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Alzheimer’s disease (AD), the predominant form of dementia, is influenced by several risk factors, 
including type 2 diabetes (T2D), a metabolic disorder characterized by the dysregulation of blood 
sugar levels. Despite mouse and human studies reporting this connection between T2D and AD, the 
mechanism by which T2D contributes to AD pathobiology is not well understood. A challenge in 
understanding mechanistic links between these conditions is that evidence between mouse and 
human experimental models must be synthesized, but translating between these systems is difficult 
due to evolutionary distance, physiological differences, and human heterogeneity. To address this, 
we employed a computational framework called translatable components regression (TransComp-R) 
to overcome discrepancies between pre-clinical and clinical studies using omics data. Here, we 
developed a novel extension of TransComp-R for multi-disease modeling to analyze transcriptomic 
data from brain samples of mouse models of AD, T2D, and simultaneous occurrence of both disease 
(ADxT2D) and postmortem human brain data to identify enriched pathways predictive of human AD 
status. Our TransComp-R model identified inflammatory and estrogen signaling pathways encoded 
by mouse principal components derived from models of T2D and ADxT2D, but not AD alone, 
predicted with human AD outcomes. The same mouse PCs predictive of human AD outcomes were 
able to capture sex-dependent differences in human AD biology, including significant effects unique 
to female patients, despite the TransComp-R being derived from data from only male mice. We 
demonstrated that our approach identifies biological pathways of interest at the intersection of the 
complex etiologies of AD and T2D which may guide future studies into pathogenesis and therapeutic 
development for patients with T2D-associated AD. 

Keywords: Alzheimer’s disease, type 2 diabetes, preclinical translation, cross-species modeling, 
systems biology  

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory 
loss, confusion, and behavioral changes. With more than 6.9 million people living with AD in the 
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United States1, $360 billion dollars in health and long-term care costs is expected to be spent in 
2024, and projected to rise to $1 trillion by 20501. As the prevalence of AD is expected to increase 
with the country’s aging population, developing effective therapeutics proven to treat or cure AD 
becomes urgent. Despite the rapid increase of AD cases, studies to develop therapeutics for AD is 
difficult2,3. This difficulty is in part due to the development of AD occurring decades before 
diagnosis4 and the multi-factorial nature of the disease5–8. 

In efforts to identify risk factors for AD it was observed that individuals with type 2 diabetes 
(T2D), a metabolic condition distinguished by chronic hyperglycemia, have an elevated risk in 
developing AD9,10. The development of T2D occurs decades before the diagnosis of AD and is 
reported to increase the risk of dementia11. In the United States, more than 39 million people have 
T2D, and 116 million have pre-diabetes12. This population of people diagnosed with or at risk for 
developing T2D may face a heightened risk for developing AD in light of the comorbidity of the 
diseases13,14. In clinical studies, common features of both AD and T2D include chronic 
inflammation15,16, increased insulin resistance17, and alterations to mitochondria and energy 
metabolism18,19. Despite multiple studies supporting a link between T2D and AD risk, the biological 
mechanisms by which this occurs are not well understood. 

A critical challenge in understanding the mechanistic links between these conditions is that 
evidence must be synthesized and translated between experiments in mouse models and human-
based clinical studies. Translating information from pre-clinical models to human clinical contexts 
is difficult due to discrepancies in interspecies physiology20, timeline of disease development21, and 
heterogeneity of the human population22. In cases of precision medicine, where complex 
dependencies between clinical phenotypes are difficult to deconvolute, such as is the case with AD 
and T2D, there is an important role for computational approaches to resolve this heterogeneity into 
testable mechanistic hypotheses to guide therapeutic development23–25. 

To overcome this challenge, we developed a computational framework termed translatable 
components regression (TransComp-R) to identify omics-based signatures in mouse models 
predictive of AD conditions in human26–28. The TransComp-R model works by projecting human 
omics data into a mouse principal component analysis (PCA) space, followed by linear regression 
of mouse principal components (PCs) against human disease outcomes to identify translatable 
mouse PCs. The gene signatures encoded within mouse PCs that best separate conditions between 
human AD and control outcomes can be interpreted using biological pathway analyses such as gene 
set enrichment analysis (GSEA). These informed pathways can then be validated through literature 
and experimental studies. 

 Here, we aimed to perform a cross-species analysis using publicly available mouse and human 
transcriptomic data to determine biological pathways by which T2D contributes to AD. We 
developed a novel extension of TransComp-R that integrated PCs from multiple murine disease 
models: AD, T2D, and co-occurrence of both diseases (ADxT2D) in a single computational model 
to compare the predictive power of different murine models of disease and identify mouse-specific 
features predictive of human AD status. We also modified the existing TransComp-R method by 
incorporating human demographic variables such as sex and age variables into our model to inform 
the selection of translatable mouse PCs and better position the insights from the cross-species model 
to specific human patient subsets, an important goal of precision medicine. Our method synthesizes 
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mouse models with multiple disease etiologies with human information to prioritize biological 
pathways affected in disease and prospectively evaluate therapeutic avenues from pre-clinical to 
clinical contexts with high-throughput omics data.  

2.  Results 

2.1.  Selected mouse and human transcriptomic data were pre-processed for TransComp-R 

Publicly available mouse (GSE152539)29 and human (GSE48350)30,31 datasets of microarrayed 
brain tissue samples were selected from Gene Expression Omnibus (GEO). The mouse dataset 
uniquely included conditions of solely AD, only T2D, and simultaneous occurrence of both diseases 
from the hippocampus. The mouse models consisted of six-month-old male AppNL-F/NL-F knock-ins 
responsible for heightened amyloid-beta in the brain (Swedish KM670/671NL, Iberian I716F) and 
wild type (C57BL/6J) mice were fed with either a high-fat diet (custom diet, 40% kcal from fat, and 
0.15% from cholesterol) or regular diet (CA-1, 18.8% kcal from fat) for 12 months (n = 3 per 
condition) for the respective disease groups. The human dataset contains demographic variables of 
sex and age along with the transcriptomic data of AD (n = 80) and control (n = 173) subjects from 
four brain regions: hippocampus, entorhinal cortex, superior frontal cortex, and post-central gyrus. 

To prepare the data for the TransComp-R framework, both mouse and human transcriptomics 
datasets were matched for one-to-one homologs. From homolog matching, 13,428 genes were 
identified, and all other genes that did not have a matching homolog pair were excluded from the 
analysis. The human data was next filtered for the hippocampal region to account for brain-region 
variability. Any subjects below the age of 65 were removed from the study to reduce age bias (Table 
1). Both datasets were individually log2 transformed and normalized by z-score per gene. 
 

  Table 1.  Summary of the processed human data across disease condition, age, and sex. 

 
 

2.2.  TransComp-R modeling separates human samples in mouse principal component space 

Here, we applied the TransComp-R methodology, with the incorporation of LASSO to select PCs 
most predictive of AD outcomes26. The TransComp-R model begins with the projection of human 
data into the mouse PCA space (Figure 1A), followed by the evaluation of mouse PC translatability 
through LASSO and generalized linear model (GLM) regression. The significant mouse PCs that 
can distinguish between human AD and control are interpreted by GSEA of the gene loading 
coefficients on each PC (Figure 1B). The biological pathways identified from GSEA can provide 
insight on human biology translated by mouse PCs, which can then be validated through follow-up 
experiments and literature review.  

Condition Age (years) Sex (%) Total Sample 
Size (n) (Mean ± SD) Female Male 

Control 82.7 ± 9.5 11 (46%) 13 (54%) 24 
Alzheimer’s Disease 84.3 ± 6.6 9 (50%) 9 (50%) 18 
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Figure 1. The TransComp-R computational approach. (A) Homolog gene pairs between human and mouse datasets 
are selected for analysis. Human samples are projected into mouse PCA spaces to combine mouse and human 
information. (B) Principal component translatability from mouse to human is determined by performing a GLM 
regression against human AD outcomes with PCs selected from LASSO. The loadings from the significant PCs are 
analyzed via GSEA to identify enriched biological pathways. 
 

Implementing this approach, mouse data were separated into AD, T2D, and ADxT2D with 
controls prior to constructing separate PCA models, such that three groups of PCs encoded 
transcriptomic variation between healthy controls and AD, T2D, or ADxT2D mice. To avoid 
overfitting the mouse data, a threshold of 80% cumulative variance explained was set for each PCA, 
and as a result, a total of five PCs per disease group were selected (Supplementary Figure S1). 
Next, the human data was projected on the mouse PCA space.  

We then trained four separate LASSO models to identify PCs most predictive of binarized 
human disease outcomes. Using the combined dataset containing rows of human and columns of 
T2D PCs, we incorporated progressively included human demographic variables associated with 
the respective human subjects in LASSO such that we examined: models of only mouse PCs, PCs 
with human sex, PCs with human age, and PCs with both human sex and age main effects. This 
approach allows us to include human demographic variables in a cross-species translation model, 
prioritizing not just mouse PCs, but also how mouse PCs capture the heterogeneity of human sex 
and age when predicting AD outcomes. The PCs were next selected based on 100 rounds of 5-fold 
cross-validation, where PCs with a significant LASSO coefficient in greater than half of the models 
were carried forward to the GLM. 

From the LASSO models, we found T2D PC2 and ADxT2D PC3 to be consistently selected 
across all four LASSO models, while T2D PC3 was selected from all models except for the model 
with only mouse PC main effects (Figure 2A). Additionally, AD PC5 and T2D PC5 were selected 
from the LASSO model with only mouse PCs as main effect variables, but not in other LASSO 
models that included human demographic variables. The PCs identified by the LASSO model, 
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which were encoded with transcriptomic variance, were next evaluated for their respective ability 
to discern between human AD and control status through GLM.  

 
Figure 2. TransComp-R identifies translatable PCs predictive for AD outcomes in human. (A) Selection of PCs 
using LASSO across 100 rounds of 5-fold cross-validation. The four LASSO models included terms with just mouse 
PCs, PCs and human sex, PCs and human age, and PCs and human age and sex. PCs with a coefficient frequency greater 
than 50 rounds of 100 were selected for the GLM and regressed against binarized human disease outcomes (significance 
defined by simple regression model p value). (B) A principal component plot of human scores on the selected mouse 
T2D PC2, T2D PC3, and ADxT2D PC3 separating human control and AD outcomes (C) Mouse PCs were separated by 
disease cohort, comparing the variance explained in mice to the variance in humans explained by mouse respective 
mouse PCs. 
 

To evaluate the predictability of the selected mouse PCs for human AD , we constructed GLMs 
with all selected PCs predicting AD status in humans, but these multi-PC models were not 
significantly predictive due to multi-collinearity (Supplementary Figure S2). As a result, we 
constructed GLMs for each individual PC regressed against human disease outcomes. We found the 
three mouse PCs consistently selected from LASSO to be predictive of human AD outcomes 
individually (T2D PC2 p = 0.0047, T2D PC3 p = 0.0042, and ADxT2D PC3 p = 0.0130) (Figure 
2A). We also note that although AD PC5 and T2D PC5 satisfied the non-zero frequency greater 
than 50 in the LASSO model with only mouse PCs, the regression against human outcomes was not 
significant, and was excluded from further analysis (AD PC5 p = 0.275, T2D PC5 p = 0.443). 
Consistent LASSO selection of T2D PC2, T2D PC3, and ADxT2D PC3 as significant PCs indicates 
the importance of including human clinical and demographic variables in the TransComp-R model 
to detect translatable cross-species biology while controlling for clinical covariates. 

We visualized the two T2D mouse PCs and one ADxT2D mouse PC that were identified by 
TransComp-R as predictive of human AD status (Figure 2B). In all three PCs, there was visible 
separation between the control and AD groups. We next compared the translatability of the selected 
mouse PCs to their ability to explain the variance in human data (Figure 2C). Comparing the 
proportion of PC variance explained in mouse to the variance explained in human by the same 
mouse PC, we found that T2D PC3 and ADxT2D PC3 explained a similar ratio, whereas mouse 
T2D PC2 explained almost double the variance in human by mouse than the mouse PCs alone. This 
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could imply that certain pathways represented by mouse T2D PC3 and ADxT2D PC3 were 
conserved consistently across mice and humans, whereas mouse T2D PC2 may had a more 
pronounced effect in capturing information cross-species. 

2.3.  Mouse principal components selected genes contribute to human disease separation 

Having identified three mouse PCs predictive of human AD versus control status from TransComp-
R, we were interested in isolating genes that were contributing to the separation between human AD 
and control subjects. Filtering for human genes ranked with the top and bottom 25 loadings within 
their respective PCs, we identified genes in the model predictive of AD and control in humans 
(Figure 3A-C). While no genes were shared across the top and bottom 25 ranked on the three mouse 
PCs, we observed distinct patterns of gene expression among human AD and control groups.  

 
Figure 3. The top and bottom 25 genes of translatable PCs. Z-scored AD human transcriptomic data were filtered 
by genes with the 25 largest and smallest scores on (A) T2D PC2, (B) T2D PC3, and (C) ADxT2D PC3. Human samples 
were sorted by their respective PC scores with the most negative (left) to the most positive (right). 

2.4.  Gene set enrichment analysis identifies inflammatory and estrogen signaling pathways 
enriched in human Alzheimer’s disease outcome 

We performed GSEA on the selected T2D and ADxT2D PCs and identified pathways associated 
with inflammatory and estrogen signaling. From the KEGG database, we identified “Complement 
and Coagulation Cascades” and “Cytokine-Cytokine Receptor Interaction” on T2D PC2 (Figure 
4A). On T2D PC3, the “Phosphatidylinositol Signaling System” was the only pathway found to be 
enriched for AD (Figure 4B). There were no significant KEGG pathways on T2D PC3. On the 
Hallmark database, we identified “Interferon Gamma Response,” “Interferon Alpha Response,” 
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“IL6 JAK STAT Signaling,” and “Inflammatory Response” to be enriched for AD conditions by 
T2D PC2 (Figure 4C). Interestingly in the Hallmark database, we identified “Estrogen Response 
Early” was enriched for the control group in T2D PC2 (Figure 4C), while “Estrogen Response 
Late” was enriched for AD in T2D PC3 and ADxT2D PC3 (Figure 4D-E). 

 
Figure 4. Enriched biological pathways identified from GSEA. Significant KEGG pathways from (A) T2D PC2 and 
(B) ADxT2D PC3. No significant pathways were enriched in T2D PC3. Significant Hallmark pathways were identified 
for (C) T2D PC2, (D) T2D PC3, and (E) ADxT2D PC3. Enriched pathways were defined by a Benjamini-Hochberg 
adjusted p value < 0.25. Pathways enriched for AD are displayed with a negative normalized enrichment score.  
 

Based on our findings with the estrogen pathways, we were interested in distinguishing the genes 
that contributed to “Estrogen Response Early” and “Estrogen Response Late.” From GSEA, we 
identified 76, 77, and 49 core enrichment genes contributing to the estrogen-associated pathways in 
mouse T2D PC2, T2D PC3, and ADxT2D PC3, respectively. Comparing the genes that were 
contributing to the estrogen response, we found 23 shared genes between T2D PC3 and ADxT2D 
PC3 (PDZK1, LLGL2, KLK11, TOP2A, PTGES, FARP1, NAB2, CISH, MEST, KIF20A, LTF, 
ISG20, IMPA2, DUSP2, PLAC1, PRKAR2B, TNNC1, OPN3, AREG, ATP2B4, AGR2, CALCR, and 
RABEP1), 2 genes between T2D PC2 and ADxT2D PC3 (DHCR7 and MAPT), 10 genes between 
T2D PC2 and T2D PC3 (TPBG, FKBP4, GLA, NXT1, CD44, PGR, RAB31, AFF1, TFAP2C, and 
TJP3), and 5 genes shared across all three mouse PCs (SULT2B1, OVOL2, SIAH2, FDFT1, and 
RBBP8) (Supplementary Figure S3). Additionally, 19 genes enriched in ADxT2D PC3, 39 genes 
enriched in T2D PC3, and 59 genes enriched in T2D PC2 did not overlap with any other mouse PCs.  

2.5.  Male mouse-derived principal components significantly stratify female Alzheimer’s 
disease and control groups in human subjects 

Expanding upon the potential sex-based predictability, we were curious to see if the model was able 
to distinguish sex and disease status by the PC scores. Here, we separated the scores of each mouse 
PC by human sex and AD status and found that mouse T2D PC2, T2D PC3, and ADxT2D PC3 
significantly stratified human female AD and control groups, and not male AD and control groups, 
despite the mouse data originating from all male mice (Figure 5A-C). The ability of these PCs to 
distinguish between female AD and control groups shows the model’s ability in identifying human 
sex-based differences in the context of disease development. This is supported by the significance 
of the separation between the two groups (p value < 0.05). 
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Figure 5. Comparison of sex and disease status among the translatable PCs. Scores of each PC were separated by 
female (F) AD, female control, male (M) AD, and male control for (A) T2D PC2, (B) T2D PC3, and (C) ADxT2D PC3. 
A Mann-Whitney pair-wise test corrected by the Benjamini-Hochberg method (FDR q value < 0.05) was used to 
determine the significance among the groups. The mean of the distribution is labeled with the interquartile range.  

3.  Discussion 

In this work, we aimed to uncover potential biological mechanisms that connected T2D as a risk 
factor for AD development using mouse and human transcriptomic data. An obstacle in 
understanding the links between these diseases, in which multifactorial mechanisms interact in 
humans and biological mechanisms are isolated in animal studies, is that information from mouse 
models and human-based studies must be synthesized to inform clinical and therapeutic decisions. 
Currently, translating information from pre-clinical models to patient-specific contexts is often 
difficult due to discrepancies in interspecies physiology20, timeline of disease development21, and 
heterogeneity of the human population22. To overcome these challenges, we innovated on 
TransComp-R to identify potential biological pathways from mouse PCs that are predictable for AD 
outcomes. In the TransComp-R workflow, we fused multiple mouse disease models in a single 
computational model together with human data containing demographic sex and age variables to 
predict outcomes in AD. With our computational model, we pinpointed potential biological 
pathways associated with AD, and identified sex-specific differences, despite the mouse disease 
models being representative of only males.  

We identified inflammatory pathways that may link T2D as a risk factor for AD development. 
These links have the potential translational utility in bridging mouse and human biology to 
understand and develop therapeutic strategies for AD with T2D exacerbating factors. The mouse 
T2D PC2 identified several pathways on both KEGG and hallmark databases. From KEGG, 
“Complement and Coagulation Cascades” and “Cytokine-Cytokine Receptor Interaction” were 
enriched for AD. From the literature, studies report complement activation to be associated with 
insulin resistance and T2D32–34. Likewise, high complement levels are contributed by neurons and 
glial cells in AD35,36. In both T2D and AD, cytokines are found to actively participate in the 
progression of disease37,38.  

Using complementary pathway databases, we identified “Interferon Gamma Response,” 
“Interferon Alpha Response,” “IL6 JAK STAT Signaling,” and “Inflammatory Response” pathways 
on mouse T2D PC2 enriched in human AD. Interferon gamma39 and alpha40, key cytokines in the 
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innate immune response and response to viral infections, are altered in AD. However, we notice that 
interferon gamma41 is more associated with T2D, whereas interferon alpha42,43 is found to be 
elevated in subjects with type 1 diabetes instead44. IL6 JAK-STAT signaling has been reported to 
impair the insulin-degrading enzyme, a protein found to be associated with obesity and T2D45. In 
AD, IL6 signaling has been linked with cognitive impairment and metabolic alterations46. 
Collectively, these results may indicate that chronic inflammation could lead to downstream insulin 
resistance and cognitive deficits47.  

Our results also indicate that estrogen signaling may serve as a potential connection between 
T2D and AD. From GSEA, ranked genes in ADxT2D PC3 and T2D PC3 both identified “Estrogen 
Response Late” as pathways enriched for AD, whereas “Estrogen Response Early” was enriched for 
human control by T2D PC2. Among the three PCs, 49 genes were enriched for ADxT2D PC3, 77 
genes were enriched for T2D PC2, and 76 genes were enriched for T2D PC2. Of these, 59 were 
enriched in T2D PC2, and 23 were shared between ADxT2D PC3 and T2D PC3, in which we 
compared with previously published literature to potential associations with AD and T2D. 
Associated with AD in the mouse T2D PC2, we identified MED13L48 and XBP149 connected to 
cognitive deficits, changes in mitochondrial metabolism (PMAIP1)50, inflammation (RASGRP1)51, 
and the expression of NRIP152 reduced in AD. Similarly, we identified genes associated with insulin 
resistance (FASN and FKBP5)53,54, genetic variances of RAPGEF155 and increased expression of 
AQP356 related to T2D development. Interpreting genes shared across ADxT2D PC3 and T2D PC3, 
both PCs, we found MEST57 reported to alter Wnt signaling in AD, and KIF20A58, a gene found to 
be differentially expressed in AD. Likewise in T2D, we found CISH59 to be involved with 
gluconeogenesis, whereas beta-cells were preserved with upregulated AGR260. 

There were five genes shared across the three mouse PCs identifying estrogen signaling as a 
potential biological pathway, which included SULT2B1, OVOL2, SIAH2, FDFT1, and RBBP8. Of 
the five genes, all but RBBP8 were reported to have connections to AD or T2D in literature. 
SULT2B1, part of the sulfotransferase family that catalyzes the sulfate conjunction of hormones and 
neurotransmitters, was found to be upregulated in AD rat models61. In a T2D study, SULT2B1 
overexpressed in the liver inhibited hepatic gluconeogenesis in two separate diabetic mouse models: 
one induced by high-fat diet, and another via leptin-deficiency (ob/ob)62. Other genes related to T2D 
include OVOL2 and SIAH2. The presence of OVOL2 was found to be linked with beta cell 
dedifferentiation, a mechanism linked with pancreatic dysfunction63, and SIAH2 deficiency 
improved glucose and insulin tolerance64. Related to AD, inhibition of squalene synthase (FDFT1) 
inhibited by squalestatin reduced cellular prion protein in ScN2a, SMB, and ScGT1 (prion-infected 
cell lines)65, and protection against amyloid beta-induced synapse damage66. Further examination 
of these genes may be of potential interest to connect biological pathways between T2D and AD. 

Interestingly in both diseases, previous studies report that estrogen may play a protective role in 
AD67 and T2D68. In AD, estrogen provides protection from amyloid-beta toxicity, a hallmark of AD 
pathology69,70. In females that experienced menopause, hormone therapy with estrogen has been 
found to reduce the risk of T2D onset68. Although studies indicate estrogen to be protective, others 
report that estrogen may be deleterious depending on the timing and onset of T2D71,72. These 
differences could be a result of the varying roles that different genes may have: some genes may 
contribute to disease when upregulated, while others may serve a protective role that can lead to 
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disease if downregulated. This variability in genes could further explain the possible observation of 
estrogen appearing to have both harmful and protective effects. Therefore, further investigations are 
encouraged to further understand the role of estrogen as a shared pathway between AD and T2D. 

Finally, we found that the mouse PCs defined by T2D (PC2 and PC3) and ADxT2D (PC3) were 
able to distinguish between female AD and control subjects. Despite the mouse groups being entirely 
male, our model detected sex-based differences in females. This is interesting because females are 
at a higher risk of developing AD than males73. Observing this result, as well as PCs showing 
enrichment for estrogen, may suggest that despite the widespread lack of female animals in 
preclinical research, our model is able to detect biological signals in male mice predictive of female 
human disease biology, thereby enhancing the retrospective utility of prior animal studies that fell 
short of equitable design. In the specific case of our models, the pathways we identified on the male 
mouse PC’s predictive of human female AD pathology implicate our model’s ability to translate 
transcriptomic signatures across human sex demographics. 

There are limitations and opportunities to expand this study. Few research groups have explored 
the T2D-AD axis, and as a result, there are limited sample sizes available for mouse and human 
omics data. The incorporation of additional studies that satisfy the criteria of our selection process 
into the model may improve the confidence of these results. Second, our TransComp-R model only 
considers homologous gene pairs shared across mice and humans. As a result, we potentially omit 
genes in pre-processing that may be involved in the development of AD. Additionally, the GLM in 
our model only regresses against control or AD status without the incorporation of transient phases 
such as mild cognitive impairment. Finally, the TransComp-R framework has the opportunity to 
consider other clinical variables that may predict disease outcomes. Some additional factors include 
information on race, clinical neuropathological scores for AD severity, and current T2D biomarkers. 
Considering these potential factors may further enhance future cross-species modeling. 

Our work expanded upon the existing TransComp-R framework to identify potential biological 
pathways in which T2D may exacerbate AD development. We show that mouse PCs from T2D and 
ADxT2D were most predictive of AD outcomes in human. Interestingly, mouse PC’s derived from 
mice with AD alone were not predictive of human AD, which may indicate that metabolic 
dysfunction encoded on the mouse T2D and T2DxAD PCs plays a more significant role in human 
AD biology than is typically accounted for. Indeed, these results encourage future applications of 
TransComp-R to overcome barriers of pre-clinical to human studies and identify affected biological 
pathways in AD or different diseases. The implications of this work for precision medicine can be 
expanded to other disease models that may be difficult to synthesize between pre-clinical 
experiments and clinical studies. This platform could synthesize various omics data from pre-
clinical and patient-specific data to rationally select potential pathways to target, which may further 
enhance clinical studies or possible therapeutic avenues.  

4.  Materials and Methods  

4.1.  Data selection 

Mouse and human datasets were selected with the criteria of matching hippocampal brain region, 
information containing AD and T2D conditions in the mouse dataset, human sample size greater 
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than 12 per condition, and at least sex and age information in the human dataset. Additionally, 
datasets derived from similar sequencing platforms were prioritized. Search terms on GEO included 
phrases such as “hippocampus Alzheimer’s disease in human,” “mouse Alzheimer’s disease 
hippocampus,” and “mouse diabetes hippocampus.” Additional searches included the term “gene 
expression” on the GEO repository.  

4.2.  Pre-processing and normalization 

Publicly available transcriptomic human and mouse data were obtained from the GEO repository 
using Bioconductor tools in R (GEOquery 2.70.0, limma 3.58.1, and Biobase 2.62.0)74–76. Before 
processing, all human subjects with a reported age below 65 years old were removed from the 
analysis to prevent bias from younger age groups. The imported datasets were log2 transformed, 
then human and mouse gene lists were matched for homologous pairs (orthogene 1.8.0)77. The two 
datasets were filtered for the hippocampal brain region. The genes were then internally normalized 
by z-score prior to TransComp-R modeling.  

4.3.  Cross-species modeling and variable selection 

We applied TransComp-R by conducting PCA on the mouse data separated in AD, T2D, and 
ADxT2D groups with controls, such that three groups of PCs encoded transcriptomic variation 
between healthy controls and AD, T2D, or ADxT2D mice. To avoid overfitting, the number of PCs 
in its respective group was limited to an 80% cumulative variance explained. Human AD and control 
subjects were projected into mouse PCA space. Mouse PCs associated with AD outcomes in human 
were selected by performing LASSO across 100 rounds of 5-fold cross-validation regressing the 
human positions in mouse PC space against human disease status. Four sets of LASSO models were 
trained, including main effects of mouse PCs, PCs and human sex, PCs and human age, and PCs 
and human age and sex. PCs with a coefficient frequency greater than 50 of the 100 rounds were 
selected for GLMs with individual PCCs and human clinical covariates regressed against human 
AD outcomes. The significance of the PC was determined if the model p value was less than 0.05. 

4.4.  Variance explained in human by mouse principal components 

Human data containing subject information and gene lists, as well as mouse PCs with a matching 
gene list, was used to calculate the variance explained by mouse in human. Using mouse PCs in the 
columns of Q, we projected the human data matrix X onto the PCs via matrix multiplication and 
calculated the percent variance of mouse in X explained by a given column qi of Q (with T 
representing the matrix transpose) as: 

VarExpHuman(qi) = qi
T!XTX" qi

∑ diag$QTXTXQ%
                                                     (1) 

4.5.  Identifying genes contributing to human separation by mouse principal components 

Genes contributing to the most positive and negative scores were identified by selecting loaded 
genes with the top 25 and bottom 25 scores in each of the selected PCs. The selected genes were 
then used to filter the gene list of the human dataset containing z-scored gene expression data. A 
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heatmap, with the human subjects, clustered by their scores from the TransComp-R model, and the 
50 total genes were visualized to compare gene expression between AD and control. 

4.6.  Gene set enrichment analysis 

GSEA was performed on the loadings of selected PCs from the GLM in R (msigdbr 7.5.1, fgsea 
1.28.0, and clusterProfiler 4.10.1)78–80. From the Molecular Signatures Database, two human 
collections to perform GSEA included the KEGG and Hallmark databases. The parameters for the 
minimum gene set size and the maximum gene set size were set to 5 and 500, respectively. The 
tuning constant, epsilon, was established at 0. For both KEGG and Hallmarks databases, enriched 
biological pathways were determined significant if the Benjamini-Hochberg adjusted p value was 
less than 0.25.  

4.7.  Sex-based comparison across principal component scores 

As an approach to compare predictability across sex, scores of selected PCs were separated by sex 
and disease categories. A Mann-Whitney pair-wise test was used to determine significance among 
four groups (AD females, control females, AD males, and control males). To correct for multiple 
comparisons, p values were adjusted with the Benjamini-Hochberg factor. An adjusted p value less 
than 0.05 was considered significant for the analysis.  
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