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Given the rapidly expanding capabilities of generative AI models for radiology, there is a
need for robust metrics that can accurately measure the quality of AI-generated radiology
reports across diverse hospitals. We develop ReXamine-Global, a LLM-powered, multi-site
framework that tests metrics across different writing styles and patient populations, expos-
ing gaps in their generalization. First, our method tests whether a metric is undesirably
sensitive to reporting style, providing different scores depending on whether AI-generated
reports are stylistically similar to ground-truth reports or not. Second, our method mea-
sures whether a metric reliably agrees with experts, or whether metric and expert scores
of AI-generated report quality diverge for some sites. Using 240 reports from 6 hospitals
around the world, we apply ReXamine-Global to 7 established report evaluation metrics
and uncover serious gaps in their generalizability. Developers can apply ReXamine-Global
when designing new report evaluation metrics, ensuring their robustness across sites. Addi-
tionally, our analysis of existing metrics can guide users of those metrics towards evaluation
procedures that work reliably at their sites of interest.

Keywords: radiology report generation; metrics; evaluation; generalization

1. Introduction

The capabilities of AI are rapidly expanding in the field of radiology, with recent generative AI models
comprehensively interpreting all aspects of radiology images and describing them in sophisticated
text reports [1, 2, 3, 4]. To compare models and efficiently track progress in this space, developers
rely heavily on automatic metrics that can efficiently score AI-generated radiology reports, measuring
the accuracy of their content. These metrics measure the similarity between AI-generated candidate
reports and ground-truth, radiologist-written reports; a candidate is assumed to be high-quality when
metrics show it is similar to the corresponding ground-truth report. However, there are concerns that
scores from commonly used metrics may not accurately evaluate the content of AI-generated reports,
thus providing a misleading impression of model performance [5]. Furthermore, automatic metrics
have historically been used to evaluate models trained on and tested against reports from a handful of
single-institution datasets [6, 7], and it is unclear whether they generalize well across diverse reports
from external sites.

In our work, we developed ReXamine-Global, a method for testing potential metrics across differ-
ent writing styles and patient populations and exposing gaps in their generalizability. Using ground-
truth reports from diverse hospitals, our method tests whether metrics are prone to two possible
failure modes. First, we test whether metrics are undesirably sensitive to reporting style. Specifically,
we explore whether they provide different scores depending on whether AI-generated reports are
stylistically similar to ground-truth reports (e.g. during internal validation, when the model is tested
against a familiar distribution) or not (as might occur during external validation, when model is
tested against an unfamiliar distribution). Second, we check whether metric scores correlate with
expert scores, with the expectation that an ideal metric would rank candidate reports exactly as
an expert would. Using reports from 6 hospitals in different countries, we applied ReXamine-Global
to test the generalizability of 7 established metrics for evaluating AI-generated radiology reports,
revealing flaws in existing metrics.

Our work makes two primary contributions:

(1) We introduced ReXamine-Global, a new method for testing how report evaluation metrics gener-
alize across diverse writing styles and patient populations. When creating new report evaluation
metrics, developers can apply our method to determine whether metrics are overly sensitive to
report-writing style or otherwise prone to poor generalization.

(2) By applying ReXamine-Global to 7 existing metrics, we uncovered gaps in the generalizability
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Fig. 1. ReXamine-Global tests how metrics generalize when used across distributions, with the goal
of uncovering two failure modes. First, we test whether automatic metrics are undesirably sensitive
to clinically irrelevant differences in report style, providing different scores depending on whether
candidates are stylistically similar to the ground truths. Next, we test whether metrics disagree with
expert scores, providing unreliable judgments at some sites. A successful metric would avoid both
failure modes.

of many popular metrics, with a GPT-4-based metric outperforming all other approaches. These
insights can help users of existing metrics design more reliable evaluation procedures for their
sites of interest.

2. Methods

The ReXamine-Global Framework

We proposed a LLM-powered framework for testing how a report evaluation metric performs across
different writing styles and patient populations:

(1) Multi-site data collection: Gather a diverse dataset of ground-truth reports from multiple
hospitals, representing a range of patient populations and writing styles.

(2) Standardization of ground-truth texts: Use a large language model (LLM) to rewrite the
original ground-truth reports in a standardized style, while preserving the original content.

(3) Generation of error-containing ‘candidate’ texts: Use a LLM to insert errors into stan-
dardized ground-truth reports. This step produces ‘candidate’ reports, representing outputs from
an imperfect radiology report generation model.

(4) Application of metric: Use the metric to compare two pairs of reports: 1.) each candidate
vs. its original ground-truth report (a stylistically different pair) and 2.) each candidate vs. its
standardized ground-truth report (a stylistically similar pair).

(5) Expert evaluation: Engage clinical experts to manually evaluate the candidate reports, com-
paring them against ground-truth reports and counting the number of errors.

(6) Assessment of metric consistency across styles: Test whether, for any site, the metric pro-
duces significantly different scores for “candidate-original” pairs and “candidate-standardized”
pairs. Ideally, a metric would always give a candidate the same score, regardless of whether it is
being compared against the original or standardized ground-truth report.
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Country Example Reports

Australia ECMO catheter via inferior vena cava, tip in
mid right atrium. Nasogastric tube in stomach.
Left internal jugular central line tip in left bra-
chiocephalic SVC junction. ETT 1 cm above ca-
rina. Left lower lobe collapse/consolidation. No
pneumothorax or pleural effusion.

ETT and pacemaker position. ETT tip 4 cm
from carina. Increased density in left hemitho-
rax consistent with pleural fluid collection. No
consolidation seen.

Germany Rightly inserted endotracheal tube. Gastric
tube subphrenically blanked out. Right tran-
sjugular CVC and sheath with tip projection
to superior vena cava. New delineable sternal
cerclages. Delineable clip material after mitral
valve replacement. Progressive ateal confluent
shading in left lung inferior field, mixed picture
of pleural effusion and decreased ventilation. In-
creasing inferior ventilation in right lung sub-
field. Minor congestion signs. No pneumotho-
rax.

Heart and mediastinum widened in supine posi-
tion. Patchy shadowing bipulmonary, likely due
to congestion, concomitant atypical infiltrates
cannot be excluded by projection radiography.
Clinical correlation required. No major pleural
effusion. No pneumothorax delineable in supine
position. Properly inserted endotracheal tube.
Transjugular CVC on right side with tip projec-
tion to superior vena cava. Gastric tube ending
in projection onto left upper abdomen.

Lebanon Mild pulmonary edema. Cardiomegaly with car-
diothoracic index of 0.57. No large pleural ef-
fusion or detectable pneumothorax. Single lead
pacemaker with intact lead terminating in right
ventricle topography. Chest wall intact.

Increase in left basal pleural effusion with over-
lying haziness likely related to basal atelectasis.
Right basal atelectatic bands. Right lung other-
wise clear. No detectable right pleural effusion.
Cardiac silhouette is in size.

Saudi Arabia Enlarged cardiac/pericardiac silhouette. Promi-
nent central pulmonary vasculatures and bron-
chovascular markings suggest pulmonary con-
gestion. Bilateral lower lung more of linear opac-
ities may reflect atelectatic changes although in-
fectious process not entirely excluded.

Left upper lobe atelectatic band otherwise un-
remarkable study.

Taiwan Elevated right hemidiaphragm, tracheal devi-
ated to Rt side. Right lung volume reduction is
considered. Consolidation over right upper lung
field, tumor growth cannot be r/o. R/o bullae
over right lung apex

Consolidation over right hemithorax, cause
to be determined. Lung consolidation change
and/or pleural effusion cannot be r/o. Trachea
slightly deviated to Rt side.

United States IMPRESSION: Lines, tubes, etc: None. Car-
diomediastinal silhouette: Within normal lim-
its. Mediastinum midline. Lungs: Questionable
subtle patchy right lower lung zone opacity
which could represent an infectious process in
the appropriate clinical setting, although lim-
ited due to overlying breast tissue summation.
Pleura: Bilateral costophrenic angles sharp. No
pneumothorax. Mild biapical pleural thicken-
ing/scarring. Bones/soft tissues: Unremarkable.

IMPRESSION:
Intact median sternotomy wires. Scattered sur-
gical clips projecting over heart. Cardiac sil-
houette top normal in size. Trachea and me-
diastinum midline. Mild tortuosity of descend-
ing thoracic aorta. Greater than expected den-
sity of midline lower mediastinum, could reflect
hiatal hernia, other lower mediastinal pathol-
ogy not entirely excluded. No significant edema.
No airspace consolidation. Mild asymmetric el-
evation of right hemidiaphragm. No appreciable
pleural effusion or pneumothorax, though lung
apex clipped from field-of-view. No aggressive
osseous lesion.

Table 1. Our dataset represents hospitals in 6 different countries, with reports that vary widely in
content, terminology and organization. For example, the reports from Germany were automatically
translated to English, resulting in atypical wording choices (e.g. “delineable”, “ateal”). Reports

from Taiwan heavily featured abbreviations (e.g. “Rt” for “right”), while reports from the United
States were longer than average, frequently containing several subsections. Variations such as these

can pose a challenge for automatic metrics.

(7) Assessment of metric agreement with expert scores: Test whether, for any site, the
metric’s scores fail to agree with expert scores. Ideally, metrics and experts will agree about
which reports are the highest- and lowest-quality at every site, regardless of ground-truth style.

Using this framework, we assessed 7 existing automatic metrics for report evaluation.

Dataset

To apply ReXamine-Global, we sampled reports from a private dataset containing chest X-ray reports
from around the world, with a focus on emergency departments and intensive care units. We selected

Pacific Symposium on Biocomputing 2025

188



reports that were either originally written in or translated into English. We included data from 6
hospitals in 6 different countries: United States, Saudi Arabia, Taiwan, Australia, Germany, and
Lebanon. We randomly sampled 40 reports from each hospital, resulting in a total dataset of 240
reports. We refer to these reports as “original ground-truth reports.”

These radiology reports represent different patient populations as well as different writing styles,
with marked differences in terminology, syntax and organization. For example, the reports from
Germany were automatically translated to English, leaving artifacts that can prove challenging for
automatic metrics. We give examples of these diverse reports in Table 1, which shows two examples
from each site.

2.1. Generation of Candidate Radiology Reports Using GPT-4

After choosing 240 cases, we created 240 candidate reports, representing AI generations requiring
evaluation. Our aim was to simulate outputs from an advanced but still flawed report generation
model trained on MIMIC-CXR, a dataset widely used in the field [8]. We used GPT-4 to produce
a candidate report based on each radiologist-written ground-truth report, using a two-step process
described further in Appendix A:

(1) Standardizing Style: Initially, GPT-4 was tasked with rewriting the ‘Findings’ and ‘Impres-
sion’ sections of an original ground-truth report, using an example from MIMIC-CXR as a style
guide. This step produced reports that preserved the original content but were written in a
standardized, MIMIC-based style. A clinical expert checked 10 randomly sampled reports to
ensure that this step did not meaningfully change report content. We refer to these reports as
“standardized ground-truth reports.”

(2) Introducing Errors: In the subsequent step, GPT-4 was instructed to deliberately introduce
a few errors into the paraphrased report, thereby producing the final candidate report. We
suggested several possible types of errors, such as the addition of a new finding, omission of an
existing finding, or modification of the size or severity of a finding (Figure 2).

Fig. 2. Using GPT-4, we first standardized the style of the ground-truth reports and then introduced
errors to create AI candidates. For details on our prompts, please see Appendix A.

2.2. Automatic Metrics

We examined seven existing automatic metrics used to judge the quality of AI-generated radiology
reports. We included two general-purpose metrics that are not specialized for medical text: BLEU-
2, which counts overlapping substrings in the ground-truth text and AI-generated text [9], and
BERTScore, which computes the similarity of embeddings produced by passing each text through
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a general-purpose BERT model [10] . Additionally, we considered clinical metrics such as CheXbert
vector similarity, which compares the similarity of embeddings produced by passing each text through
a specialized medical BERT model [11], and RadGraph-F1, which uses a specialized medical model
to extract a graph of medical entities and relations from each text and measures the similarity of
the graphs [12]. Additionally, we studied two versions of the RadCliQ metric, recently proposed
specifically for evaluating AI-generated reports [5]. RadCliQ-v0 and RadCliQ-v1 both use a machine
learning model to take in values from other metrics, such as BERTScore and CheXbert vector
similarity, and then produce a composite score based on these input values. Finally, we considered
FineRadScore, a recently proposed method that uses LLMs to perform a line-by-line comparison of
ground-truth and candidate reports [13]. In our implementation of FineRadScore, we used GPT-4 to
identify lines requiring corrections and treated the total number of problematic lines as the final score,
which we refer to FineRadScore-GPT-4. We use implementations of these metrics from previously
established repositories [14, 15].

2.3. Expert Evaluation

To obtain gold-standard measurements of candidate report quality, we conducted a manual evalua-
tion engaging both an internal medicine attending physician and a radiology resident. The evaluation
protocol was based on a scoring system adapted from the American College of Radiology [16] and
from prior research studies [5], designed to assess the clinical significance of discrepancies in report
interpretations. Errors were classified into seven independent categories: False prediction of finding;
Omission of finding; Incorrect location of finding; Incorrect position of finding; Incorrect severity of
finding. Mention of comparison that is not present in the reference impression; Omission of compari-
son describing a change from a previous study. We counted the total number of errors found in each
report to produce our final expert score, so lower-quality candidates receive higher scores. For this
study, each reviewer was assigned 120 unique reports, with an additional 10 reports each to assess
inter-rater agreement.

2.4. Experiments

We used our 7 automatic metrics and expert evaluation to compare two types of report pairs: (1)
the original ground-truth report vs. the AI candidate report, and (2) the standardized ground-truth
report vs. the AI candidate. We assessed how automatic metrics performed on these comparisons
using two approaches. First, we tested whether AI candidates received different scores when compared
against the standardized ground-truth report rather than the original ground-truth report; we assume
an ideal metric would be robust against clinically irrelevant stylistic variations and therefore give
the same scores in both experiments. Second, we tested whether metric scores agreed with expert
scores, as an ideal metric would provide the same ranking of a site’s reports as experts do. These
two approaches allowed us to compare how metrics behave when assessing reports with different
styles (original ground truth vs. AI candidate) and reports with similar styles (standardized ground
truth vs. AI candidate), as the standardized ground truth and AI candidate reports share a common
GPT-4-generated style.

To facilitate interpretation of our results, we standardized the directionality of all automatic
and human evaluation metrics, so that a higher score consistently indicates worse performance from
the report generation model. Originally, higher scores for BLEU-2, BERTScore, CheXbert vector
similarity, and RadGraph-F1 indicated better performance, while lower scores for RadCliQ and
FineRadScore-GPT-4 indicated better performance. To align all metrics so a higher score indicates
worse performance, we multiplied the scores of BLEU-2, BERTScore, CheXbert vector similarity,
and RadGraph-F1 by -1. This standardization makes it easier to compare our results across different
evaluation metrics.
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We employed two main statistical approaches to study the behavior of automatic metrics across
different countries and ground-truth styles. First, we conducted paired t-tests to determine whether
automatic metrics provide different scores depending on whether original or standardized ground-
truth reports are used. These tests were performed independently for each country to account for
potential regional variations. To address the issue of multiple comparisons in our t-test analyses, we
applied a Bonferroni correction to control the familywise error rate. The significance level α was set
at 0.05, and the Bonferroni-corrected threshold was calculated as α/n, where n is the total number
of paired t-tests conducted (number of metrics × number of countries = 42). Second, we calculated
Spearman’s rank correlation coefficients (ρ) to quantify the agreement between automatic metrics
and human evaluations for each country. This analysis was performed separately when using original
and standardized ground-truth reports, allowing us to assess how well our automatic metrics aligned
with human judgments across different ground-truth styles and geographical regions.

3. Results

3.1. Effect of Stylistic Differences on Metric Scores

We found that stylistic differences significantly impacted scores from all metrics, with the exception
of FineRadScore-GPT-4. Across all non-GPT metrics and countries, paired t-tests revealed signifi-
cant differences in scores depending on whether original or standardized ground-truth reports were
used (Bonferroni-corrected p < 0.05) (Table 2). BERTScore showed the highest mean t-statistics
across all countries (mean t-stat = -29.72, range: -17.24 to -37.09), indicating a substantial and
consistent difference in scores between the two report styles. FineRadScore-GPT-4 exhibited the
smallest t-statistics (mean t-stat = -1.07, range: -1.50 to -0.42) and was the only metric that did not
show significant differences for any country after Bonferroni correction. All t-statistics were negative,
indicating that comparisons between standardized ground truth reports and AI candidates consis-
tently yielded lower scores (i.e. indicating higher-quality AI candidates) compared to comparisons
between original ground-truth reports and AI candidates. In other words, metrics rated the AI model
as better-performing when the ground truth stylistically resembled the AI candidate. More details
on the distribution of metric and expert scores can be found in Appendix B.

Metric Mean t-stat Min t-stat Max t-stat Significant Countries

BLEU-2 [9] -27.23 -31.01 -20.60 6
BERTScore [10] -29.72 -37.09 -17.24 6
CheXbert Similarity [11] -6.29 -8.15 -3.97 6
RadCliQ-v0 [5] -20.50 -30.08 -11.20 6
RadCliQ-v1 [5] -22.23 -32.37 -12.77 6
RadGraph-F1 [12] -13.66 -19.18 -9.65 6
FineRadScore-GPT-4 [13] -1.07 -1.50 -0.42 0

Table 2. Negative t-statistics indicate that standardized ground truth-AI candidate pairs (similar
styles) consistently received lower scores than original ground truth-AI candidate pairs (different
styles). The magnitude of the t-statistic reflects the strength of this difference. The “Mean” value
gives the average t-statistic across all 6 countries, while the “Min” and “Max” t-stat values show
the lowest and highest values seen across the 6 countries. The “Significant Countries” column
indicates the number of countries (out of 6) where the metric showed a significant difference
between ground truth-AI candidate and standardized ground truth-AI candidate pairs after

Bonferroni correction. FineRadScore-GPT-4 is the only metric whose scores were not significantly
affected by the ground-truth style.
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Fig. 3. Except for FineRadScore-GPT-4, no metric achieved positive Spearman correlations with
expert scores at every site, indicating poor generalization. Correlations for original ground-truth
reports are shown in the black box plots (left). Correlations for standardized ground-truth reports
are shown in blue box plots (right). Metrics typically achieved higher performance with standardized
ground-truth reports than original ground-truth reports. For detailed numerical results, see the table
in Appendix C.

3.2. Correlation of Automatic Metrics with Expert Scores on Stylistically Diverse
Reports

When comparing original ground-truth reports against stylistically different candidates, metrics fre-
quently failed to align with experts (Figure 3). FineRadScore-GPT-4, the only metric using a LLM,
offered the best performance, with coefficients ranging from (ρ = 0.34 to 0.60). Despite achieving
positive correlations at some sites, each of the other metrics had negative coefficients for at least one
site. BLEU-2 showed especially poor performance, with Spearman’s rank correlation coefficients (ρ)
ranging from ρ = −0.20 to −0.48.

3.3. Correlation of Automatic Metrics with Expert Scores on Stylistically
Standardized Reports

After standardizing ground-truth reports to resemble the style of the candidates, metrics generally
showed better agreement with experts (Figure 3). For example, FineRadScore-GPT-4’s coefficients
rose across all sites, now ranging from ρ = 0.52 to 0.78. Despite similar increases, every other metric
still had a negative coefficient for at least one site, suggesting that metrics can fail to generalize even
after standardization. Notably, BLEU-2’s correlation coefficients remained consistently negative even
after standardization, ranging from ρ = −0.34 to −0.06.
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4. Discussion

ReXamine-Global, which tests report evaluation metrics across diverse distributions, successfully
revealed critical gaps in metric generalizability. By applying ReXamine-Global to 7 existing met-
rics, we found that most automatic metrics are undesirably sensitive to stylistic differences, giving
significantly different scores depending on the style of the ground-truth report. The only excep-
tion was FineRadScore-GPT-4, which used a powerful LLM to evaluate reports [13]. Furthermore,
we observed that automatic metrics of all kinds demonstrated, at best, moderate correlation with
expert opinions when using original ground-truth reports. Metrics generally attained better correla-
tions when comparing candidates against standardized ground-truth reports, opening the possibility
that preprocessing candidates and ground-truth reports to make them stylistically similar can im-
prove evaluation procedures. Importantly, we observed that metric behavior sometimes varied across
hospitals; for example, CheXbert Similarity’s correlations when comparing candidates and original
ground-truth reports ranged from -0.065 to 0.45. This finding shows the importance of including data
from a range of diverse hospitals.

The clear variability in metric performance across sites highlights important directions for future
work. ReXamine-Global automatically identifies extreme failure cases, surfacing candidate-report
pairs that could benefit from metric-specific, qualitative analysis to reveal concrete mechanisms
behind metric failure. We provide an example of such a qualitative analysis in Appendix D, manually
reviewing reports to identify specific scenarios where BLEU-2 and RadGraph-F1 perform poorly.
Furthermore, ReXamine-Global can guide the development of more robust report evaluation metrics,
capable of generalizing effectively across diverse healthcare settings. We also hope our work can warn
users about the risks of naively applying metrics to new distributions and help them choose high-
performing metrics for their specific sites of interest.

4.1. Limitations

While we utilized GPT-4 to generate standardized ground-truth and candidate reports, candidate re-
ports generated by other models may elicit different behavior from metrics, so a metric that performs
well on ReXamine-Global may generalize poorly to some other distribution of generated reports. In
addition, our manual evaluation scoring system did not encompass all possible error categories, po-
tentially overlooking some types of inaccuracies, and our evaluation was conducted by only two
physicians, which significantly limits the breadth and diversity of expert assessment. We also as-
sumed that the same number of errors is present regardless of whether the candidate is compared
against the original ground truth or the standardized ground truth, though it is possible that errors
were occasionally added or removed by GPT-4 during standardization. These constraints may have
introduced bias and reduced the robustness of our manual evaluation results. Ideally, each candidate-
report pair would be reviewed by multiple physicians from diverse specialties, with a third reviewer
to resolve discrepancies. This approach would provide a more comprehensive and reliable assessment
of report quality and error identification. A larger pool of reviewers would also make it possible to
conduct inter-rater reliability analyses, which could confirm the reliability of manual evaluation.

5. Institutional Review Board (IRB)

All data was obtained with approval from Institutional Review Board (IRB) and Data Use Agreement
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8. Appendices

Appendix A. GPT-4 Instructions

We gave GPT-4 the following instructions when standardizing the style of our original ground-truth
reports:

Pretend you are a radiologist and format the content of these notes in a

polished findings and impressions section. Your findings section may be

long or short. Your impression should only have 1-3 lines. If you are

unsure about an abbreviation, term, or other odd phrasing, make your best

guess. Match the style of this radiology report:

Report:

Findings: Single frontal view of the chest demonstrates a right

Port-A-Cath in unchanged position, terminating at the cavoatrial junction.

Median sternotomy wires are present, along with surgical clips in the left

upper quadrant. The heart is mildly enlarged, but stable compared with

prior examinations, with redemonstration of calcified mediastinal lymph

nodes. A rounded opacity in the lower left lung likely correlates to a

calcified granuloma as seen on CT of the chest from ___. There is no

evidence of pneumonia, pleural effusion, pneumothorax or overt pulmonary

edema. The lung volumes are low, accentuating bibasilar atelectasis. No

subdiaphragmatic free air is present.

Impression: No subdiaphragmatic free air or other acute cardiopulmonary

process.

After standardizing the style of our reports, we used the following instructions to introduce errors,
producing the final candidate:

Please write a report using the above report as a template. Perturb the

content of a few existing lines. Here are some examples of how a line

could be changed:

- If the report says X condition is present, state that X condition is

absent.

- If the report rules out X condition, state that X condition is present.

- Change the location, size, severity, or implications of a condition.

Only perturb a few lines. Keep the other lines exactly the same. Your

report should still sound fluent, like a radiologist wrote it.
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Appendix B. Distribution of Metric and Expert Scores

This table gives more details on metric and expert scores per country. On average, metrics gave lower
scores when comparing AI candidates to standardized ground-truth reports, rather than to original
ground-truth reports.

Metric Ground Truth Australia Lebanon Taiwan
Saudi
Arabia

United
States

Germany

BLEU-2
Original

−0.23 ±
0.10

−0.25 ±
0.09

−0.17 ±
0.06

−0.13 ±
0.07

−0.24 ±
0.07

−0.20 ±
0.06

Standardized
−0.70 ±
0.13

−0.69 ±
0.11

−0.72 ±
0.11

−0.70 ±
0.12

−0.74 ±
0.13

−0.69 ±
0.13

BERTScore
Original

−0.47 ±
0.09

−0.52 ±
0.08

−0.41 ±
0.08

−0.43 ±
0.15

−0.49 ±
0.08

−0.44 ±
0.06

Standardized
−0.87 ±
0.07

−0.86 ±
0.06

−0.86 ±
0.06

−0.87 ±
0.06

−0.87 ±
0.08

−0.85 ±
0.08

CheXbert Similarity
Original

−0.69 ±
0.19

−0.64 ±
0.14

−0.70 ±
0.19

−0.57 ±
0.24

−0.66 ±
0.18

−0.65 ±
0.19

Standardized
−0.83 ±
0.17

−0.78 ±
0.15

−0.83 ±
0.14

−0.78 ±
0.16

−0.78 ±
0.19

−0.74 ±
0.18

RadCliQ-v0
Original

2.31 ±
0.65

2.09 ±
0.46

2.45 ±
0.52

2.64 ±
0.96

2.29 ±
0.61

2.55 ±
0.50

Standardized
0.83 ±
0.57

0.88 ±
0.48

0.77 ±
0.42

0.83 ±
0.57

0.83 ±
0.64

1.01 ±
0.47

RadCliQ-v1
Original

0.47 ±
0.41

0.30 ±
0.30

0.57 ±
0.32

0.70 ±
0.59

0.45 ±
0.39

0.64 ±
0.31

Standardized
−0.61 ±
0.39

−0.59 ±
0.32

−0.66 ±
0.27

−0.63 ±
0.39

−0.65 ±
0.43

−0.51 ±
0.32

RadGraph-F1
Original

−0.41 ±
0.12

−0.52 ±
0.10

−0.40 ±
0.11

−0.39 ±
0.17

−0.44 ±
0.13

−0.36 ±
0.11

Standardized
−0.65 ±
0.13

−0.68 ±
0.11

−0.69 ±
0.09

−0.69 ±
0.17

−0.71 ±
0.13

−0.66 ±
0.12

FineRadScore-GPT-4
Original

4.15 ±
1.00

3.73 ±
1.34

4.80 ±
1.51

3.60 ±
1.58

4.88 ±
1.68

4.60 ±
1.61

Standardized
3.92 ±
1.35

3.65 ±
1.10

4.47 ±
1.47

3.33 ±
1.42

4.58 ±
1.52

4.35 ±
1.44

Expert Errors Both
3.48 ±
1.71

3.15 ±
1.31

3.60 ±
1.45

2.38 ±
1.31

4.05 ±
1.50

3.65 ±
1.44

Table 3: Means and standard deviations of metrics and expert scores.

Appendix C. Full Correlation Results

This table gives detailed results about how metric scores were correlated with expert scores, across
sites and ground-truth report styles.

Metric Ground Truth Australia Lebanon Taiwan
Saudi
Arabia

United
States

Germany

BLEU-2
Original -0.48 -0.44 -0.35 -0.20 -0.31 -0.21
Standardized -0.10 -0.34 -0.06 -0.20 -0.23 -0.15

BERTScore
Original -0.26 -0.28 -0.07 -0.25 -0.11 0.17
Standardized 0.07 -0.33 -0.02 0.02 -0.17 -0.08

CheXbert Similarity
Original 0.24 -0.06 0.45 0.03 0.01 0.04
Standardized 0.36 -0.10 0.30 0.24 0.06 0.04

RadCliQ-v0
Original 0.06 -0.22 0.17 -0.00 -0.07 0.21
Standardized 0.35 -0.12 0.25 0.25 -0.05 -0.04

RadCliQ-v1
Original 0.00 -0.25 0.08 -0.01 -0.11 0.19
Standardized 0.30 -0.16 0.24 0.20 -0.09 -0.05

RadGraph-F1
Original -0.06 -0.27 -0.21 0.09 -0.20 0.21
Standardized 0.17 -0.14 0.30 0.24 -0.13 -0.06

FineRadScore-GPT-4
Original 0.56 0.59 0.51 0.60 0.43 0.34
Standardized 0.78 0.76 0.62 0.52 0.52 0.69

Table 4: Spearman correlations between metric and expert scores.
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Appendix D. Failure Modes of BLEU-2 and RadGraph-F1

By examining extreme failure cases where metrics gave particularly incorrect scores, we were able
to identify some qualitative reasons for metric failure. We focused on BLEU-2 and RadGraph-F1,
which represent the overlap between short phrases and clinically relevant keywords respectively, and
are more readily interpretable than other embedding-based approaches. To understand how BLEU-2
can fail, we studied reports from Australia, where BLEU-2 achieved its lowest correlation of -.48.
To understand how RadGraph-F1 can fail, we studied reports from Lebanon, where RadGraph-F1
achieved its lowest correlation of -.27.

In Table 5, we looked at cases where metrics marked reports as being high-quality, though experts
found many errors in them. We observed that these errors tended to affect only one or two words
in the report (e.g. “left” vs. “right”, “4.5” vs. “5”). As a result, these errors barely reduced the
overall scores from these metrics, which directly measure word or keyword overlap. Embedding or
LLM-based approaches may have been more capable of recognizing that these particular mismatches
had an outsized impact on the meaning of the report, even though they affected fairly few words.

Original Ground-Truth Report AI Candidate Metric
Score

Expert
Score

The ETT is 4.5 cm above the carina. A catheter
enters via right internal jugular approach, looped
in the lower portion of the right atrium and has
its tip in the right ventricle. This position is un-
usual and clinical correlation suggested. Mediasti-
nal and left basal chest drains noted. Nasogastric
tube has its tip in the body of the stomach. The
lungs are mildly congested. There is minor left
basal atelectasis. Minor blunting of the bilateral
costophrenic angles is in keeping with small pleu-
ral effusions. No pneumothorax.

Report: Findings: Assessment of the chest X-
ray reveals an endotracheal tube positioned 5
cm above the carina. A catheter is noted to en-
ter through the left internal jugular vein loop-
ing into the lower right atrium and ending in
the right ventricle, an unusual placement. Medi-
astinal and right basal chest drains are evident.
Nasogastric tube placement is accurate with its
tip located in the body of the stomach. Radio-
graphic evidence of moderate bilateral lung con-
gestion is observed along with minor presence of
right basal atelectasis. There is minor blunting
of the bilateral costophrenic angles suggestive of
small pleural effusions. A small pneumothorax
is identified. Impression: Unusual catheter posi-
tioning, presence of minor right basal atelecta-
sis, small bilateral pleural effusions, and identi-
fied pneumothorax. Clinical correlation recom-
mended.

BLEU-2:
-.42

6

No pleural effusion or detectable pneumothorax.
The cardiac silhouette is enlarged with a cardio-
thoracic ratio of 0.6. A coronary stent is noted
There is an impression of a rounded area of shad-
owing projecting over the mid aspect of the car-
diac silhouette on the PA projection and retro-
cardiac space on the lateral projection, that may
be related to a hiatal hernia, less likely a pul-
monary opacity. The rest of the lungs are clear.
No overt pulmonary oedema. No displaced rib
fracture. There is exaggerated kyphosis of the
thoracic spine with mild central loss of height of
few of the visualised vertebral bodies mainly in
the mid dorsal spine. Metallic hardware is noted
along the left humeral head and proximal shaft.
Comparison to previous studies if available is sug-
gested

Report: Findings: The X-Ray shows no dis-
cernible pneumothorax or pleural effusion. The
cardiac silhouette is normal-sized with a car-
diothoracic ratio of 0.4, and a coronary stent is
present. A pronounced area of shadowing is ob-
served over the mid aspect of the cardiac silhou-
ette on the PA projection and retrocardiac space
on the lateral projection. This may be related to a
hiatal hernia or more likely, a pulmonary opac-
ity. No signs of pulmonary oedema or rib frac-
tures are detected. The rest of the lungs appear
clear. A mild kyphosis of the thoracic spine is
noted with significant loss of height in several of
the visualised vertebral bodies, mainly in the up-
per dorsal spine. Metallic evidence is seen along
the right humeral head and proximal shaft. Im-
pression: Normal cardiac size and probable pul-
monary opacity noted. Suggest comparison with
previous studies for further evaluation.

RadGraph-
F1:-.62

5

Table 5. These candidates received low metric scores despite containing many errors. Errors are
highlighted in bold. Scores for these metrics have been multiplied by -1, so higher scores indicate

worse performance.

In Table 6, we examined cases where metrics marked reports as being low-quality, though experts
found few errors. Here, we found that stylistic differences in how normal findings were described
substantially impacted BLEU-2’s performance. In the first example, the predicted report was much
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longer than the ground-truth report, in part because it was more explicit in ruling out abnormalities
(“no additional abnormalities”, “no other acute cardiopulmonary conditions”). This discrepancy
reflects realistic variation among radiologists. Some radiologists may prefer concise reports which
imply that unmentioned abnormalities are absent, while other radiologists write longer reports that
clearly rule out many abnormalities. Unfortunately, BLEU-2 performed poorly when facing this
stylistic diversity and found little overlap due to the substantial difference in wording, even though
the ground truth and candidate conveyed nearly identical content.

RadGraph-F1 failed due to even subtler differences in writing style. The RadGraph pipeline
extracts keywords and labels them based on their function in the report, and the RadGraph-F1 score
quantifies how often the labeled keywords from the ground-truth and candidate reports match. While
the names of abnormalities and anatomical locations stayed largely consistent between the ground
truth and AI candidate, other differences in wording led to markedly different sets of keywords (e.g.
“within”, “acceptable”, and “range” vs. “normal”), causing RadGraph-F1 to indicate that these
reports do not match well. Additionally, we observed discrepancies in how the RadGraph model
labeled keywords across stylistically different reports. For example, “infiltrates” was labeled as being
“located at ‘pneumonic’” in the ground-truth report, yet it was labeled as “modifying ‘pneumonic’”
in the AI candidate, an inconsistency that further harmed RadGraph-F1’s performance.

Original Ground-Truth Report AI Candidate Metric
Score

Expert
Score

Bilateral lower hilar peribronchial thickening in
this setting is likely to represent bronchitis.

Report: Findings: The scrutinized chest X-ray ex-
hibits bilateral mid hilar peribronchial thicken-
ing. The pattern of these findings is frequently
seen in instances of bronchitis. No additional ab-
normalities or significant changes in comparison
to preceding examinations are identified. Impres-
sion: The noted markers are suggestive of bronchi-
tis. No other acute cardiopulmonary conditions
have been detected.

BLEU-2:
-.09

1

Impression No consolidation or definite
pneumonic infiltrates. No pneumothorax or
pleural effusion. The cardiomediastinal silhouette
is normal. The visualised bones are unremarkable.

Report: Findings: Single frontal view of the chest
shows evidence of consolidation and immedi-
ate pneumonic infiltrates. There are no signs
of pneumothorax or pleural effusion. The car-
diomediastinal silhouette falls within the accept-
able range. Evaluation of the visible bones does
not reveal any conspicuous anomalies. Impres-
sion: Chest X-ray exhibits acute cardiopul-
monary changes and still does not present any
bone abnormalities.

RadGraph-
F1:-.35

1

Table 6. These candidates received high metric scores despite containing almost no errors. Errors
are highlighted in bold. Scores for these metrics have been multiplied by -1, so higher scores

indicate worse performance.
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