learning classification algorithms for their analysis using the 

checkboxes. For any selected representation or machine learning 

algorithm, a set of hyperparameters will appear in the left of the 

screen. The user may refine these parameters or use the preselected 

defaults. MaTiLDA will run each combination of representation-

algorithm pairs selected for analysis. In the example provided above, 

the results from 8 analyses will be given. 
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The area under the ROC curve (AUC) measures the average classification accuracy across all 

thresholds23. A separate ML model is run for each combination of selected data structures and ML 

algorithms. By default, all ML models are implemented using default model parameters from Scikit-

learn and GUDHI; however, users have the option to modify these parameters. 

Figure 5: Results for one seizure from a multiclass classification of ictal phases for patient one using homology 

class lifespans, persistent entropy, persistence landscapes, or persistence images as input to SVM, random forest, 

and logistic regression models. 

3.3 MaTiLDA user interface 

The MaTiLDA user interface (Figure 4) consists of an intuitive data entry module and a minimal results 

table (Figure 5). MaTiLDA requires users to specify a directory containing several subdirectories, each 

of which should contain signal coupling values derived from neurophysiological signal data. MaTiLDA 
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internally manages all data preprocessing, expecting signal coupling values to be in the format produced 

by the NIC tools. A list of labels must be specified by the user; these labels will be matched to the 

subdirectory names to select and label signal coupling data from the main directory provided. Users 

must select a dimension for analysis; they may limit analysis to homology classes of that dimension, or 

they may analyze homology classes of dimension 0 through that dimension. Users may select several 

specialized data structures as representations for persistent homology values as well as several ML 

algorithms from a set of available options and may refine parameters for each selection using simple 

radio buttons and numeric input fields. Results are generated for all representation-algorithm pairs 

selected. The results table displays the representation chosen, the ML algorithm used, the model’s 

accuracy in testing data, the true positive rate, the false negative rate, and the AUC.  

3.4 Topological feature representation for machine learning 

A key challenge for applying persistent 

homology lies in the difficulty of statistical 

interpretation of results13. Persistent 

homology values lack geometric properties 

that would allow for the definition of basic 

statistical concepts such as mean or median13. 

While persistence diagrams are an intuitive 

visualization method for representing the 

attributes of topological structures, the visual 

component of persistence diagrams makes it 

challenging to use statistical methods to 

quantitatively analyze them12,13,19.  

Additionally, persistence diagrams are not 

vectors in a Hilbert or Banach space and thus 

a unique mean cannot be established to define 

statistical measures12,13. Moreover, persistent 

homology values, and the persistence 

diagrams representing them, do not maintain 

a consistent number of homology classes, 

which creates a challenge for conducting 

balanced comparisons12. Consequently, a 

range of quantitative methods have been 

devised to facilitate the integration of persistence diagrams and persistent homology values into ML 

classifications. These methods for feature engineering can be used to represent persistent homology 

values as specialized data structures that can be used as input to ML models12,19. We provide the 

necessary background for the five quantitative methods for persistent homology value representation 

that have been implemented in the initial version of MaTiLDA: homology class lifespans, persistence 

Figure 6: MaTiLDA offers several options for representing 

persistent homology values as vectors in Euclidean space, 

including persistence landscapes, persistence silhouettes, 

persistence images, persistent entropy, and homology class 

lifespans. Homology class lifespans create a list of values 

from the lifespans of all homology classes in a persistence 

diagram. Persistence landscapes and silhouettes transform 

persistence diagrams and apply a tent function before 

sampling uniformly across the transformed axis to create a 

list of values. Persistence images convert a persistence 

diagram into a two-dimensional image where each pixel 

represents a rectangular area of the diagram, and the 

intensity of the image represents the frequency of occurrence 

of homology classes. Persistent entropy is the Shannon 

entropy of a persistence diagram. 
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landscapes, persistence silhouettes, persistence images, and persistent entropy (Figure 6). In this work, 

we show how MaTiLDA can be used to intuitively conduct analyses by using these quantitative 

methods to represent persistent homology values derived from coupling measures computed from 

neurophysiological recordings and using the resulting features as input into ML algorithms. 

3.4.1 Homology class lifespan 

We calculate the lifespan for each homology class resulting from persistent homology and store the 

values in a list. Lifespan lists are ordered based on the lifespan values such that the first value in the 

lifespan list is the longest lifespan within that list. The lifespan list has a length equivalent to the sum 

of the Betti numbers (the number of homology classes) from all dimensions included in analysis. We 

create the input features for ML algorithms using tensor data structures that are padded with zero values 

to account for varying length of the tensors corresponding to different homology class lifespan values. 

Our methods are similar to the work described in the study by Bendich et al.24; however, unlike Bendich 

et al., we do not limit the number of lifespan values included in a list. 

3.4.2 Persistence landscapes & silhouettes 

The persistence landscape is a sequence of piecewise-linear functions, 𝜆1, 𝜆2, … :ℝ→ℝ, that map 

persistent homology values to a vector space, where 𝜆𝑘 refers to the kth persistence landscape function25. 

The persistence landscape can be calculated using Eq 1, where t denotes the filtration value, kmax 

denotes the kth largest element in the set of persistent homology values, I, and each homology class in 

I has a birth bi and a death di
25. 

 𝜆(𝑘, 𝑡) = 𝑘𝑚𝑎𝑥{max(0,min(𝑏𝑖𝑟𝑡ℎ𝑖 + 𝑡, 𝑑𝑒𝑎𝑡ℎ𝑖 − 𝑡)}𝑖∊𝐼 (1) 

The persistence landscape is plotted with the filtration along the x axis and the persistence landscape 

value 𝜆(𝑘, 𝑡) along the y axis (Figure 6). A vector is created by uniformly sampling points along the 

x-axis and calculating the maximum of the persistence landscape functions at that point19. A 

persistence silhouette is a variation of the persistence landscape in which a vector is created by taking 

the weighted average of the functions, rather than the maximum19,26. The advantages of persistence 

landscapes and silhouettes are that they are invertible, parameter-free, nonlinear, and have desirable 

properties for statistical modeling including a unique mean19,25. 

3.4.3 Persistence images 

To create a persistence image, a Gaussian function is applied to each homology class resulting from 

persistent homology27. The weighted sum of Gaussian functions are discretized to define a grid, and a 

matrix of pixel values is created by taking the integral of this grid on each grid box27. Consequently, 

each pixel value in the persistence image represents a rectangular area of the persistence diagram, and 

the intensity of the image represents the frequency of occurrence of homology classes19,27. Persistence 

images require a distribution, a resolution, and a weighting function to calculate19. The advantages of 
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persistence images are that they are stable, interpretable, and computationally efficient representations 

in ℝn19,27.  

3.4.4 Persistent entropy 

Persistent entropy is a single value representing the Shannon entropy of a probability distribution 

obtained from persistent homology28. The persistent entropy of a set of persistent homology values can 

be calculated using Eq (2), where li is the lifespan of a topological structure28.  

 ∑−
𝑙𝑖

∑−𝑙𝑖
log(

𝑙𝑖

∑−𝑙𝑖
) (2) 

3.5 Machine Learning of Topological Features 

In the MaTiLDA pipeline (Figure 4), persistent homology is applied to signal coupling values derived 

from neurophysiological signal recordings. Based on user specification (section 2.3), feature 

engineering is applied to the resulting persistent homology values to create specialized data structures 

(section 3.4) to be used as input features for ML models. Five common algorithms for ML classification 

were selected to be implemented in the initial version of MaTiLDA: support vector machines, random 

forest, gradient boosted trees, K-nearest neighbor, and logistic regression. In this section, we provide a 

brief introduction to each of these algorithms. 

3.5.1 Support vector machine 

Support vector machine (SVM) is a supervised learning algorithm that aims to find the best-separating 

function, called a kernel, to classify data into different categories22. While kernels do not naturally 

distinguish between more than two classes, SVM can be extended to multi-class classification problems 

using approaches such as the one-vs-one and one-versus-rest approaches22. For MaTiLDA, multi-class 

classifications using SVM are handled using the one-versus-rest approach. In the one-versus-rest 

approach, for a classification of K classes, SVM will fit K kernels where each kernel will compare one 

of the K classes to the remaining K-1 classes22.  

3.5.2 Random forest and gradient boosted trees 

Random forest (RF) is a form of decision tree bagging (generating several training sets by sampling 

from the original training set with replacement) that focuses on making the ensemble of decision trees 

more diverse29. As in bagging, an ensemble of trees is built based on bootstrapped training samples22. 

However, rather than varying the training sets, a random sampling of attributes is selected at each split 

point in the tree; of this sample, the attribute with the highest information gain is selected as the split29. 

A majority vote from the tree-specific predictions is used to classify each example29.  

Gradient boosted trees (GBT), like random forest, is a powerful learning algorithm that can learn 

complex, non-linear relationships29. GBT is a boosting algorithm using gradient descent29. While 
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bagging builds trees on bootstrapped data independently of other trees, boosting uses a modified version 

of the original dataset to sequentially grow trees such that each tree is grown using information from 

previously grown trees22. 

3.5.3 K-nearest neighbor 

K-nearest neighbor (KNN) is a non-parametric, supervised learning classifier that facilitates 

classification for observations by leveraging their proximity to the K nearest datapoints, or neighbors, 

in the training data22,29. The classification decision is made through a majority voting scheme among 

the K nearest neighbors29. KNN has a high computational cost due to performing distance calculations 

for each observation29. 

3.5.4 Logistic regression 

Logistic regression (LR) models the probability that an observation belongs to a particular class22. By 

employing a logistic function, a linear combination of predictors is mapped to the range [0, 1], allowing 

LR to estimate the probability of class membership using maximum likelihood estimation22. 

3.6 Validation of MaTiLDA 

Epilepsy is the second most common neurological disorder4 and presents a unique opportunity for the 

application of TDA to study aberrant brain interaction dynamics. Epilepsy is characterized by recurrent 

seizures stemming from abnormal electrical discharges that spread throughout the brain and disrupt 

normal functioning4,30. Most significant changes to brain interactions during seizures occur during the 

spread of aberrant activity to new brain regions (referred to as ictal phases such as ictal 1 phase, ictal 2 

phase, etc.) and the termination of a seizure30. One approach to understanding these changes in brain 

interaction dynamics is the classification of these ictal phases. To validate the use of the MaTiLDA 

interface for characterizing aberrant brain interaction dynamics using TDA and ML, we apply the 

MaTiLDA pipeline to analyze neurophysiological signal data from a cohort of four refractory epilepsy 

patients undergoing pre-surgical evaluation in the epilepsy monitoring unit (EMU) at University 

Hospitals Cleveland Medical Center’s level 4 epilepsy facility that regularly performs epilepsy surgery. 

All patients were between the ages of 25 and 50 and had refractory epilepsy; 75% of the patients were 

women. Table 1 shows the characteristics of these patients. Using MaTiLDA, we applied TDA and ML 

to analyze iEEG recordings from two seizures from each of these patients to classify ictal phases 

including seizure onset and propagation to different brain regions. 

3.6.1 Study Data  

We selected iEEG recordings from two seizures each from four refractory epilepsy patients undergoing 

pre-surgical evaluation. Intracranial electrodes are implanted based on a presurgical protocol described 

in work by Wu et al.31. Retrospective visual analyses of EEG recordings were conducted using a Nihon-

Kohden Neurofax system (Nihon Kohden America, Foothill Ranch, CA, U.S.A.) with AC amplifiers, 
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a high sampling rate of 2,000 Hz, and an acquisition rate spanning 0.016-300 Hz31,32. The EEG was 

filtered at 600 Hz with a 0.03s time constant and sensitivity ranging from 30-100 μV based on optimal 

seizure visibility for each implant31,32. A 60 Hz notch filter was applied to all EEG recordings31. 

Clinicians defined seizure onset as the earliest distinctive occurrence of rhythmic sinusoidal activity or 

repetitive spikes; the region of activity was noted as the seizure onset zone31. Ictal phases were defined 

as the subsequent spread of seizure activity to new brain regions. EEG sequences were broken down 

into one second epochs and features were computed for each epoch. 

3.6.2 Study Design 

All seizure data was preprocessed using the 

NIC tools. For each seizure, we used 

MaTiLDA to apply persistent homology to 

signal coupling values from one-second 

epochs of iEEG data and to create data 

structures representing the resulting persistent 

homology values that were used as input into 

ML models to classify epochs as belonging to 

an ictal phase. Of the eight seizures selected, 

four seizures were analyzed in binary 

classification tasks to classify seizure onset 

from ictal 1 phase, and the remaining four seizures were analyzed in multiclass classification tasks to 

Table 1: Characteristics of two seizures from four randomly selected refractory epilepsy patients. 

Patient 
Age 

Range 
Sex

 

Epileptogenic 

Zone 
Medication 

Seizure 

Duration 

(s) 

Active Electrodes 
Ictal 

Phases

 

Seizure Semiology 

1 25-30 F 
Left 

Hemisphere 

Trileptal, 

Keppra 

48 
IM1, IM8-9, SM1-3, IL6-8, ML1-8, SP2-5, IP1-

3, MP1-3, HH1-10 
2 

Aura → mouth and hand 

automatisms → mild 

combativeness & amnesia 

43 
IM1, IM8-9, SM1-3, IL6-8, ML1-8, SP2-5, IP1-

3, MP1-3, HH1-10 
2 Aura 

2 45-50 M Bitemporal 

Lamotrigine, 

Phenytoin, 

Valproic Acid 

90 TP1-8, AM1-8, HB1-2, RA1-2 RH1-8, HH1-8 2 Aura → postictal aphasia 

120 TP1-8, AM1-4, HB1-2 2 Aura → postictal aphasia 

3 20-25 F 

Left 

Mesial 

Temporal 

Trileptal, 

Vimpat 

120 
HH1-3, HB1-3, AM1-3, MI1-12, PI1-12, IA1-

12, IM1-12, SA1-12, MA1-12 
4 Abdominal aura. 

120 
HH1-3, HB1-3, AM1-3, MI1-12, PI1-12, IA1-

12, IM1-12, SA1-12, MA1-12 
4 Abdominal & gustatory aura 

4 30-35 F 

Right 

Mesial 

Temporal 

Keppra, 

Lacosamide 

60 
HH2-3, EM8-9, HH1-12, HB1-12, TT1-12, 

OF1-12 
4 

After stimulating AM3 with 

50Hz, 4.6mA, 3s, patient felt 

"oozy" 

60 
AM1-2, EM9-10, HH1-12, HB1-12, TT1-12, 

OF1-12 
4 

After stimulating AM4 with 5Hz, 

7mA, 3 seconds, patient felt 

funny 

         

 

Table 2: The sample size of each class is equal to the duration 

of the associated ictal phase. 

Patient Seizure 

Duration of Ictal Phase 

Onset Ictal 1 Ictal 2 Ictal 3 

1 
1 15 33 - - 

2 15 28 - - 

2 
1 10 80 - - 

2 5 115 - - 

3 
1 10 15 5 90 

2 10 15 5 90 

4 
1 10 15 5 30 

2 10 15 5 30 
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classify ictal phases (seizure onset, ictal 1 phase, ictal 2 phase, ictal 3 phase, and ictal 4 phase). Each 

seizure was analyzed separately. The number of one-second epochs in each ictal phase of each seizure, 

equivalent to the sample sizes of each class label in each seizure-specific analysis, is provided in Table 

2. Default parameters were used for all representations of persistent homology values and for all ML 

algorithms in the analysis of each of the eight seizures to show the baseline capabilities of MaTiLDA.  

4. Results 

To validate the use of the MaTiLDA interface, 

we aimed to classify ictal phases within a 

seizure for eight seizures from four refractory 

epilepsy patients, as described in section 2.6. 

For brevity, we present only the results from the 

analysis of persistent homology values in 

dimension 0. 

Binary classifications were used to compare 

seizure onset and ictal 1 phase for the four 

seizures from patient one and patient two, as 

these seizures were limited to these two ictal 

phases. Due to space constraints, we review 

only the results for RF, SVM, and LR models 

using either the lifespan or persistence 

landscape methods. ROC curves can be seen for 

each of these models for all four seizures in 

Figure 7. Model performance varied across all 

seizures, and no ML algorithm or representation 

of persistent homology values outperformed 

others to consistently distinguish seizure onset 

and ictal 1 phase (Figure 8). This may be due to 

imbalanced class sizes (Table 2). For example, 

the 20% test partition of patient two’s second 

seizure contained only one epoch from seizure 

onset, and only four epochs from seizure onset 

were included in the 80% training partition. For 

all combinations of ML algorithms and 

representations of persistent homology values, 

this one epoch was misclassified as belonging 

to ictal 1 phase, resulting in precision and recall 

values of 0 and an AUC of 0.50 but an accuracy 

Figure 7: ROC curves for each seizure from the binary 

classifications for seizures from patients one and two using 

lifespans or persistence landscapes in SVM, RF, or LR. 

Figure 8: MaTiLDA’s model performance for RF, 

SVM, and LR using lifespans or persistence landscapes 

for the four seizures from patients one and two. 
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of 0.96. Increasing the number of samples from seizure onset may improve the ML models (as seen for 

patient two’s first seizure). MaTiLDA’s implementation of data augmentation, however, is still under 

development. 

Multiclass classifications were used to classify seizure phases for each of the remaining four seizures 

from patients three and four which included multiple ictal phases (seizure onset, ictal 1 phase, ictal 2 

phase, ictal 3 phase, and ictal 4 phase). Due to space constraints, we limit our results to the RF models 

using the lifespans and persistence landscapes (Figure 9). No algorithm or representation of persistent 

homology values consistently outperformed others to classify ictal phases, and there was high variation 

in model performance within and across seizures (Figure 9).  

Figure 9: MaTiLDA’s One-vs-Rest AUC values for RF classification of ictal phases using lifespans or persistent 

landscapes for each of the four seizures from patients three and four show high variation in model performance 

within and across seizures. 

5. Discussion & Conclusion 

The results of this evaluation demonstrate that MaTiLDA is an effective tool for analyzing complex 

topological features, enabling the detection of changes in brain interactions during seizures. We have 

developed a novel pipeline that can classify brain states, such as the ictal phases of several seizures in 

this study, using various common TDA methods and ML algorithms. The MaTiLDA platform provides 

a robust, accessible, and reliable framework for applying TDA and ML algorithms to datasets from 

neurophysiological recordings to characterize brain interaction dynamics in neurological disorders. 

MaTiLDA enables the wider neuroscience research community, who have limited experience in both 

TDA and ML algorithm implementation to use ML and TDA algorithms to analyze the increasingly 

large volumes of brain activity recordings and characterize brain interaction dynamics. We believe that 

the MaTiLDA tool can be used in future research to investigate complex brain interaction patterns in 

neurological disorders such as epilepsy, and allow clinicians and researchers to characterize 

neurological disorders, understand pathophysiological mechanisms, and identify biomarkers for clinical 

diagnoses. 
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